首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The solution structure of melanoma growth stimulating activity (MGSA) has been investigated using proton NMR spectroscopy. Sequential resonance assignments have been carried out, and elements of secondary structure have been identified on the basis of NOE, coupling constant, chemical shift, and amide proton exchange data. Long-range NOEs have established that MGSA is a dimer in solution. The secondary structure and dimer interface of MGSA appear to be similar to those found previously for the homologous chemokine interleukin-8 [Clore et al. (1990) Biochemistry 29, 1689-1696]. The MGSA monomer contains a three stranded anti-parallel β-sheet arranged in a ‘Greek-key’ conformation, and a C-terininal -helix (residues 58 69).  相似文献   

2.
The 1H-NMR spectrum of the snake toxin echistatin has been assigned using homonuclear two-dimensional methods. Consideration of the NOE patterns, coupling constants and putative hydrogen bonds enabled two regular features of secondary structure to be deduced: a beta-sheet/turn between residues 8 and 13 and a small anti-parallel beta-sheet and bulge linking residues 16-20 with residues 30-33. The recognition region of the protein containing the residues RGD lies in a loop joining the two strands of the beta-sheet. The beta-bulge and the loop containing the RGD sequence undergo pH-dependent conformational interconversion, modulated by the side chain of Asp29.  相似文献   

3.
The X-ray crystallographic structure of osmotically inducible Protein C from the thermophilic bacterium, Thermus thermophilus HB8, was solved to 1.6A using the multiple wavelength anomalous dispersion method and a selenomethionine incorporated protein (Se-MAD). The crystal space group was P1 with cell dimensions of a=37.58 A, b=40.95 A, c=48.14 A, alpha=76.9 degrees, beta=74.0 degrees and gamma=64.1 degrees. The two tightly interacting monomers in the asymmetric unit are related by a non-crystallographic 2-fold. The dimer structure is defined primarily by two very long anti-parallel, over-lapping alpha-helices at the core, with a further six-stranded anti-parallel beta-sheet on the outside of the structure. With respect to the beta-sheets, both A and B monomers contribute three strands each resulting in an intertwining of the structure. The active site consists of two cysteine residues from one monomer and an arginine and glutamic acid from the other. Enzymatic assays have revealed that T.thermophilus OsmC has a hydroperoxide peroxidase activity.  相似文献   

4.
A comparison of the solution structure of the interleukin-8 dimer determined by nuclear magnetic resonance spectroscopy with that of the 2 A resolution X-ray structure, solved by molecular replacement using the solution structure as a starting model, is presented. At the monomer level the atomic root-mean-square difference between the two structures for residues 7 to 72 is approximately 1.1 A for the backbone atoms, approximately 1.6 A for all atoms, and approximately 1 A for all atoms of the internal residues. There are two main regions of difference in the monomer. In the X-ray structure residues 4 to 6 are well ordered and the charged groups of Glu4 of one subunit and Lys23' of the other are in close enough proximity to form an electrostatic interaction. In contrast, these residues are partially disordered in solution and the electrostatic interaction involving Glu4 is replaced by one between Glu29 of one subunit and Lys23' of the other. In the loop comprising residues 31 to 36, His33 accepts a hydrogen bond from the backbone amide group of Gln8 in the solution structure, but donates a hydrogen bond to the backbone carbonyl group of Glu29 in the X-ray structure. There is also a difference in the quaternary structure with regard to the relative orientation of the two subunits produced by a rigid body rotation about the C2 axis that alters the angle between the central beta-strands (formed by residues 23 to 29 of the 2 subunits) at the dimer interface, without breaking the symmetry. In the solution structure this angle has a value of 168 degrees, while in the X-ray structure the central strands are essentially flat, with an angle of 179 degrees. As a result, the separation between the two anti-parallel helices, which lie at an angle of about 60 degrees to the underlying beta-strands, is decreased from 14.8 A in the solution structure to 11.1 A in the X-ray structure. The quaternary structural difference is related to the different conformations of the N terminus and the 31 to 36 loop, both of which display different interactions with respect to the ends of the central beta-strands in the two structures. These findings indicate that interleukin-8 has the potential to undergo conformational transitions that may be of functional significance.  相似文献   

