首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Water-soluble quinoprotein glucose dehydrogease (PQQGDH-B) is a dimeric enzyme whose application for glucose sensing is the focus of much attention. We attempted to increase the thermal stability of PQQGDH-B by introducing a disulfide bond at the dimer interface. The Ser residue at position 415 was selected for substitution with Cys, as structural information revealed that its side chains face each other at the dimer interface of PQQGDH-B. PQQGDH-B with Ser415Cys showed 30-fold greater thermal stability at 55°C than did the wild-type enzyme without any decrease in catalytic activity. After incubation at 70°C for 10 min, Ser415Cys retained 90% of the GDH activity of the wild-type enzyme. Disulfide bond formation between the mutant subunits was confirmed by analyses with sodium dodecylsulfate-polyacrylamide gel electrophoresis in the presence and absence of reductants. Our results indicate that the introduction of one Cys residue in each monomer of PQQGDH-B resulted in formation of a disulfide bond at the dimer interface and thus achieved a large increase in the thermal stability of the enzyme.  相似文献   

2.
This Letter details our ongoing efforts to develop selective positive allosteric modulators (PAMs) of the mGlu2/4 heterodimeric receptor that exists in the CNS and may represent a novel drug target to modulate the glutamatergic system. As multiple hit-to-lead campaigns from HTS hits failed to produce selective small molecule mGlu2/4 heterodimer PAMs, we were inspired by the work of Portoghese to synthesize and evaluate a set of nine bivalent tethered ligands (possessing an mGlu2 PAM at one terminus and an mGlu4 PAM at the other). Utilizing G protein-Inwardly Rectifying Potassium (GIRK) channel functional assays, we found that the tethered ligands displayed PAM activity in a cell line co-expressing both mGlu2 and mGlu4 but also in cells expressing mGlu2 or mGlu4 alone. In a CODA-RET assay, one of the tethered ligands potentiated mGlu2/4 heterodimers; however, another compound displayed 75-fold preference for the mGlu2/2 homodimer over heterodimeric mGlu2/4 or homomeric mGlu4/4. This work highlights the development of mGlu receptor PAMs with homodimer/heterodimer preference and expands the potential for PAMs as tethered ligands beyond the more classical antagonists and NAMs.  相似文献   

3.
Bone morphogenetic protein (BMP)2/7 heterodimer shows greater efficacy in enhancing bone regeneration. However, the precise mechanism and the role of mitogen-activated protein kinase (MAPK) signaling network in BMP2/7-driven osteogenesis remain ambiguous. In this study, we evaluated the effects of BMP2/7 heterodimers on osteoblastic differentiation in rat bone marrow mesenchymal stem cells (BMSCs), with the aim to elaborate how MAPKs might be involved in this cellular process by treatment of rat BMSCs with BMP2/-7 with a special signal-pathway inhibitor. We found that BMP2/7 heterodimer induced a much stronger osteogenic response in rat BMSCs compared with either homodimer. Most interestingly, extracellular signal-regulated kinase (ERK) demonstrated a highly sustained phosphorylation and activation in the BMP2/7 heterodimer treatment groups, and inhibition of ERK cascades using U0126 special inhibitor that significantly reduced the activity of ALP and calcium mineralization to a substantial degree in rat BMSCs treated with BMP2/7 heterodimers. Collectively, we demonstrate that BMP2/7 heterodimer shows a potent ability to stimulate osteogenesis in rat BMSCs. The activated ERK signaling pathway involved in this process may contribute partially to an increased osteogenic potency of heterodimeric BMP2/7 growth factors.  相似文献   

