首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An endogenous wheat (Triticum aestivum) flour endoxylanase was purified to homogeneity from a crude wheat flour extract by ammonium sulfate precipitation and cation-exchange chromatography. The 30-kD protein had an isoelectric point of 9.3 or higher. A sequence of 19 amino acids at the NH2 terminus showed 84.2% identity with an internal sequence of 15-kD grain-softness protein, friabilin. High-performance anion-exchange chromatography and gel-permeation analysis of the hydrolysis products indicated the preferential hydrolysis of highly branched structures by the enzyme; wheat arabinoxylan and rye (Secale cereale) arabinoxylan (high arabinose to xylose ratios) were hydrolyzed more efficiently by this enzyme than oat (Avena sativa) spelt xylan (low arabinose to xylose ratios). The release of the hydrolysis products as a function of time suggested that the endoxylanolytic activity was associated with the release of arabinose units from the polysaccharides, suggesting that the enzyme action is similar to that by endoxylanases from Ceratocystis paradoxa, Aspergillus niger, and Neurospora crassa. Although the enzyme released arabinose from arabinoxylan, it did not hydrolyze p-nitrophenyl-alpha-L-arabinofuranoside. From the above, it follows that the enzyme, called arabinoxylanase, differs from most microbial endoxylanases and from an endoxylanase purified earlier from wheat flour.  相似文献   

2.
A serologically active, acidic arabinomannan has been isolated from Mycobacterium smegmatis. The polysaccharide contains approximately 56 arabinosyl and 11 mannosyl residues, and 2 phosphate, 6 monoesterified succinate, and 4 ether-linked lactate groups. After saponification to remove succinyl groups, the polysaccharide can be separated into phosphorylated (55%) and nonphosphorylated (45%) forms, the former containing a little more arabinose and a little less mannose than the latter. The structures of these polysaccharides were investigated by 1H- and 13C-n.m.r. spectroscopy and methylation analysis, before and after selective cleavage of furanosyl linkages. The phosphorylated and nonphosphorylated forms of the polysaccharide were found to have similar, if not identical, structures. The main structural feature of the polysaccharides is the presence of chains of contiguous arabinofuranosyl residues linked α-(1→5). These chains are attached at O-4 of arabinopyranosyl residues that are present in a core region of the polysaccharide that also contains mannopyranosyl residues. Immunochemical studies demonstrated that the polysaccharide is an effective, precipitating antigen with antisera from rabbits immunized with cell walls or heat-killed cells of M. smegmatis. The polysaccharide is, however, more effective as a precipitating antigen after removal of the succinate groups, and completely ineffective after removal of arabinofuranosyl residues. The polysaccharide therefore contains an important antigen in common with the arabinogalactan lipopolysaccharide of the cell wall of the bacterium, i.e., chains of contiguous α-(1→5)-linked arabinofuranosyl residues.  相似文献   

3.
UV-C irradiation (254 nm) was found to enhance the secretion of some cell-wall-degrading enzymes, especially the following carbohydrases: beta-galactosidase, alpha-L-arabinofuranosidase, polygalacturonase, pectinesterase, cellulase, xylanase, and beta-xylosidase, in the campion callus, contributing thereby to an alteration in the polysaccharide structure. The relative amounts of the galactose and arabinose residues in pectin (silenan) and of arabinose in arabinogalactan of calli irradiated during the exponential phase were shown to decrease during the stationary phase. A decrease in the degree of SV methylesterification was found for the irradiated callus. These alterations were found to persist over a long period of culturing time. Decreasing the relative amounts of the arabinose residues in arabinogalactan and pectin and the galactose residues in silenan corresponded to increasing activity of alpha-L-arabinofuranosidase and beta-galactosidase, respectively, due to treatment with UV-C. UV-C irradiation may be used as a tool for modifying the structural features of the cell-wall polysaccharides, such as the relative amounts of galactose and arabinose residues in the side chains of polysaccharides, with the purpose of obtaining physiologically active polysaccharides with the desired properties and structural features.  相似文献   