5.
The crystal structure of a dimeric apo form of the soluble quinoprotein glucose dehydrogenase (s-GDH) from Acinetobacter calcoaceticus has been solved by multiple isomorphous replacement followed by density modification, and was subsequently refined at 1. 72 A resolution to a final crystallographic R-factor of 16.5% and free R-factor of 20.8% [corrected]. The s-GDH monomer has a beta-propeller fold consisting of six four-stranded anti-parallel beta-sheets aligned around a pseudo 6-fold symmetry axis. The enzyme binds three calcium ions per monomer, two of which are located in the dimer interface. The third is bound in the putative active site, where it may bind and functionalize the pyrroloquinoline quinone (PQQ) cofactor. A data base search unexpectedly showed that four uncharacterized protein sequences are homologous to s-GDH with many residues in the putative active site absolutely conserved. This indicates that these homologs may have a similar structure and that they may catalyze similar PQQ-dependent reactions.A structure-based sequence alignment of the six four-stranded beta-sheets in s-GDH's beta-propeller fold shows an internally conserved sequence repeat that gives rise to two distinct conserved structural motifs. The first structural motif is found at the corner of the short beta-turn between the inner two beta-strands of the beta-sheets, where an Asp side-chain points back into the beta-sheet to form a hydrogen-bond with the OH/NH of a Tyr/Trp side-chain in the same beta-sheet. The second motif involves an Arg/Lys side-chain in the C beta-strand of one beta-sheet, which forms a bidentate salt-bridge with an Asp/Glu in the CD loop of the next beta-sheet. These intra and inter-beta-sheet hydrogen-bonds are likely to contribute to the stability of the s-GDH beta-propeller fold.  相似文献   

6.
Three-dimensional structure of interleukin 8 in solution   总被引:22,自引:0,他引:22  
The solution structure of the interleukin 8 (IL-8) dimer has been solved by nuclear magnetic resonance (NMR) spectroscopy and hybrid distance geometry-dynamical simulated annealing calculations. The structure determination is based on a total of 1880 experimental distance restraints (of which 82 are intersubunit) and 362 torsion angle restraints (comprising phi, psi, and chi 1 torsion angles). A total of 30 simulated annealing structures were calculated, and the atomic rms distribution about the mean coordinate positions (excluding residues 1-5 of each subunit) is 0.41 +/- 0.08 A for the backbone atoms and 0.90 +/- 0.08 A for all atoms. The three-dimensional solution structure of the IL-8 dimer reveals a structural motif in which two symmetry-related antiparallel alpha-helices, approximately 24 A long and separated by about 14 A, lie on top of a six-stranded antiparallel beta-sheet platform derived from two three-stranded Greek keys, one from each monomer unit. The general architecture is similar to that of the alpha 1/alpha 2 domains of the human class I histocompatibility antigen HLA-A2. It is suggested that the two alpha-helices form the binding site for the cellular receptor and that the specificity of IL-8, as well as that of a number of related proteins involved in cell-specific chemotaxis, mediation of cell growth, and the inflammatory response, is achieved by the distinct distribution of charged and polar residues at the surface of the helices.  相似文献   

