共查询到20条相似文献,搜索用时 1 毫秒
1.
D C Chan J Biard-Roche C Gorka J L Girardet J J Lawrence L I Piette 《Journal of biomolecular structure & dynamics》1984,2(2):319-332
Histone H5 contains three tyrosines in the central, apolar region of the molecule. All three tyrosines can be spin labeled at low ionic strength. When the central globular domain is folded at high ionic strength, only one tyrosine becomes accessible to the imidazole spin label. Spin labeling the buried tyrosines prevents the folding of the globular structure, which, in turn, affects the proper binding of the H5 molecule to stripped chromatin. Chromatin complexes reconstituted from such an extensively modified H5 molecule show a weaker protection of the 168 base pair chromatosome during nuclease digestion. However, when only the surface tyrosine of the H5 molecule is labeled, such a molecule can still bind correctly to stripped chromatin, yielding a complex very similar to that of native chromatin. Our data supports the idea that not just the presence of the linker histone H5, but the presence of an intact H5 molecule with a folded, globular central domain in essential in the recognition of its specific binding sites on the nucleosomes. Our data also show that during the chromatin condensation process, the tumbling environment of the spin label attached to the surface tyrosine in the H5 molecule is not greatly hindered but remains partially mobile. This suggests that either the labeled domain of the H5 molecule is not directly involved in the condensation process or the formation of the higher-order chromatin structure does not result is a more viscous or tighter environment around the spin label. The folded globular domain of H5 molecule serves in stabilizing the nucleosome structure, as well as the higher-order chromatin structure. 相似文献
2.
A series of monoclonal antibodies specific for distinguishable epitopes in chromosomal protein histone H5 were obtained from mice immunized with either free H5 or H5 . RNA complexes. The antibodies elicited by H5 could be distinguished from those elicited by H5 . RNA by their binding to native or acid-denatured H5, by their interaction with the globular region of H5, and by their cross-reactivity with H1o. The specificity of the antibodies was assessed by enzyme-linked immunosorbent assay (ELISA) and immunoblotting experiments. The antibodies could distinguish between H5 and the closely related histones H1 and H1o. The binding of some of the antibodies to the antigens was dependent on the type of assay used, suggesting nonrandom binding of the antigen to the solid supports used in ELISA and immunoblotting. Competitive ELISA experiments indicate that 8 of the 11 antibodies characterized bind to distinct epitopes. Three monoclonal antibodies bind to epitopes which are in close spatial proximity, causing mutual steric hindrance. The monoclonal antibodies bind to nuclei of fixed cells and to isolated chromatin, indicating that the epitopes are present both in the purified protein and in chromatin-complexed H5. These monoclonal antibodies can be used to study the organization of distinct regions of histones H5 and H1o in chromatin and chromosomes. 相似文献
3.
Monoclonal antibodies against chicken erythrocyte histone H5 were produced. Nine hybridomas of different clonal origin were selected, and the antibodies were purified by affinity chromatography. Typing of the antibodies indicated that all but one (IgM) belong to the IgG1 class and contain kappa light chains. Indirect immunoprecipitation, solid-phase radioimmunoassay, and competitive inhibition assays using various H5 fragments revealed that the antigen-binding sites were localized on the central region of H5 (GH5, residues 22-100). Results of immunoblots from gels containing different denaturing agents indicate that some of the antibodies recognize related continuous epitopes localized at the junction of the GH5 with the rest of the molecule. Competition experiments between pairs of the eight different IgGs suggest that they recognize at least seven distinct sites on GH5. The epitopes appear to represent different regions of GH5 although some of them overlap. In general, the antibodies recognize epitopes which are not too accessible to the environment in the native conformation of the histone. All of the antibodies examined, except one of them (5H10), react with nuclei and chromatin from the erythroid cells but not from other cell lines. The site recognized by 5H10 is likely to be one of the regions where GH5 interacts with the nucleosome. No cross-reactivity of the antibodies with other histones including H1, H2A, H2B, H3, H4, and rat liver histone H1(0) was observed. 相似文献
4.
