共查询到20条相似文献,搜索用时 15 毫秒
1.
Schuster M Zhao R Bourret RB Collins EJ 《The Journal of biological chemistry》2000,275(26):19752-19758
In Escherichia coli, swimming behavior is mediated by the phosphorylation state of the response regulator CheY. In its active, phosphorylated form, CheY exhibits enhanced binding to a switch component, FliM, at the flagellar motor, which induces a change from counterclockwise to clockwise flagellar rotation. When Ile(95) of CheY is replaced by a valine, increased clockwise rotation correlates with enhanced binding to FliM. A possible explanation for the hyperactivity of this mutant is that residue 95 affects the conformation of nearby residues that potentially interact with FliM. In order to assess this possibility directly, the crystal structure of CheY95IV was determined. We found that CheY95IV is structurally almost indistinguishable from wild-type CheY. Several other mutants with substitutions at position 95 were characterized to establish the structural requirements for switch binding and clockwise signaling at this position and to investigate a general relationship between the two properties. The various rotational phenotypes of these mutants can be explained solely by the amount of phosphorylated CheY bound to the switch, which was inferred from the phosphorylation properties of the mutant CheY proteins and their binding affinities to FliM. Combined genetic, biochemical, and crystallographic results suggest that residue 95 itself is critical in mediating the surface complementarity between CheY and FliM. 相似文献
2.
The signal transduction system that mediates bacterial chemotaxis allows cells to moduate their swimming behavior in response to fluctuations in chemical stimuli. Receptors at the cell surface receive information from the surroundings. Signals are then passed from the receptors to cytoplasmic chemotaxis components: CheA, CheW, CheZ, CheR, and CheB. These proteins function to regulate the level of phosphorylation of a response regulator designated CheY that interacts with the flagellar motor switch complex to control swimming behavior. The structure of CheY has been determined. Magnesium ion is essential for activity. The active site contains highly conserved Asp residues that are required for divalent metal ion binding and CheY phosphorylation. Another residue-at the active site, Lys109, is important in the phosphorylation-induced conformational change that facilitates communication with the switch complex and another chemotaxis component, CheZ. CheZ facilitates the dephosphorylation of phospho-CheY. Defects in CheY and CheZ can be suppressed by mutations in the flagellar switch complex. CheZ is thought to modulate the switch bias by varying the level of phospho-CheY. © 1993 Wiley-Liss, Inc. 相似文献
3.
Spatial organization of signalling is not an exclusive property of eukaryotic cells. Despite the fact that bacterial signalling pathways are generally simpler than those in eukaryotes, there are several well‐documented examples of higher‐order intracellular signalling structures in bacteria. One of the most prominent and best‐characterized structures is formed by proteins that control bacterial chemotaxis. Signals in chemotaxis are processed by ordered arrays, or clusters, of receptors and associated proteins, which amplify and integrate chemotactic stimuli in a highly cooperative manner. Receptor clusters further serve to scaffold protein interactions, enhancing the efficiency and specificity of the pathway reactions and preventing the formation of signalling gradients through the cell body. Moreover, clustering can also ensure spatial separation of multiple chemotaxis systems in one bacterium. Assembly of receptor clusters appears to be a stochastic process, but bacteria evolved mechanisms to ensure optimal cluster distribution along the cell body for partitioning to daughter cells at division. 相似文献
4.
Protein phosphorylation in the bacterial chemotaxis system 总被引:2,自引:0,他引:2
Bacterial chemotaxis involves the detection of changes in concentration of specific chemicals in the environment of the cell as a function of time. This process is mediated by a series of cell surface receptors that interact with and activate intracellular protein phosphorylation. Five cytoplasmic proteins essential for chemotaxis have been shown to be involved in a coupled system of protein phosphorylation. Ligand binding to cell surface receptors affects the rate of autophosphorylation of the CheA protein. In the absence of an attractant bound to receptor and in the presence of the CheW protein, the rate of CheA autophosphorylation is markedly increased. Phosphorylated CheA can transfer phosphate to the CheY or CheB proteins; phosphorylation of these "effector" proteins may increase their activity. The CheY protein is thought to regulate flagellar rotation and thus control swimming behavior. The CheB protein modifies the cell surface receptor and thus regulates receptor function. Finally, another chemotaxis protein, CheZ, acts to specifically dephosphorylate CheY-phosphate. This system shows marked similarity to the 2-component sensor-regulator systems found to control specific gene expression in a variety of bacteria. 相似文献
5.