7.
The solution structure of reactive-site hydrolyzed Cucurbita maxima trypsin inhibitor III (CMTI-III*) was investigated by two-dimensional proton nuclear magnetic resonance (2D NMR) spectroscopy. CMTI-III*, prepared by reacting CMTI-III with trypsin which cleaved the Arg5-Ile6 peptide bond, had the two fragments held together by a disulfide linkage. Sequence-specific 1H NMR resonance assignments were made for all the 29 amino acid residues of the protein. The secondary structure of CMTI-III*, as deduced from NOESY cross peaks and identification of slowly exchanging hydrogens, contains two turns (residues 8-12 and 24-27), a 3(10)-helix (residues 13-16), and a triple-stranded beta-sheet (residues 8-10, 29-27, and 21-25). This secondary structure is similar to that of CMTI-I [Holak, T. A., Gondol, D., Otlewski, J., & Wilusz, T. (1989) J. Mol. Biol. 210, 635-648], which has a Glu instead of a Lys at position 9. Sequential proton assignments were also made for the virgin inhibitor, CMTI-III, at pH 4.71, 30 degrees C. Comparison of backbone hydrogen chemical shifts of CMTI-III and CMTI-III* revealed significant changes for residues located far away from the reactive-site region as well as for those located near it, indicating tertiary structural changes that are transmitted through most of the 29 residues of the inhibitor protein. Many of these residues are functionally important in that they make contact with atoms of the enzyme in the trypsin-inhibitor complex, as revealed by X-ray crystallography [Bode, W., Greyling, H. J., Huber, R., Otlewski, J., & Wilusz, T. (1989) FEBS Lett. 242, 285-292].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
A model of the three-dimensional structure of the monocyte chemo-attractant and activating protein MCAF/MCP-1 is presented. The model is predicted based on the previously determined solution structure of interleukin-8 (IL-8/NAP-1) [Clore, G.M., Appella, E., Yamada, M., Matsushima, K. and Gronenborn, A.M. (1990) Biochemistry 29, 1689-1696]. Both proteins belong to a superfamily of cytokine proteins involved in cell-specific chemotaxis, host defense and the inflammatory response. The amino acid sequence identity between the two proteins is 24%. It is shown that the regular secondary structure elements of the parent structure can be retained in the modeled structure, such that the backbone hydrogen bonding pattern is very similar in the two structures. The polypeptide backbone is superimposable with an atomic r.m.s. difference of 0.9 A and all side chains can be modeled by transferring the parent side chain conformation to the new structure. Thus, the deduced structure, like the parent one, is a dimer and consists of a six-stranded antiparallel beta-sheet, formed by two three-stranded Greek keys, one from each monomer, upon which lie two symmetry-related antiparallel alpha-helices, approximately 24 A long and separated by approximately 14 A. All amino acid sequence changes can be accommodated within the parent polypeptide framework without major rearrangements. This is borne out by the fact that the IL-8/NAP-1 and modeled MCAF/MCP-1 structures have similar non-bonding energies. These results strongly suggest that both proteins and all other members of the superfamily most likely have the same tertiary structure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The structure of the protein known both as neuronal nitric oxide synthase inhibitory protein, PIN (protein inhibitor of nNOS), and also as the 8 kDa dynein light chain (LC8) has been solved by X-ray diffraction. Two PIN/LC8 monomers related by a two-fold axis form a rectangular dimer. Two pairs of alpha-helices cover opposite faces, and each pair of helices packs against a beta-sheet with five antiparallel beta-strands. Each five-stranded beta-sheet contains four strands from one monomer and a fifth strand from the other monomer. A 13-residue peptide from nNOS is bound to the dimer in a deep hydrophobic groove as a sixth antiparallel beta-strand. The structure provides key insights into dimerization of and peptide binding by the multifunctional PIN/LC8 protein.  相似文献   

10.
The structure of Drosophila LC8 pH-induced monomer has been determined by NMR spectroscopy using the program AutoStructure. The structure at pH 3 and 30 degrees C is similar to the individual subunits of mammalian LC8 dimer with the exception that a beta strand, which crosses between monomers to form an intersubunit beta-sheet in the dimer, is a flexible loop with turnlike conformations in the monomer. Increased flexibility in the interface region relative to the rest of the protein is confirmed by dynamic measurements based on (15)N relaxation. Comparison of the monomer and dimer structures indicates that LC8 is not a domain swapped dimer.  相似文献   

11.
We have investigated the covalent and secondary solution structure of caleosin, a 27-kDa protein also called ATS1 or AtClo1 (At4g26740) found within Arabidopsis thaliana seed lipid bodies. The native protein was partly phosphorylated at S225. Purified bacterially expressed caleosin (recClo) was not phosphorylated; cysteine residues C221 and C230 were connected by a disulfide bridge. In solution it exists as a mixture of predominant monomers and covalent dimers. We have used recClo as a model for the study of AtClo1 secondary structure. recClo is folded in aqueous solution (16% alpha-helix, 29% beta-sheet), its secondary structure being dramatically influenced by the polarity of media, as deduced from CD spectra measured in the presence of increasing concentrations of various aliphatic alcohols.  相似文献   