The globular domain of histone H5 is internally located in the 30 nm chromatin fiber: an immunochemical study. 总被引:1,自引:1,他引:1 下载免费PDF全文
The location of the globular domain of histone H5 relative to the axis of the 30 nm chromatin fiber was investigated by following the accessibility of this region of the molecule in chicken erythrocyte chromatin to specific antibodies as a function of chromatin structure. Antibodies to the globular domain of H5 as well as their Fab fragments were found to react with chromatin at ionic strengths ranging from 1-80 mM NaCl, the reaction gradually decreasing upon increase of salt concentration. If, however, Fab fragments were conjugated to ferritin, no reaction of the complex with chromatin was observed at salt concentrations higher than 20 mM. The accessibility of the globular part of H5 in unfolded chromatin to the Fab-ferritin complex was also demonstrated with trypsin-digested chromatin. The experiments were carried out by both solid-phase immunoassay and inhibition experiments. The data obtained are consistent with a structure in which the globular domain of H5 is internally located in the 30 nm chromatin fiber. 相似文献
5.
Accessibility of the globular domain of histones H1 and H5 to antibodies upon folding of chromatin 总被引:6,自引:0,他引:6
V R Russanova S I Dimitrov V L Makarov I G Pashev 《European journal of biochemistry》1987,167(2):321-326
Antibodies to the globular domain of histones H1 and H5 were purified by affinity chromatography and used to study the accessibility of this region of H1 and H5 in folded and unfolded rat liver and hen erythrocyte chromatin respectively. The different conformations of the chromatin filament were induced by varying the ionic strength from 1 mM to 80 mM NaCl and maintained by fixation with glutaraldehyde. Treatment with glutaraldehyde at a given salt concentration affected neither the orientation of nucleosomes relative to the fiber axis nor the compactness of chromatin. Solid-phase immunoassay and inhibition experiments showed no binding of the antibody against the globular domain of H1 to chromatin at the entire range of salt concentrations, while the antibody to the whole H1 molecule reacted with chromatin at low salt. On the other hand, the antibody to the globular region of H5 reacted with hen erythrocyte chromatin independently of the extent of chromatin condensation. These results indicate that the antigenic determinants of the globular domain of H5 are accessible to the antibody both in folded and unfolded chromatin, while those of the same region of H1 are masked, probably by interaction with DNA or proteins. 相似文献
6.
Crystallization of the globular domain of histone H5 总被引:1,自引:0,他引:1
V Graziano S E Gerchman A J Wonacott R M Sweet J R Wells S W White V Ramakrishnan 《Journal of molecular biology》1990,212(2):253-257
The globular domain of histone H1/H5 binds to the nucleosome and is crucial for the formation of chromatin higher order structure. We have expressed in Escherichia coli a gene that codes for the globular domain of H5. The protein produced in E. coli is functional in nucleosome binding assays. We have obtained crystals of the protein that diffract to beyond 2.5 A (1 A = 0.1 nm) resolution. The crystals are orthorhombic with unit cell dimensions of a = 80.1 A, b = 67.5 A and c = 38.0 A. 相似文献
7.
8.