4.
Silenan SV, a pectic polysaccharide, was isolated from the aerial part of Silene vulgaris (Moench) Garke (Oberna behen (L.) Ikonn.), widespread through the European North of Russia. The polysaccharide was found to contain residues of galacturonic acid (63%), arabinose, galactose, and rhamnose as the main constituents. The results of a partial acidic hydrolysis, pectinase digestion, and NMR studies of silenan SV indicated that its molecule contains a linear alpha-1,4-D-galacturonan backbone and ramified regions. The core of the ramified regions is composed of residues of alpha-1,4-D-galacturonic acid along with 2-substituted alpha-rhamnopyranose residues. The NMR data showed that the silenan SV side chains are composed of the blocks built from the terminal alpha-1,5-linked arabinofuranose and beta-1,4-linked galactopyranose residues; these most likely are the side chains of rhamnogalacturonan, characteristic of other pectic polysaccharides. The nonreducing ends of these side chains contain alpha-arabinofuranose residues.  相似文献   

5.
This work was undertaken to determine the kinds and amount of substances that would account for the previously demonstrated differential growth of Claviceps purpurea on guttation fluids from Rosen rye, Genesee wheat, and Traill barley seedlings. Chromatographic methods were used for determining amino acids and sugars, spot tests and spectrometric methods for inorganic materials, and microbiological methods for vitamins.

Total sugar content is about equal in rye and barley fluids, but lower in wheat. Glucose is the principal sugar component of the rye and barley fluids and galactose highest in wheat. Most of the amino acid in all 3 fluids is aspartic acid or asparagine. Barley fluid is far higher than the other 2 in total amino acids, with wheat the lowest. Most inorganic elements are found to be highest in barley and lowest in wheat, with the exception of iron where rye is highest and barley lowest. Barley fluid is highest in choline, p-aminobenzoic acid, thiamine, and uracil, while rye is highest in inositol and pyridoxine. Wheat is much lower than the other 2 in choline and inositol.

  相似文献   

6.
Water unextractable material from bran, an intermediate milling fraction and sieved flour of rye grain were sequentially extracted at room temperature with saturated barium hydroxide, water, 4 M potassium hydroxide and water followed by extraction with 2 potassium hydroxide in a boiling water bath, giving repeatable recoveries of extracts and polysaccharide residue compositions in collected fractions. Total recoveries of polysaccharide residues in extracts and residue from the different water unextractable materials were 78–88%. Extracts in which 90–93% of the carbohydrates were arabinose and xylose residues were obtained by extraction with saturated barium hydroxide. Subsequent extraction with water yielded a fraction in which 64–68% of the carbohydrates were glucose residues. The extraction with hot alkali resulted in extracts in which 85–89% of the carbohydrates were arabinose and xylose residues. The ara/xyl ratio in the collected fractions ranged from 0.1–1.3, with the lowest ratios in fractions that precipitated after neutralisation of the 4 potassium hydroxide extract and the highest ratios in the unextractable residues. Structural characterisation with 1H-NMR spectroscopy revealed varying substitution patterns for arabinoxylans in the different extracts and that glucose residues in the extracts essentially originated from mixed-linked β-glucan. The proportion of disubstituted xylose residues was lower in barium hydroxide extracts compared to the other main extracts. A highly branched heteroxylan was extracted with hot alkali. The polysaccharides found in the corresponding extracts for all the starting materials had generally similar structural features, but the yield differed considerably.  相似文献   

7.
The gel-forming polysaccharide of psyllium husk (Plantago ovata Forsk)   总被引:1,自引:0,他引:1  
The physiologically active, gel-forming fraction of the alkali-extractable polysaccharides of Plantago ovata Forsk seed husk (psyllium seed) and some derived partial hydrolysis products were studied by compositional and methylation analysis and NMR spectroscopy. Resolving the conflicting claims of previous investigators, the material was found to be a neutral arabinoxylan (arabinose 22.6%, xylose 74.6%, molar basis; only traces of other sugars). With about 35% of nonreducing terminal residues, the polysaccharide is highly branched. The data are compatible with a structure consisting of a densely substituted main chain of beta-(1-->4)-linked D-xylopyranosyl residues, some carrying single xylopyranosyl side chains at position 2, others bearing, at position 3, trisaccharide branches having the sequence L-Araf-alpha-(1-->3)-D-Xylp-beta-(1-->3)-l-Araf. The presence of this sequence is supported by methylation and NMR data, and by the isolation of the disaccharide 3-O-beta-D-xylopyranosyl-L-arabinose as a product of partial acid hydrolysis of the polysaccharide.  相似文献   