12.
We report the solution structure of the chemotactic cytokine (chemokine) vMIP-II. This protein has unique biological activities in that it blocks infection by several different human immunodeficiency virus type 1 (HIV-1) strains. This occurs because vMIP-II binds to a wide range of chemokine receptors, some of which are used by HJV to gain cell entry. vMIP-II is a monomeric protein, unlike most members of the chemokine family, and its structure consists of a disordered N-terminus, followed by a helical turn (Gln25-Leu27), which leads into the first strand of a three-stranded antiparallel beta-sheet (Ser29-Thr34; Gly42-Thr47; Gln52-Asp56). Following the sheet is a C-terminal alpha-helix, which extends from residue Asp60 until Gln68. The final five residues beyond the C-terminal helix (Pro70-Arg74) are in an extended conformation, but several of these C-terminal residues contact the first beta-strand. The structure of vMIP-II is compared to other chemokines that also block infection by HIV-1, and the structural basis of its lack of ability to form a dimer is discussed.  相似文献   

13.
The solution structure of neuronal bungarotoxin (nBgt) has been studied by using two-dimensional 1H NMR spectroscopy. Sequence-specific assignments for over 95% of the backbone resonances and 85% of the side-chain resonances have been made by using a series of two-dimensional spectra at four temperatures. From these assignments over 75% of the NOESY spectrum has been assigned, which has in turn provided 582 distance constraints. Twenty-seven coupling constants (NH-alpha CH) were determined from the COSY spectra, which have provided dihedral angle constraints. In addition, hydrogen exchange experiments have suggested the probable position of hydrogen bonds. The NOE constraints, dihedral angle constraints, and the rates of amide proton exchange suggest that a triple-stranded antiparallel beta sheet is the major component of secondary structure, which includes 25% of the amino acid residues. A number of NOE peaks were observed that were inconsistent with the antiparallel beta-sheet structure. Because we have confirmed by sedimentation equilibrium that nBgt exists as a dimer, we have reinterpreted these NOE constraints as intermolecular interactions. These constraints suggest that the dimer consists of a six-stranded antiparallel beta sheet (three from each monomer), with residues 55-59 forming the dimer interface.  相似文献   

14.
The periplasmic polysulfide-sulfur transferase (Sud) protein encoded by Wolinella succinogenes is involved in oxidative phosphorylation with polysulfide-sulfur as a terminal electron acceptor. The polysulfide-sulfur is covalently bound to the catalytic Cys residue of the Sud protein and transferred to the active site of the membranous polysulfide reductase. The solution structure of the homodimeric Sud protein has been determined using heteronuclear multidimensional NMR techniques. The structure is based on NOE-derived distance restraints, backbone hydrogen bonds, and torsion angle restraints as well as residual dipolar coupling restraints for a refinement of the relative orientation of the monomer units. The monomer structure consists of a five-stranded parallel beta-sheet enclosing a hydrophobic core, a two-stranded antiparallel beta-sheet, and six alpha-helices. The dimer fold is stabilized by hydrophobic residues and ion pairs found in the contact area between the two monomers. Similar to rhodanese enzymes, Sud catalyzes the transfer of the polysulfide-sulfur to the artificial acceptor cyanide. Despite their similar functions and active sites, the amino acid sequences and structures of these proteins are quite different.  相似文献   

15.
16.
Interleukin-8 (IL-8), a member of the chemokine superfamily, exists as both monomers and dimers, and mediates its function by binding to neutrophil CXCR1 and CXCR2 receptors that belong to the G protein-coupled receptor class. It is now well established that the monomer functions as a high-affinity ligand, but the binding affinity of the dimer remains controversial. The approximately 1000-fold difference between monomer-dimer equilibrium constant (microM) and receptor binding constant (nM) of IL-8 does not allow receptor-binding affinity measurements of the native IL-8 dimer. In this study, we overcame this roadblock by creating a "trapped" nondissociating dimer that contains a disulfide bond across the dimer interface at the 2-fold symmetry point. The NMR studies show that the structure of this trapped dimer is indistinguishable from the native dimer. The trapped dimer, compared to a trapped monomer, bound CXCR1 with approximately 70-fold and CXCR2 with approximately 20-fold lower affinities. Receptor binding involves two interactions, between the IL-8 N-loop and receptor N-domain residues, and between IL-8 N-terminal and receptor extracellular loop residues. In contrast to a trapped monomer that bound an isolated CXCR1 N-domain peptide with microM affinity, the trapped dimer failed to show any binding, indicating that dimerization predominantly perturbs the binding of only the N-loop residues. These results demonstrate that only the monomer is a high-affinity ligand for both receptors, and also provide a structural basis for the lower binding affinity of the dimer.  相似文献   