Requirement of ATP in bacterial chemotaxis 总被引:13,自引:0,他引:13
J I Shioi R J Galloway M Niwano R E Chinnock B L Taylor 《The Journal of biological chemistry》1982,257(14):7969-7975
Evidence is presented that chemotaxis requires ATP or a closely related metabolite, in addition to its known requirements of ATP for synthesis of S-adenosylmethionine (AdoMet) and maintenance of the proton motive force. Previous studies demonstrated a loss of tumbling and chemotaxis, and depletion of ATP when hisF auxotrophs of Salmonella typhimurium are starved for histidine (Galloway, R. J., and Taylor, B. L. (1980) J. Bacteriol. 144, 1068-1075). In the present study, intracellular [AdoMet], membrane potential, and [ATP] were measured in a hisF mutant of S. typhimurium. Membrane potential, determined from partitioning of [3H]tetraphenylphosphonium ion between the inside and the outside of the cell, was about -150 mV at pH 7.6, and did not decrease in histidine starvation but was slightly increased. The concentration of AdoMet decreased from 0.4 mM to 0.3 mM during starvation but when cycloleucine, an inhibitor of AdoMet synthetase, was used to decrease [AdoMet] by a similar amount in histidine-fed cells there was little change in tumbling frequency. Intracellular [ATP] was reduced from 4.5 mM to less than 0.2 mM by histidine starvation. About 0.2 mM ATP was necessary for spontaneous tumbling. A similar [ATP] was required for tumbling in arsenate-treated cells. Adenine at concentrations as low as 20 nM caused a transient increase in both tumbling frequency and [ATP] in histidine-starved cells. Thus, out of three parameters tested, only the intracellular [ATP] correlated with changes in tumbling frequency in the histidine-starved cells. 相似文献
6.
Cells of Escherichia coli, tethered to glass by a single flagellum, were subjected to constant flow of a medium containing the attractant alpha-methyl-DL-aspartate. The concentration of this chemical was varied with a programmable mixing apparatus over a range spanning the dissociation constant of the chemoreceptor at rates comparable to those experienced by cells swimming in spatial gradients. When an exponentially increasing ramp was turned on (a ramp that increases the chemoreceptor occupancy linearly), the rotational bias of the cells (the fraction of time spent spinning counterclockwise) changed rapidly to a higher stable level, which persisted for the duration of the ramp. The change in bias increased with ramp rate, i.e., with the time rate of change of chemoreceptor occupancy. This behavior can be accounted for by a model for adaptation involving proportional control, in which the flagellar motors respond to an error signal proportional to the difference between the current occupancy and the occupancy averaged over the recent past. Distributions of clockwise and counterclockwise rotation intervals were found to be exponential. This result cannot be explained by a response regular model in which transitions between rotational states are generated by threshold crossings of a regular subject to statistical fluctuation; this mechanism generates distributions with far too many long events. However, the data can be fit by a model in which transitions between rotational states are governed by first-order rate constants. The error signal acts as a bias regulator, controlling the values of these constants. 相似文献
7.
8.