Structurally divergent histone H1 variants in chromosomes containing highly condensed interphase chromatin 总被引:1,自引:0,他引:1 下载免费PDF全文
《The Journal of cell biology》1994,127(6):1789-1798
Condensed and late-replicating interphase chromatin in the Dipertan insect Chironomus contains a divergent type of histone H1 with an inserted KAP-KAP repeat that is conserved in single H1 variants of Caenorhabditis elegans and Volvox carteri. H1 peptides comprising the insertion interact specifically with DNA. The Chironomid Glyptotendipes exhibits a corresponding correlation between the presence of condensed chromosome sections and the appearance of a divergent H1 subtype. The centromere regions and other sections of Glyptotendipes barbipes chromosomes are inaccessible to immunodecoration by anti-H2B and anti- H1 antibodies one of which is known to recognize nine different epitopes in all domains of the H1 molecule. Microelectrophoresis of the histones from manually isolated unfixed centromeres revealed the presence of H1 and core histones. H1 genes of G. barpipes were sequenced and found to belong to two groups. H1 II and H1 III are rather similar but differ remarkably from H1 I. About 30% of the deduced amino acid residues were found to be unique to H1 I. Most conspicuous is the insertion, SPAKSPGR, in H1 I that is lacking in H1 II and H1 III and at its position gives rise to the sequence repeat SPAKSPAKSPGR. The homologous H1 I gene in Glyptotendipes salinus encodes the very similar repeat TPAKSPAKSPGR. Both sequences are structurally related to the KAPKAP repeat in H1 I-1 specific for condensed chromosome sites in Chironomus and to the SPKKSPKK repeat in sea urchin sperm H1, lie at almost the same distance from the central globular domain, and could interact with linker DNA in packaging condensed chromatin. 相似文献
9.
Reconstitution of chromatin higher-order structure from histone H5 and depleted chromatin 总被引:6,自引:0,他引:6
Reconstitution of the 30 nm filament of chromatin from pure histone H5 and chromatin depleted of H1 and H5 has been studied using small-angle neutron-scattering. We find that depleted, or stripped, chromatin is saturated by H5 at the same stoichiometry as that of linker histone in native chromatin. The structure and condensation behavior of fully reconstituted chromatin is indistinguishable from that of native chromatin. Both native and reconstituted chromatin condense continuously as a function of salt concentration, to reach a limiting structure that has a mass per unit length of 6.4 nucleosomes per 11 nm. Stripped chromatin at all ionic strengths appears to be a 10 nm filament, or a random coil of nucleosomes. In contrast, both native and reconstituted chromatin have a quite different structure, showing that H5 imposes a spatial correlation between neighboring nucleosomes even at low ionic strength. Our data also suggest that five to seven contiguous nucleosomes must have H5 bound in order to be able to form a higher-order structure. 相似文献
10.
The arrangement of H5 molecules in extended and condensed chicken erythrocyte chromatin. 总被引:9,自引:5,他引:4 下载免费PDF全文
Chemical cross-linking with dithiobis(succinimidyl propionate) has been used to investigate the relative disposition of neighbouring H5 (H1) molecules in chicken erythrocyte chromatin in the extended (nucleosome filament) and condensed (300 A filament) states; in this chromatin H5 and H1 are interspersed along the nucleosome filament, rather than segregated into blocks, as shown by the nature of the cross-linked dimers and their relative amounts. Detailed analysis of the cross-linked H5 homopolymers from extended chromatin and condensed nuclear chromatin indicates which domains of H5 are in contact (or close proximity) in the two states. Two results suggest a polar, head-to-tail arrangement of H5 molecules along the nucleosome filament. This arrangement persists when chromatin adopts higher-order structure but in the folded state neighbouring basic C-terminal domains, in particular, are more closely juxtaposed than they are in extended chromatin. 相似文献
11.
The globular domain of histone H5 (GH5) was prepared by trypsin digestion of H5 that was extracted from chicken erythrocyte nuclei with NaCl. Electron microscopy, sucrose gradient centrifugation, native agarose gel electrophoresis and equilibrium density gradient ultracentrifugation show that GH5 binds co-operatively to double-stranded DNA. The electron microscopic images suggest that the GH5-DNA complexes are very similar in structure to co-operative complexes of intact histone H1 (or its variants) with double-stranded DNA, studied previously, which have been proposed to consist of two parallel DNA double helices sandwiching a polymer of the protein. For complexes with GH5 or with intact H1, naked DNA co-sediments with the protein-DNA complexes through sucrose gradients, and DNA also appears to protrude from the ends and sides of the complexes; measurements of the protein-DNA stoichiometry in fractionated samples may not reflect the stoichiometry in the complexes. An estimate of the stoichiometry obtained from the buoyant density of fixed GH5-DNA complexes in CsCl suggests that sufficient GH5 is present in the complexes for the GH5s to be in direct contact, as required by a simple molecular mechanism for the co-operative binding. Chemical crosslinking demonstrates that GH5s are in close proximity in the complexes. In the absence of DNA, GH5-GH5 interactions are weak or non-existent. 相似文献
12.