4.
Site-directed mutagenesis was carried out on the active site of water-soluble PQQ glucose dehydrogenase (PQQGDH-B) to improve its substrate specificity. Amino acid substitution of His168 resulted in a drastic decrease in the enzyme's catalytic activity, consistent with its putative catalytic role. Substitutions were also carried out in neighboring residues, Lys166, Asp167, and Gln169, in an attempt to alter the enzyme's substrate binding site. Lys166 and Gln169 mutants showed only minor changes in substrate specificity profiles. In sharp contrast, mutants of Asp167 showed considerably altered specificity profiles. Of the numerous Asp167 mutants characterized, Asp167Glu showed the best substrate specificity profile, while retaining most of its catalytic activity for glucose and stability. We also investigated the cumulative effect of combining the Asp167Glu substitution with the previously reported Asn452Thr mutation. Interpretation of the effect of the replacement of Asp167 to Glu on the alteration of substrate specificity in relation with the predicted 3D model of PQQGDH-B is also discussed.  相似文献   

5.
6.
Knobs-into-holes is a well-validated heterodimerization technology for the third constant domain of an antibody. This technology has been used to produce a monovalent IgG for clinical development (onartuzumab) and multiple bispecific antibodies.1,2 The most advanced uses of this approach, however, have been limited to E. coli as an expression host to produce non-glycosylated antibodies. Here, we applied the technology to mammalian host expression systems to produce glycosylated, effector-function competent heterodimeric antibodies. In our mammalian host system, each arm is secreted as a heavy chain-light chain (H-L) fragment with either the knob or hole mutations to allow for preferential heterodimer formation in vitro with low levels of homodimer contaminants. Like full antibodies, the secreted H-L fragments undergo Fc glycosylation in the endoplasmic reticulum. Using a monospecific anti-CD20 antibody, we show that full antibody-dependent cell-mediated cytotoxicity (ADCC) activity can be retained in the context of a knobs-into-holes heterodimer. Because the knobs-into-holes mutations convert the Fc into an asymmetric heterodimer, this technology was further used to systematically explore asymmetric recognition of the Fc. Our results indicate that afucosylation of half the heterodimer is sufficient to produce ADCC-enhancement similar to that observed for a fully afucosylated antibody with wild-type Fc. However, the most dramatic effect on ADCC activity is observed when two carbohydrate chains are present rather than one, regardless of afucosylation state.  相似文献   

7.
Bispecific IgG asymmetric (heterodimeric) antibodies offer enhanced therapeutic efficacy, but present unique challenges for drug development. These challenges are related to the proper assembly of heavy and light chains. Impurities such as symmetric (homodimeric) antibodies can arise with improper assembly. A new method to assess heterodimer purity of such bispecific antibody products is needed because traditional separation-based purity assays are unable to separate or quantify homodimer impurities. This paper presents a liquid chromatography-mass spectrometry (LC-MS)-based method for evaluating heterodimeric purity of a prototype asymmetric antibody containing two different heavy chains and two identical light chains. The heterodimer and independently expressed homodimeric standards were characterized by two complementary LC-MS techniques: Intact protein mass measurement of deglycosylated antibody and peptide map analyses. Intact protein mass analysis was used to check molecular integrity and composition. LC-MSE peptide mapping of Lys-C digests was used to verify protein sequences and characterize post-translational modifications, including C-terminal truncation species. Guided by the characterization results, a heterodimer purity assay was demonstrated by intact protein mass analysis of pure deglycosylated heterodimer spiked with each deglycosylated homodimeric standard. The assay was capable of detecting low levels (2%) of spiked homodimers in conjunction with co-eluting half antibodies and multiple mass species present in the homodimer standards and providing relative purity differences between samples. Detection of minor homodimer and half-antibody C-terminal truncation species at levels as low as 0.6% demonstrates the sensitivity of the method. This method is suitable for purity assessment of heterodimer samples during process and purification development of bispecific antibodies, e.g., clone selection.  相似文献   