Motile bacteria regulate chemotaxis through a highly conserved chemosensory signal-transduction system. System-wide analyses and mathematical modeling are facilitated by extensive experimental observations regarding bacterial chemotaxis proteins, including biochemical parameters, protein structures and protein-protein interaction maps. Thousands of signaling and regulatory chemotaxis proteins within a bacteria cell form a highly interconnected network through distinct protein-protein interactions. A bacterial cell is able to respond to multiple stimuli through a collection of chemoreceptors with different sensory modalities, which interact to affect the cooperativity and sensitivity of the chemotaxis response. The robustness or insensitivity of the chemotaxis system to perturbations in biochemical parameters is a product of the system's hierarchical network architecture. 相似文献
9.
Hilpert M 《Journal of mathematical biology》2005,51(3):302-332
We present a new numerical approach for modeling bacterial chemotaxis and the fate and transport of a chemoattractant in bulk liquids. This Lattice-Boltzmann method represents the microorganisms and the chemoattractant by quasi-particles that move, collide, and react with each other on a two-dimensional numerical lattice. We use the model to simulate traveling bands of bacteria along self-generated gradients in substrate concentration in bulk liquids. Particularly, we simulate Pseudomonas putida that respond chemotactically to naphthalene dissolved in water. We find that only a fraction of a bacterial slug injected into a domain containing the chemoattractant at constant concentration forms a traveling band as the slug length exceeds a critical value. An expanding bacterial ring forms as one injects a droplet of bacteria into a two-dimensional domain. 相似文献
10.
Sensory complexes in bacterial chemotaxis are organized in large clusters, building complex signal-processing machinery. Interactions among chemoreceptors are the main determinant of cluster formation and create an allosteric network that is able to integrate and amplify stimuli, before transmitting the signal to downstream proteins. Association of the other proteins with the receptor cluster creates a signalling scaffold, which enhances the efficiency and specificity of the pathway. Clusters localize to specific locations inside the cell, perhaps to ensure their proper distribution during cell division. Clustering is conserved among all studied prokaryotic chemotaxis systems and exemplifies a growing number of bacterial pathways with a reported sub-cellular spatial organization. Moreover, because allostery provides a simple mechanism to achieve very high response sensitivity, it is probable that clustering-based signal amplification is not limited to bacterial chemotaxis but also exists in other prokaryotic and eukaryotic pathways. 相似文献
11.
The basic structural unit of the signaling complex in bacterial chemotaxis consists of the chemotaxis kinase CheA, the coupling protein CheW, and chemoreceptors. These complexes play an important role in regulating the kinase activity of CheA and in turn controlling the rotational bias of the flagellar motor. Although individual three-dimensional structures of CheA, CheW, and chemoreceptors have been determined, the interaction between chemoreceptor and CheW is still unclear. We used nuclear magnetic resonance to characterize the interaction modes of chemoreceptor and CheW from Thermotoga maritima. We find that chemoreceptor binding surface is located near the highly conserved tip region of the N-terminal helix of the receptor, whereas the binding interface of CheW is placed between the β-strand 8 of domain 1 and the β-strands 1 and 3 of domain 2. The receptor-CheW complex shares a similar binding interface to that found in the "trimer-of-dimers" oligomer interface seen in the crystal structure of cytoplasmic domains of chemoreceptors from Escherichia coli. Based on the association constants inferred from fast exchange chemical shifts associated with receptor-CheW titrations, we estimate that CheW binds about four times tighter to its first binding site of the receptor dimer than to its second binding site. This apparent anticooperativity in binding may reflect the close proximity of the two CheW binding surfaces near the receptor tip or further, complicating the events at this highly conserved region of the receptor. This work describes the first direct observation of the interaction between chemoreceptor and CheW. 相似文献
12.