13.
The conformation of histone H5. Isolation and characterisation of the globular segment 总被引:16,自引:0,他引:16
F J Aviles G E Chapman G G Kneale C Crane-Robinson E M Bradbury 《European journal of biochemistry》1978,88(2):363-371
Treatment of chicken erythrocyte histone H5 with trypsin in a high-ionic-strength medium results in very rapid initial digestion and the formation of a 'limiting' resistant product peptide. Under these solution conditions the H5 molecule is maximally folded by spectroscopic criteria and it is concluded that the resistant peptide, GH5, represents a globular folded region of the molecule whilst the rapidly digested parts are disordered. The peptide GH5 is shown to comprise the sequence 22-100. In support of this conclusion it is shown that whilst intact histone H5 is hydrodynamically far from being a compact globular shape, peptide GH5 is approximately spherical by hydrodynamic and scattering criteria. Further more, peptide GH5 retains all the alpha-helical structure of intact H5 (circular dichroism) and appears to also maintain all the tertiary structure (nuclear magnetic resonance). It follows that in solution at high ionic strength, histone H5 consists of three domains: an N-terminal disordered region 1-21, a compact globular central domain 22-100 and a long disordered C-terminal chain 101-185. Structural parallels are drawn with the three-domain structure of the histone H1 molecule. 相似文献
14.
15.
We have attacked H1-containing soluble chromatin by α-chymotrypsin under conditions where chromatin adopts different structures.Soluble rat liver chromatin fragments depleted of non-histone components were digested with α-chymotrypsin in NaCl concentrations between 0 mm and 500 mm. at pH 7, or at pH 10, or at pH 7 in the presence of 4 m-urea. α-Chymotrypsin cleaves purified rat liver histone H1 at a specific initial site (CT) located in the globular domain and produces an N-terminal half (CT-N) which contains most of the globular domain and the N-terminal tail, and a C-terminal half (CT-C) which contains the C-terminal tail and a small part of the globular domain. Since in sodium dodecyl sulfate/polyacrylamide-gel electrophoresis CT-C migrates between the core histones and H1, cleavage of chromatin-bound H1 by α-chymotrypsin can be easily monitored.The CT-C fragment was detected under conditions where chromatin fibers were unfolded or distorted: (1) under conditions of H1 dissociation at 400 mm and 500 mm-NaCl (pH 7 and 10); (2) at very low ionic strength where chromatin is unfolded into a filament with well-separated nucleosomes; (3) at pH 10 independent of the ionic strength where chromatin never assumes higher order structures; (4) in the presence of 4 m-urea (pH 7), again independent of the ionic strength. However, hardly any CT-C fragment was detected under conditions where fibers are observed in the electron microscope at pH 7 between 20 mm and 300 mm-NaCl. Under these conditions H1 is degraded by α-chymotrypsin into unstable fragments with a molecular weight higher than that of CT-C. Thus, the data show that there are at least two different modes of interaction of H1 in chromatin which correlate with the physical state of the chromatin.Since the condensation of chromatin into structurally organized fibers upon raising the ionic strength starts by internucleosomal contacts in the fiber axis (zig-zag-shaped fiber), where H1 appears to be localized, it is likely that in chromatin fibers the preferential cleavage site for α-chymotrypsin is protected because of H1-H1 contacts. The data suggest that the globular part of H1 is involved in these contacts close to the fiber axis. They appear to be hydrophobic and to be essential for the structural organization of the chromatin fibers. Based on the present and earlier observations we propose a model for H1 in which the globular domains eventually together with the N-terminal tails form a backbone in the fiber axis, and the nucleosomes are mainly attached to this polymer by the C-terminal tails. 相似文献
16.