8.
9.
Although red blood cells account for about 30% of total PAF-AH activity found in the blood, the physiological function of this enzyme is unknown. To understand the role and regulatory mechanism of this enzyme, we purified it from easily obtainable pig red blood cells. PAF-AH activity was mainly found in the soluble fraction of the red blood cells. Two peaks of enzyme activity appeared with increasing concentration of imidazole on column chromatography on nickel-nitroacetic acid (Ni-NTA) resin. We called these peaks of small and large enzyme activities fractions X and Y, respectively, and then further purified the enzymes by sequential chromatofocusing on Mono P and gel filtration on TSK G-3000. In the final preparation from fraction Y, two proteins bands corresponding to 26 kDa and 28 kDa were related to enzyme activity. Determination of the partial amino acid sequences of the proteins of 26 kDa and 28 kDa revealed that these proteins were identical to alpha(1) and alpha(2), respectively, both of which are catalytic subunits of Type I intracellular PAF-AH. On Western analysis, the 26 kDa and 28 kDa protein bands cross-reacted with specific monoclonal antibodies to alpha(1) and alpha(2), respectively. Since the apparent molecular weight of the natural enzyme was estimated to be about 60 kDa, the enzyme activity in fraction Y was thought to be that of a heterodimer consisting of alpha(1) and alpha(2). On the other hand, the enzyme activity in fraction X was thought to be that of a homodimer consisting of alpha(2). Other blood cells such as polymorphonuclear leukocytes and platelets only contained the alpha(2)/alpha(2) homodimer. It has been reported that the alpha(1)/alpha(2) heterodimer is poorly expressed in adult animals except for in the spermatogonium. Taken altogether, these results suggest that high expression of the alpha(1)/alpha(2) heterodimer is important for the physiological function of mature red blood cells.  相似文献   

10.
Inlow JK  Baldwin TO 《Biochemistry》2002,41(12):3906-3915
Bacterial luciferase is a heterodimeric (alphabeta) enzyme which catalyzes a light-producing reaction in Vibrio harveyi. In addition to the alphabeta enzyme, the beta subunit can self-associate to form a stable but inactive homodimer [Sinclair, J. F., Ziegler, M. M., and Baldwin, T. O. (1994) Nat. Struct. Biol. 1, 320-326]. The studies reported here were undertaken to explore the role of the subunit interface in the conformational stability of the enzyme. To this end, we constructed four mutant heterodimers in which residues at the subunit interface were changed in an effort to alter the volume of an apparent solvent accessible channel at the interface or to alter H-bonding groups. Equilibrium unfolding data for the heterodimer have been interpreted in terms of a three-state mechanism [Clark, C. A., Sinclair, J. F., and Baldwin, T. O. (1993) J. Biol. Chem. 268, 10773-10779]. However, we found that unfolding for the wild-type and mutant luciferases is better described by a four-state model. This change in the proposed mechanism of unfolding is based on observation of residual structure in the subunits following dissociation of the heterodimeric intermediate. All of the mutants display modest reductions in activity but, surprisingly, no change in the DeltaG2H2O value for subunit dissociation and no measurable change in the equilibrium dissociation constant relative to that of the wild-type heterodimer. However, the DeltaG1H2O value for the formation of the dimeric intermediate that precedes subunit dissociation is reduced for three of the mutants, indicating that mutations at the interface can alter the stability of a region of the alpha subunit that is distant from the interface. We conclude that the interface region communicates with the distal domains of this subunit, probably through the active center region of the enzyme.  相似文献   

11.
12.
Class I ribonucleotide reductases (RNRs) catalyze the reduction of ribonucleotides to deoxyribonucleotides. Eukaryotic RNRs comprise two subunits, the R1 subunit, which contains substrate and allosteric effector binding sites, and the R2 subunit, which houses a catalytically essential diiron-tyrosyl radical cofactor. In Saccharomyces cerevisiae, there are two variants of the R2 subunit, called Rnr2 and Rnr4. Rnr4 is unique in that it lacks three iron-binding residues conserved in all other R2s. Nevertheless, Rnr4 is required to activate Rnr2, and the functional species in vivo is believed to be a heterodimeric complex between the two proteins. The crystal structures of the Rnr2 and Rnr4 homodimers have been determined and are compared to that of the heterodimer. The homodimers are very similar to the heterodimer and to mouse R2 in overall fold, but there are several key differences. In the Rnr2 homodimer, one of the iron-binding helices, helix alphaB, is not well-ordered. In the heterodimer, interactions with a loop region connecting Rnr4 helices alphaA and alpha3 stabilize this Rnr2 helix, which donates iron ligand Asp 145. Sequence differences between Rnr2 and Rnr4 prevent the same interactions from occurring in the Rnr2 homodimer. These findings provide a structural rationale for why the heterodimer is the preferred complex in vivo. The active-site region in the Rnr4 homodimer reveals interactions not apparent in the heterodimer, supporting previous conclusions that this subunit does not bind iron. When taken together, these results support a model in which Rnr4 stabilizes Rnr2 for cofactor assembly and activity.  相似文献   