8.
A neutral fraction (PS-SI) (0.3 g/L) with MW of 74 kDa, which contained galactose, arabinose, mannose, and glucose in the molar ratio of 1.0:0.6:0.4:0.2 was obtained by treatment of the whole polysaccharide extracted from red wine with cetrimide, followed by gel permeation chromatography. Spectroscopic and methylation analyses indicated that PS-SI is a mixture of neutral polysaccharides, consisting mainly of β (1→3)-linked galactopyranosyl residues, with side chains of galactopyranosyl residues at positions O-6. Arabinofuranosyl residues linked α (1→5), α-mannopyranosyl and glucosyl residues appear to be components of different polysaccharides. The in vitro antioxidant capacity of fractions of wine polysaccharide was studied by hydroxyl radical scavenging and ORAC assays. Fraction PS-SI presented the strongest effect on hydroxyl radicals (IC50 = 0.21).  相似文献   

9.
Ultraviolet radiation (wavelength, 280-315 nm; power, 0.2-13.0 W/m2; exposure, 1 or 3 h) was shown to change the growth of campion callus and the polysaccharide (pectin and arabinogalactan) composition of cell walls. An increase in the concentration of polysaccharides and a decrease in the content of arabinose and galactose residues in pectin and arabinogalactan were noted. For the majority of calluses, growth indices, specific growth rate, and biomass productivity (per 11 medium) were almost the same as in nonirradiated control cells. Maximum values of the growth index and specific growth rate, determined for dry biomass, were observed at a low dose of irradiation (0.2 W/m2) and an exposure of 3 h. A considerable decrease in the content of arabinose and galactose in pectin was noted at high doses of irradiation (exposure, 3 h). Samples of arabinogalactan were characterized by variable arabinose to galactose ratios, which were in the range 1 : (3.4-8.3).  相似文献   

10.
The structure and bioactivity of a polysaccharide extracted and purified from a 4M KOH + H3BO3 solution from Prunus dulcis seed cell wall material was studied. Anion-exchange chromatography of the crude extract yielded two sugar-rich fractions: one neutral (A), the other acidic (E). These fractions contain a very similar monosaccharide composition: 5:2:1 for arabinose, uronic acids and xylose, respectively, rhamnose and galactose being present in smaller amounts. As estimated by size-exclusion chromatography, the acidic fraction had an apparent molecular mass of 762 kDa. Methylation analysis (from the crude and fractions A and E), suggests that the polysaccharide is an arabinan-rich pectin. In all cases, the polysaccharides bear the same type of structural Ara moieties with highly branched arabinan-rich pectic polysaccharides. The average relative proportions of the arabinosyl linkages is 3:2:1:1 for T-Araf:(1-->5)-Araf:(1-->3,5)-Araf:(1-->2,3,5)-Araf. The crude polysaccharide extract and fractions A and E induced a murine lymphocyte stimulatory effect, as evaluated by the in vitro and in vivo expression of lymphocyte activation markers and spleen mononuclear cells culture proliferation. The lymphocyte stimulatory effect was stronger on B- than on T-cells. No evidence of cytotoxic effects induced by the polysaccharide fractions was found.  相似文献   

11.
Changes in the neutral sugar compositions of cell walls werestudied during regeneration of shoots and roots from culturedcarrot cells and during maturation of soybean seeds. There weremore arabinan and arabinose-rich acidic polysaccharides thangalactose-rich polysaccharides in the pectic fractions of thecell walls from cultured carrot cells and more galactan, arabinogalactanor both than the arabinose-rich polysaccharides in the samefractions from their mother tissue, i.e. root phloem tissue. The arabinose content of the cell walls decreased and the galactosecontent increased during root and shoot formation until galactoseexceeded arabinose in the cell walls of fully developed shootsand roots from cultured cells. The cell wall arabinose contentalso was higher than that of galactose in cotyledons and embryonicaxes of immature soybean seeds, and change in the neutral sugarcomposition of the cell wall during seed maturation was similarto that during the redifTerentiation of cultured carrot cells.During the very late stage of maturation, galactose in the cellwalls exceeded the content of arabinose. Results suggest that the redifferentiation of roots and shootsfrom cultured cells goes through a process of cell wall formationsimilar to that of embryogenesis or seed development in themother plants. Results also indicate that the predominant arabinanand arabinose-rich acidic polysaccharides have important functionsin cell walls during embryogenesis and in the eraly stages ofseed maturation and that galactan, arabinogalactan, or bothreplace these arabinose-rich polysaccharides after seed maturation. 2Present address: Department of Botany, the University of BritishColumbia, # 3529-6270 University Blvd.,Vancouver, B.C. V6T 2B1Canada (Received October 28, 1982; Accepted April 8, 1983)  相似文献   