Strains missing several genes required for chemotaxis toward amino acids, peptides, and certain sugars were tethered and their rotational behavior was analyzed. Null strains (called gutted) were deleted for genes that code for the transducers Tsr, Tar, Tap, and Trg and for the cytoplasmic proteins CheA, CheW, CheR, CheB, CheY, and CheZ. Motor switch components were wild type, flaAII(cheC), or flaBII(cheV). Gutted cells with wild-type motors spun exclusively counterclockwise, while those with mutant motors changed their directions of rotation. CheY reduced the bias (the fraction of time that cells spun counterclockwise) in either case. CheZ offset the effect of CheY to an extent that varied with switch allele but did not change the bias when tested alone. Transducers also increased the bias in the presence of CheY but not when tested alone. However, cells containing transducers and CheY failed to respond to attractants or repellents normally detected in the periplasm. This sensitivity was restored by addition of CheA and CheW. Thus, CheY both enhances clockwise rotation and couples the transducers to the flagella. CheZ acts, at the level of the motor, as a CheY antagonist. CheA or CheW or both are required to complete the signal pathway. A model is presented that explains these results and is consistent with other data found in the literature. 相似文献
13.
Oleksiuk O Jakovljevic V Vladimirov N Carvalho R Paster E Ryu WS Meir Y Wingreen NS Kollmann M Sourjik V 《Cell》2011,145(2):312-321
Temperature is a global factor that affects the performance of all intracellular networks. Robustness against temperature variations is thus expected to be an essential network property, particularly in organisms without inherent temperature control. Here, we combine experimental analyses with computational modeling to investigate thermal robustness of signaling in chemotaxis of Escherichia coli, a relatively simple and well-established model for systems biology. We show that steady-state and kinetic pathway parameters that are essential for chemotactic performance are indeed temperature-compensated in the entire physiological range. Thermal robustness of steady-state pathway output is ensured at several levels by mutual compensation of temperature effects on activities of individual pathway components. Moreover, the effect of temperature on adaptation kinetics is counterbalanced by preprogrammed temperature dependence of enzyme synthesis and stability to achieve nearly optimal performance at the growth temperature. Similar compensatory mechanisms are expected to ensure thermal robustness in other systems. 相似文献
14.
Signaling in bacterial chemotaxis is mediated by several types of transmembrane chemoreceptors. The chemoreceptors form tight polar clusters whose functions are of great biological interest. Here, we study the general properties of a chemotaxis model that includes interaction between neighboring chemoreceptors within a receptor cluster and the appropriate receptor methylation and demethylation dynamics to maintain (near) perfect adaptation. We find that, depending on the receptor coupling strength, there are two steady-state phases in the model: a stationary phase and an oscillatory phase. The mechanism for the existence of the two phases is understood analytically. Two important phenomena in transient response, the overshoot in response to a pulse stimulus and the high gain in response to sustained changes in external ligand concentrations, can be explained in our model, and the mechanisms for these two seemingly different phenomena are found to be closely related. The model also naturally accounts for several key in vitro response experiments and the recent in vivo fluorescence resonance energy transfer experiments for various mutant strains. Quantitatively, our study reveals possible choices of parameters for fitting the existing experiments and suggests future experiments to test the model predictions. 相似文献
15.
We have analyzed repellent signal processing in Escherichia coli by flash photorelease of leucine from photolabile precursors. We found that 1). response amplitudes of free-swimming cell populations increased with leucine jump concentration, with an apparent Hill coefficient of 1.3 and a half-maximal dose of 14.4 microM; 2). at a 0-0.5 mM leucine concentration jump sufficient to obtain a saturation motile response, the swimming cell response time of approximately 0.05 s was several-fold more rapid than the motor response time of 0.39 +/- 0.18 s measured by following the rotation of cells tethered by a single flagellum to quartz coverslips; and 3). the motor response time of individual cells was correlated with rotation bias but not cell size. These results provide information on amplification, rate-limiting step, and flagellar bundle mechanics during repellent signal processing. The difference between the half-maximal dose for the excitation response and the corresponding value reported for adaptation provides an estimate of the increase in the rate of formation of CheYP, the phosphorylated form of the signal protein CheY. The estimated increase gives a lower limit receptor kinase coupling ratio of 6.0. The magnitude and form of the motor response time distribution argue for it being determined by the poststimulus switching probability rather than CheYP turnover, diffusion, or binding. The temporal difference between the tethered and swimming cell response times to repellents can be quantitatively accounted for and suggests that one flagellum is sufficient to cause a measurable change of direction in which a bacterium swims. 相似文献
16.