13.
The epidermal growth factor (EGF) receptor is a member of the ErbB family of receptors that also includes ErbB2, ErbB3, and ErbB4. These receptors form homo- and heterodimers in response to ligand with ErbB2 being the preferred dimerization partner. Here we use (125)I-EGF binding to quantitate the interaction of the EGF receptor with ErbB2. We show that the EGFR/ErbB2 heterodimer binds EGF with a 7-fold higher affinity than the EGFR homodimer. Because it cannot bind a second ligand, the EGFR/ErbB2 heterodimer is not subject to ligand-induced dissociation caused by the negatively cooperative binding of EGF to the second site on the EGFR homodimer. This increases the stability of the heterodimer relative to the homodimer and is associated with enhanced and prolonged EGF receptor autophosphorylation. These effects are independent of the kinase activity of ErbB2 but require back-to-back dimerization of the EGF receptor with ErbB2. Back-to-back dimerization is also required for phosphorylation of ErbB2. These findings provide a molecular explanation for the apparent preference of the EGF receptor for dimerizing with ErbB2 and suggest that the phosphorylation of ErbB2 occurs largely in the context of the EGFR/ErbB2 heterodimer, rather than through lateral phosphorylation of isolated ErbB2 subunits.  相似文献   

14.
Subunit interaction: A molecular basis of heterosis   总被引:2,自引:0,他引:2  
Acid phosphatase, a dimeric enzyme, in Drosophila malerkotliana was studied in isogenic flies to explore the molecular basis of heterosis. As the enzyme activity in heterozygotes is 34% more than that in the better parent (S/S), heterosis is indicated. Vmax, Km, and Ki values are 14.60, 3.6 X 10(-4) M, and 0.45 X 10(-4) M, respectively, for the enzyme from F/S flies and 11.80, 4.0 X 10(-4) M, and 0.37 X 10(-4) M, respectively, for the enzyme from S/S flies. Thus heterosis for enzyme activity results from a better enzyme in F/S flies. The higher efficiency and better quality of the enzyme in F/S flies were traced to the heterodimeric allozyme, present only in heterozygotes. Enzyme activity, Vmax, Km, and Ki values are 0.739, 42.1; 3.6 X 10(-4) M, and 0.50 X 10(-4) M, respectively, for the heterodimeric and 0.513, 36.8; 4.1 X 10(-4) M, and 0.37 X 10(-4) M, respectively, for the better parental homodimeric allozyme. On an equimolar basis the enzyme activity of the heterodimer is 44% higher than that of the better homodimer. The better performance of the heterodimer is probably a reflection of superior conformation resulting from interaction between component subunits (F and S polypeptides).  相似文献   