Mapping the binding of monoclonal antibodies to histone H5 总被引:2,自引:0,他引:2
The binding sites of nine monoclonal antibodies along the polypeptide chain of histone H5 were mapped. Immunoblotting experiments with peptides generated from H5 by trypsin digestion, N-bromosuccinimide cleavage, and cyanogen bromide cleavage revealed that all of the monoclonal antibodies reacted with the globular region of H5 which is encompassed by amino acid residues 22-98. Within this globular segment, the epitopes could be subdivided into three regions. Monoclonals 1G11, 2E5, and 2H5 bind to residues 28-31. The close proximity of the epitopes was verified by a competitive enzyme-linked immunosorbent assay and by their binding pattern to a tryptic digest of H5. Monoclonals 4C6, 6E12, and 2E12 bind to a region encompassed by amino acids 28-53 while monoclonals 4H7, 1C3, and 3H9 bind to a region encompassed by residues 53-98. Precise localization of the epitopes in the primary sequence of H5 will allow detailed studies on the mode of binding of H5 to core particles in chromatin. 相似文献
17.
An H5 cDNA clone was used to select H5 genomal recombinants from a chicken Charon 4A library. DNA sequence analysis shows that the H5 gene contains no introns. Putative 5′ promoter elements and a 3′ polyadenylation site are present within the 1.8 kb of DNA examined. Analysis of 41 kb of DNA surrounding the H5 gene shows that it is not closely linked to either H1 or core histone genes. 相似文献
18.
The C-terminal domain is the primary determinant of histone H1 binding to chromatin in vivo 总被引:1,自引:0,他引:1
Hendzel MJ Lever MA Crawford E Th'ng JP 《The Journal of biological chemistry》2004,279(19):20028-20034
We have used a combination of kinetic measurements and targeted mutations to show that the C-terminal domain is required for high-affinity binding of histone H1 to chromatin, and phosphorylations can disrupt binding by affecting the secondary structure of the C terminus. By measuring the fluorescence recovery after photo-bleaching profiles of green fluorescent protein-histone H1 proteins in living cells, we find that the deletion of the N terminus only modestly reduces binding affinity. Deletion of the C terminus, however, almost completely eliminates histone H1.1 binding. Specific mutations of the C-terminal domain identified Thr-152 and Ser-183 as novel regulatory switches that control the binding of histone H1.1 in vivo. It is remarkable that the single amino acid substitution of Thr-152 with glutamic acid was almost as effective as the truncation of the C terminus to amino acid 151 in destabilizing histone H1.1 binding in vivo. We found that modifications to the C terminus can affect histone H1 binding dramatically but have little or no influence on the charge distribution or the overall net charge of this domain. A comparison of individual point mutations and deletion mutants, when reviewed collectively, cannot be reconciled with simple charge-dependent mechanisms of C-terminal domain function of linker histones. 相似文献
19.
The central region of the basic nuclear protein, histone H1, has a highly conserved amino acid sequence and a globular structure which is still not known at atomic resolution. A possible secondary and supersecondary structure was predicted by combining experimental measurements of circular dichroism and NMR spectroscopy with a statistical method based on the amino acid sequence. Our results showed the protein fragment as being highly structured and having a total alpha-helix content of about 40%. 相似文献
20.
G Rauch I Pepe P Catasti M Nizzari I Panfoli C Nicolini 《International journal of biological macromolecules》1990,12(3):177-179
A possible secondary structure of the globular part of the histone H1 was obtained with a statistical approach based on the GOR method. The results of circular dichroism measurements on the protein were taken into account in order to choose between theoretically equivalent structures. 相似文献