U Alon L Camarena M G Surette B Aguera y Arcas Y Liu S Leibler J B Stock 《The EMBO journal》1998,17(15):4238-4248
Chemotaxis responses in Escherichia coli are mediated by the phosphorylated response-regulator protein P-CheY. Biochemical and genetic studies have established the mechanisms by which the various components of the chemotaxis system, the membrane receptors and Che proteins function to modulate levels of CheY phosphorylation. Detailed models have been formulated to explain chemotaxis sensing in quantitative terms; however, the models cannot be adequately tested without knowledge of the quantitative relationship between P-CheY and bacterial swimming behavior. A computerized image analysis system was developed to collect extensive statistics on freeswimming and individual tethered cells. P-CheY levels were systematically varied by controlled expression of CheY in an E.coli strain lacking the CheY phosphatase, CheZ, and the receptor demethylating enzyme CheB. Tumbling frequency was found to vary with P-CheY concentration in a weakly sigmoidal fashion (apparent Hill coefficient approximately 2.5). This indicates that the high sensitivity of the chemotaxis system is not derived from highly cooperative interactions between P-CheY and the flagellar motor, but rather depends on nonlinear effects within the chemotaxis signal transduction network. The complex relationship between single flagella rotation and free-swimming behavior was examined; our results indicate that there is an additional level of information processing associated with interactions between the individual flagella. An allosteric model of the motor switching process is proposed which gives a good fit to the observed switching induced by P-CheY. Thus the level of intracellular P-CheY can be estimated from behavior determinations: approximately 30% of the intracellular pool of CheY appears to be phosphorylated in fully adapted wild-type cells. 相似文献
17.
To examine whether or not sensory signaling in bacteria is by way of fluctuations in membrane potential, we studied the effect of clamping the potential on bacterial chemotaxis. The potential was clamped by valinomycin, a K+ -specific ionophore, in the presence of K+. Despite the clamped potential, sensory signaling did occur: both Escherichia coli and Bacillus subtilis cells were still excitable and adaptable under these conditions. It is concluded that signaling in the excitation and adaptation steps of chemotaxis is not by way of fluctuations in the membrane potential. 相似文献
18.
Peritrichous bacteria alternately swim and tumble (thrash about with little forward progress). By selective modulation of tumbling frequency, these bacteria carry out chemotaxis, which is migration to higher concentrations of attractant or lower concentrations of repellent. A model for chemotaxis is presented in which tumbling frequency is regulated by concentration of Ca2+ ion at the switch that controls tumbling and swimming. Attractants cause decreased levels of free cytoplasmic Ca2+ ion due to binding of Ca2+ ion by specific proteins. This Ca2+ ion is released when these proteins become methylated. An alternative model. involving a cytoplasmic metabolite “compound X”, is discussed. 相似文献
19.
Fundamental theoretical aspects of bacterial chemotaxis 总被引:1,自引:0,他引:1
G Rosen 《Journal of theoretical biology》1973,41(2):201-208
20.
Calcium channel blockers inhibit bacterial chemotaxis 总被引:6,自引:0,他引:6
The effect of several Ca2+ channel blockers, which inhibit the voltage-dependent Ca2+ uptake in Bacillus subtilis, on chemotactic behaviour of the bacterium was studied. Nitrendipine, verapamil, LaCl3 and omega-conotoxin were tested and these blockers inhibited chemotactic behaviour in the bacterium toward L-alanine. Among these blockers, omega-conotoxin was the most effective inhibitor of chemotaxis. EGTA was also as effective as omega-conotoxin. In contrast, these blockers, did not inhibit the motility and the growth of the bacterium. These results suggest that internal Ca2+ plays an important role in the sensory system of bacterial chemotaxis. 相似文献