15.
16.
We investigated the folding, stability, and specificity of dimerization of the neck regions of the kinesin-like proteins Kif3A (residues 356-416) and Kif3B (residues 351-411). We showed that the complementary charged regions found in the hinge regions (which directly follow the neck regions) of these proteins do not adopt any secondary structure in solution. We then explored the ability of the complementary charged regions to specify heterodimer formation for the neck region coiled-coils found in Kif3A and Kif3B. Redox experiments demonstrated that oppositely charged regions specified the formation of a heterodimeric coiled-coil. Denaturation studies with urea demonstrated that the negatively charged region of Kif3A dramatically destabilized its neck coiled-coil (urea1/2 value of 3.9 m compared with 6.7 m for the coiled-coil alone). By comparison, the placement of a positively charged region C-terminal to the neck coiled-coil of Kif3B had little effect on stability (urea1/2 value of 8.2 m compared with 8.8 m for the coiled-coil alone). The pairing of complementary charged regions leads to specific heterodimer formation where the stability of the heterodimeric neck coiled-coil with charged regions had similar stability (urea1/2 value of 7.8 m) to the most stable homodimer (Kif3B) with charged regions (urea1/2 value of 8.0 m) and dramatically more stable than the Kif3A homodimer with charged regions (urea1/2, value of 3.9 m). The heterodimeric coiled-coil with charged extensions has essentially the same stability as the heterodimeric coiled-coil on its own (urea1/2 values of 7.8 and 8.1 m, respectively) suggesting that specificity of heterodimerization is driven by non-specific attraction of the oppositely unstructured charged regions without affecting stability of the heterodimeric coiled-coil.  相似文献   

17.
18.
Shao Q  Gao YQ 《Biochemistry》2007,46(31):9098-9106
Several lines of experimental evidence suggest that the conventional kinesin 1 walks by an asymmetric hand-over-hand mechanism, although it is a homodimer. In the previous study, we examined several important force-dependent features of the hand-over-hand mechanism of kinesin. In this study, we focus on the asymmetry in the hand-over-hand mechanism. We show that the experimentally observed kinesin limping can be explained in our model by the variation of the neck linker lengths in the kinesin stepping (which has also been suggested earlier by others). We also study the experimentally observed processive motion of a mutant heterodimer of kinesin, in which only one of the two heads has the capability of ATP hydrolysis, as well as the walking of wild-type kinesin in the presence of both ATP and its analogue AMPPNP. We show that the possible processive walking of the heterodimeric kinesin can be explained by introducing a force-generating intermediate, the kinesin-ATP complex, which is different from the posthydrolytic species, kinesin-ADP/Pi.  相似文献   

19.
Oshima Y  Fujimura A 《Cytokine》2003,24(1-2):36-45
The Glu residue in the helix A is conserved among many cytokines. Mutation in this residue converts some cytokines to an antagonist. Such an artificial cytokine with an antagonist activity may be useful in a clinical area. In this study we generated a mutant granulocyte colony-stimulating factor (G-CSF) termed G-CSF.E20K in which this residue is substituted to Lys. It is known that G-CSF binds to a homodimeric receptor, while other cytokines which can be converted to antagonists bind to heterodimeric receptors. We showed that G-CSF.E20K does not bind to the receptor at all, and that it fails to stimulate proliferation. Thus, the mutant did not act as an antagonist. We propose that the nature of the receptor, namely whether it is a homodimer or heterodimer, determines the antagonist activity of the mutant.  相似文献   

20.
A biased mutation-assembling method—that is, a directed evolution strategy to facilitate an optimal accumulation of multiple mutations on the basis of additivity principles, was applied to the directed evolution of water-soluble PQQ glucose dehydrogenase (PQQGDH-B) to reduce its maltose oxidation activity, which can lead to errors in blood glucose determination. Mutations appropriate for the reduction without fatal deterioration of its glucose oxidation activity were developed by an error-prone PCR method coupled with a saturation mutagenesis method. Moreover, two types of incorporation frequency based on their contribution were assigned to the mutations: high (80%) and evens (50%), in constructing a multiple mutant library. The best mutant created showed a marked reduction in maltose oxidation activity, corresponding to 4% of that of the wild-type enzyme, with 35% retention of glucose oxidation activity. In addition, this mutant showed a reduction in galactose oxidation activity corresponding to 5% of that of the wild-type enzyme. In conclusion, we succeeded in developing the PQQGDH-B mutants with improved substrate specificity and validated our method coupled with optimized mutations and their contribution-based incorporation frequencies by applying it to the development.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号