12.
The endosperm of the seed of Gleditsia triacanthos L. contains 18.55% of its dry weight as nonreserve, cell-wall carbohydrates. Of this carbohydrate material, comprising mainly mannose, galactose, and glucose, 76.1% was of low-molecular weight or highly hydrophilic. Mannose, galactose, and glucose were also the major sugar components of the polysaccharides extracted with alkali (23.1% of the cell-wall), while the same sugars, with minor amounts of arabinose, form the residues. Methylation analysis of the polysaccharides and the borate-sodium hydroxide residue indicate that the cell walls are built up on a network of galactomannans, with high Man/Gal ratios, reinforced with minor amounts of cellulose.  相似文献   

13.
Chemical analysis of grapefruit (Citrus paradisi) pectic polysaccharides demonstrated that galacturonic acid constitutes 78% by weight of the total carbohydrates found. The remaining 22% was accounted for by a number of sugars which include galactose, glucose, arabinose, xylose, and mannose and, by weight, galactose accounted for almost 50% of the total neutral sugar components found in these pectic polysaccharides. Treatment of pectic polysaccharides with galactose oxidase followed by reduction of oxidized galactose residues with tritiated potassium borohydride resulted in the labeling of pectic polysaccharides. Analysis of the labeled polysaccharides demonstrated that of the total radioactivity incorporated more than 90% was recovered in the galactose residues. These results clearly demonstrate the successful utilization of the galactose oxidase/tritiated potassium borohydride method in labeling plant pectic polysaccharide.  相似文献   

14.
Some 22% of the dry weight of the cotyledons of resting seeds of Lupinus angustifolius cv. Unicrop has been shown to be non-starch polysaccharide material comprising the massively thickened walls of the storage mesophyll cells. On hydrolysis this material released galactose (76%), arabinose (13%), xylose (4%), uronic acid (7%): only traces of glucose were detected indicating the virtual absence of cellulose from the walls. Changes in the amount and composition of this material following germination have been studied in relation to parameters of seedling development and the mobilisation of protein, lipid and oligosaccharide reserves. Starch, which was not present in the resting seed, appeared transitorily following germination: under conditions of continuous darkness starch levels were reduced. During the period of bulk-reserve mobilisation, 92% of the non-starch polysaccharide material disappeared from the cotyledons. The residual cell-wall material released galactose (14%), arabinose (19%), xylose (24%) and uronic acid (43%). The galactose and arabinose residues of the cotyledonary cell walls clearly constitute a major storage material, quantitatively as important as protein. The overall role of the wall polysaccharides in seedling development is discussed.  相似文献   

15.
Arabinogalactan proteins (AGPs) were isolated by Yariv phenylglycoside precipitation from the medium of carrot ( Daucus carota L.) cell cultures and from carrot seeds. The isolates showed a different composition of AGPs. The medium AGPs contained an arabinose poor AGP fraction that had relatively high levels of glucuronic acid and rhamnose. In contrast the seed AGPs only contained arabinose and galactose-rich AGP fractions that had low levels of glucuronic acid. Linkage analysis on all fractions showed that most of the arabinose residues were terminally linked and that almost all galactose was present in the 1,3-, 1,6- and 1,3,6- form. The strongly branched type II arabinogalactans are characteristic of the carbohydrate part of AGPs. AGP characteristic amino acid residues as Hyp, Pro, Glx, Ser, Gly, Asx, Ala, Leu and Thr were detected in three different fractions.  相似文献   

16.
Ultraviolet radiation (wavelength, 280–315 nm; power, 0.2–13.0 W/m2; exposure, 1 or 3 h) was shown to change the growth of campion callus and the polysaccharide (pectin and arabinogalactan) composition of cell walls. An increase in the concentration of polysaccharides and a decrease in the content of arabinose and galactose residues in pectin and arabinogalactan were noted. For the majority of calluses, growth indices, specific growth rate, and biomass productivity (per 11 medium) were almost the same as in nonirradiated control cells. Maximum values of the growth index and specific growth rate, determined for dry biomass, were observed at a low dose of irradiation (0.2 W/m2) and an exposure of 3 h. A considerable decrease in the content of arabinose and galactose in pectin was noted at high doses of irradiation (exposure, 3 h). Samples of arabinogalactan were characterized by variable arabinose to galactose ratios, which were in the range 1: (3.4–8.3).  相似文献   