17.
The sweet protein MNEI is a construct of 96 amino acid residues engineered by linking, with a Gly-Phe dipeptide, chains B and A of monellin, a sweet protein isolated from Discoreophyllum cuminsii. Here, the solution structure of MNEI was determined on the basis of 1169 nuclear Overhauser enhancement derived distance restraints and 184 dihedral angle restraints obtained from direct measurement of three-bond spin coupling constants. The identification of hydrogen bonded NH groups was obtained by a combination of H/(2)H exchange data and NH resonance temperature coefficients derived from a series of HSQC spectra in the temperature range 278-328 K. The good resolution of the structure is reflected by the Z-score of the quality checking program in WHAT IF (-0.61). The topology of MNEI, like that of natural monellin and of SCM, another single-chain monellin, is typical of the cystatin superfamily: an alpha-helix cradled into the concave side of a five-strand anti-parallel beta-sheet. The high resolution (14 restraints/residue) 3D structure of MNEI shows close similarity to the crystal structures of natural monellin and of SCM but differs from the solution structure of SCM. The structures of SCM in the crystal and in solution differ in some of the secondary structure elements, but most of all in the relative arrangement of the elements: the four main beta-strands that surround the helix in the crystal structure of SCM, are displaced far from the helix in the solution structure of SCM. These differences were attributed to the fact that SCM is a monomer in solution and a dimer in the crystal. This result is at variance with the observation that our solution structure, like that of SCM, corresponds to a monomeric state of the protein, as demonstrated by the insensitivity of HSQC spectra to extreme dilution (down to 20 microM). On the basis of the solution structure of MNEI it is possible to propose that the main glucophores are hosted on loop L34, whereas the N-terminal and C-terminal regions host two other important interaction regions, centered around segments 6-9 and 94-96.  相似文献   

18.
The conformation of tachyplesin I, an antimicrobial cationic peptide of 17 residues found in the hemocyte debris of horseshoe crab, was investigated using two-dimensional NMR spectroscopy. The 1H NMR spectrum of tachyplesin I in aqueous solution could be completely assigned, and the secondary structure was substantiated by interpretation of the nuclear Overhauser effect, coupling constant, amide exchange rate, and temperature dependence of the amide chemical shift. Tachyplesin I takes on a fairly rigid conformation constrained by two disulfide bridges and adopts a conformation consisting of an anti-parallel beta-sheet (residues 3-8 and 11-16) connected by a beta-turn (residues 8-11). In this planar conformation, five bulky hydrophobic side groups are localized in one side of the plane and six cationic side groups are distributed at the "tail" part of the molecule (residues 1-5 and 14-17). This amphipathic structure of the molecule is presumed to be closely associated with the bactericidal activity.  相似文献   

19.
The structure of monomeric human chemokine IL-8 (residues 1–66) was determined in aqueous solution by NMR spectroscopy. The structure of the monomer is similar to that of each subunit in the dimeric full-length protein (residues 1–72), with the main differences being the location of the N-loop (residues 10–22) relative to the C-terminal α-helix and the position of the side chain of phenylalanine 65 near the truncated dimerization interface (residues 67–72). NMR was used to analyze the interactions of monomeric IL-8 (1–66) with ND-CXCR1 (residues 1–38), a soluble polypeptide corresponding to the N-terminal portion of the ligand binding site (Binding Site-I) of the chemokine receptor CXCR1 in aqueous solution, and with 1TM-CXCR1 (residues 1–72), a membrane-associated polypeptide that includes the same N-terminal portion of the binding site, the first trans-membrane helix, and the first intracellular loop of the receptor in nanodiscs. The presence of neither the first transmembrane helix of the receptor nor the lipid bilayer significantly affected the interactions of IL-8 with Binding Site-I of CXCR1.  相似文献   

20.
The 3D solution structure of the GCC-box binding domain of a protein from Arabidopsis thaliana in complex with its target DNA fragment has been determined by heteronuclear multidimensional NMR in combination with simulated annealing and restrained molecular dynamic calculation. The domain consists of a three-stranded anti-parallel beta-sheet and an alpha-helix packed approximately parallel to the beta-sheet. Arginine and tryptophan residues in the beta-sheet are identified to contact eight of the nine consecutive base pairs in the major groove, and at the same time bind to the sugar phosphate backbones. The target DNA bends slightly at the central CG step, thereby allowing the DNA to follow the curvature of the beta-sheet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号