17.
Ethanol-precipitated polysaccharides of the liquid endospermof coconut, Cocos nucifera L., were composed predominantly ofgalactose and arabinose with minor amounts of mannose and glucose.Gel filtration chromatography on Bio-Gel A-0.5 m revealed asingle major peak (Peak A) at the void volume and a minor peak(Peak B) partially included in the column volume. Peak A containedsome uronosyl residues, but was not susceptible to cleavageby endopolygalacturonase, indicating that it does not containsignificant amounts of polygalacturonic acid. Neutral glycosylresidue composition analysis of Peak A showed that it consistedof 72% galactose and 24% arabinose with minor amounts of glucoseand rhamnose. Coconut milk, Cocos nuciferaL, polysaccharides, glycosyl composition  相似文献   

18.
筛选茯苓高产胞内多糖和胞内三萜的优良液体发酵出发菌株。采用PDA富集固体平板培养与液体发酵培养测定菌丝体生长速率;采用液体发酵策略分析16种茯苓菌株产胞内多糖与胞内三萜的潜能。实验结果表明菌株生长于固体培养基与种子培养基的生长速率之间没有关联性;降低一级种子培养基初始pH值到4.0时能有效缓解茯苓菌株培养物褐化现象;AS5.137胞内多糖含量最高,达377.60±0.10 mg/g,而DB菌株显示出最高的胞内多糖产量,达1.01±0.13 g/L;Y1菌株胞内三萜含量最高,达83.89±4.28 mg/g,而Jingzhou28菌株胞内三萜产量最高,达136.63±26.66 mg/L。就生产茯苓胞内多糖与胞内三萜而言,AS5.137与DB菌株适合作为液体发酵产胞内多糖的出发菌株;Y1,Jingzhou28,Z(z)与Xingpinzhong菌株均较适合作为液体发酵产胞内三萜的出发菌株。  相似文献   

19.
Estrada-Parra, Sergio (Escuela Nacional de Ciencias Biológicas, México, D.F., México), Abel Zamora, and L. F. Bojalil. Immunochemistry of the group-specific polysaccharide of Nocardia brasiliensis. J. Bacteriol. 90:571-574. 1965.-The group-specific polysaccharide of Nocardia brasiliensis was further purified, yielding an amorphous white material with the following characteristics: [alpha](D) (20) = + 48; nitrogen, 0.5%; phosphorus, 0.1%; and ash as sodium, 0.8%. The polymer is made of d-arabinose and d-galactose in a molar ratio of 3:1, and no other sugars were detected. Mild hydrolysis liberates mainly arabinose. The polysaccharide consumes 3.46 mumoles of periodate per mg of polymer in 15 days at 4 C (this value remains constant after 4 more days). Oxidation results in destruction of two of the arabinose, with the formation of two glycerols after borohydride reduction and hydrolysis. The polysaccharide oxidized by periodate and reduced under mild acid hydrolysis at 20 C yields glycerol and a polymer formed by galactose and arabinose (in a ratio of 1:1) which is resistant to a second oxidation. Therefore, the polysaccharide is probably formed by a main chain of glactose linked 1,3 and arabinose linked 1,2 or 1,3 or both, and nonreducing side chains of arabofuranose residues. The intact polysaccharide cross-reacts with sera from patients with active tuberculosis, and this, as well as the homologous reaction, is abolished by oxidation with periodate.  相似文献   

20.
Crude water-soluble polysaccharides were isolated from Acanthus ebracteatus by hot water extraction followed by ethanol precipitation after pre-treatment with 80% ethanol. The crude polysaccharides were separated into neutral and acidic polysaccharides by anion-exchange chromatography. The neutral polysaccharide (A1001) was rich in galactose, 3-O-methylgalactose and arabinose, whereas the acidic polysaccharide (A1002) consisted mainly of galacturonic acid along with rhamnose, arabinose and galactose as minor components indicating a pectin-type polysaccharide with rhamnogalacturonan type I (RG-1) backbone. 3-O-Methylgalactose is also present in the acidic fraction. Both neutral and acidic fractions showed potent effects on the complement system using pectic polysaccharide PM II from Plantago major as a positive control. A small amount of 3-O-methylgalactose present in the pectin seemed to be of importance for activity enhancement in addition to the amount of neutral sugar side chains attached to RG-1. The relationship between chemical structure and effect on the complement system of the isolated polysaccharides is considered in the light of these data. The presence of the rare monosaccharide 3-O-methylgalactose may indicate that this can be used as a chemotaxonomic marker. The traditional way of using this plant as a medical remedy appears to have a scientific basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号