首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Karl E.O. Åkerman 《BBA》1978,502(2):359-366
1. A depolarisation of the membrane of rat liver mitochondria, as measured with the safranine method, is seen during Ca2+ uptake. The depolarisation is followed by a slow repolarisation, the rate of which can be increased by the addition of EGTA or phosphate.2. Plots relating the initial rate of calcium ion (Ca2+) uptake and the decrease in membrane potential (Δψ) to the Ca2+ concentration show a half-maximal change at less than 10 μM Ca2+ and a saturation above 20 μM Ca2+.3. Plots relating the initial rate of Ca2+ uptake to Δψ are linear.4. Addition of Ca2+ chelators, nitriloacetate or EGTA, to deenergized mitochondria equilibrated with Ca2+ causes a polarisation of the mitochondrial membrane due to a diffusion potential created by electrogenic Ca2+ efflux.5. If the extent of the response induced by different nitriloacetate concentrations is plotted against the expected membrane potential a linear plot is obtained up to 70 mV with a slope corresponding to two-times the extent of the response induced by valinomycin in the presence of different potassium ion gradients. This suggests that the Ca2+ ion is transferred across the membrane with one net positive charge in present conditions.  相似文献   

2.
The paper analyzes the relationship between membrane potential (delta psi), steady state pCao (-log [Ca2+] in the outer aqueous phase) and rate of ruthenium-red-induced Ca2+ efflux in liver mitochondria. Energized liver mitochondria maintain a pCao of about 6.0 in the presence of 1.5 mM Mg2+ and 0.5 mM Pi. A slight depression of delta psi results in net Ca2+ uptake leading to an increased steady state pCao. On the other hand, a more marked depression of delta psi results in net Ca2+ efflux, leading to a decreased steady-state pCao. These results reflect a biphasic relationship between delta psi and pCao, in that pCao increases with the increase of delta psi up to a value of about 130 mV, whereas a further increase of delta psi above 130 mV results in a decrease of pCao. The phenomenon of Ca2+ uptake following a depression of delta psi is independent of the tool used to affect delta psi whether by inward K+ current via valinomycin, or by inward H+ current through protonophores or through F1-ATP synthase, or by restriction of e- flow. The pathway for Ca2+ efflux is considerably activated by stretching of the inner membrane in hypotonic media. This activation is accompanied by a decreased pCao at steady state and by an increased rate of ruthenium-red-induced Ca2+ efflux. By restricting the rate of e- flow in hypotonically treated mitochondria, a marked dependence of the rate of ruthenium-red-induced Ca2+ efflux on the value of delta psi is observed, in that the rate of Ca2+ efflux increases with the value of delta psi. The pCao is linearly related to the rate of Ca2+ efflux. Activation of oxidative phosphorylation via addition of hexokinase + glucose to ATP-supplemented mitochondria, is followed by a phase of Ca2+ uptake, which is reversed by atractyloside. These findings support the view that Ca2+ efflux in steady state mitochondria occurs through an independent, delta psi-controlled pathway and that changes of delta psi during oxidative phosphorylation can effectively modulate mitochondrial Ca2+ distribution by inhibiting or activating the delta psi-controlled Ca2+ efflux pathway.  相似文献   

3.
The ability of isolated mitochondria from rat brown-adipose tissue to regulate extramitochondrial Ca2+ (measured by arsenazo) was studied in relation to their ability to produce heat (measured polarographically). The energetic state of the mitochondria was expressed as a membrane potential, delta psi (estimated with safranine), and was varied semi-physiologically by the use of different GDP concentrations. In these mitochondria GDP binds to the 32-kDa polypeptide, thermogenin, which regulates coupling. Ca2+ uptake (at 5 microM extramitochondrial Ca2+) was maximal at delta psi greater than 150 mV. Basal Ca2+ release increased from 1 to 2 nmol x min-1 x mg-1 below 150 mV. Na+ -stimulated rate of Ca2+ release was stable within the investigated delta psi span (100-160 mV). Initial Ca2+ levels were maintained below 0.2 microM for 100 mV less than delta psi less than 160 mV. Ca2+ levels maintained after Ca2+ challenge (20 nmol Ca2+ x mg-1) were below 0.4 microM for delta psi greater than 135 mM. Respiration was unstimulated for delta psi greater than 150 mV and was maximal at delta psi less than or equal to 135 mV. In the presence of well-oxidised substrates, the respiration at maximally activated thermogenin was markedly below fully uncoupled respiration and was probably limited by thermogenin activity--i.e. by a limited H+ reentry (OH- exit) and therefore by a membrane potential maintained at about 135 mV. It is concluded that at membrane potentials of 135 mV and above the mitochondria exhibit full Ca2+ control and are able to regulate thermogenic output up to maximum without interfering with this Ca2+ control. Membrane potential probably does not decrease below 135 mV in vivo. Therefore, Ca2+ homeostasis and thermogenesis are non-interfering and can be hormonally independently regulated, e.g. by alpha-adrenergic and beta-adrenergic stimuli, respectively.  相似文献   

4.
The time-course of 45Ca2+ influx into yeast cells was measured under non-steady-state conditions obtained by preincubating the cells in a Ca2+-free medium containing glucose and buffer. Two components were distinguished: a saturable component which reached a steady-state after about 40 s of 45Ca2+ uptake and a linear increase in cellular 45Ca2+ starting after 60-90 s. Using differential extraction methods it was determined that after 20 s of uptake, 45Ca2+ was localized in the cytoplasmic pool and in bound form with no 45Ca2+ in the vacuole. After 3 min most of the cellular 45Ca2+ was concentrated in the vacuole and in bound form. The initial rate of 45Ca2+ uptake under non-steady-state conditions thus measured 45Ca2+ transport across the plasma membrane without interference by vacuolar uptake. The effect of membrane potential (delta psi) on this transport was investigated in cells depleted of ATP. A high delta psi was produced by preincubating the cells with trifluoperazine (TFP) and subsequently washing the cells free from TFP. Substantial 45Ca2+ influx was measured in the absence of metabolic energy in cells with a high delta psi. Below a threshold value of -69.5 mV the logarithms of the initial rate of 45Ca2+ influx and of the steady-state level of the first component were linear with respect to delta psi. It is suggested that 45Ca2+ influx across the plasma membrane is mediated by channels which open when delta psi is below a threshold value. The results indicated that Ca2+ influx across the plasma membrane was driven electrophoretically by delta psi.  相似文献   

5.
No methods are currently available for fully reliable monitoring of membrane potential changes in suspensions of walled cells such as yeast. Our method using the Nernstian cyanine probe diS-C3(3) monitors even relatively fast changes in membrane potential delta psi by recording the shifts of probe fluorescence maximum lambda max consequent on delta psi-dependent probe uptake into, or exit from, the cells. Both increased [K+]out and decreased pHout, but not external NaCl or choline chloride depolarise the membrane. The major ion species contributing to the diS-C3(3)-reported membrane potential in S. cerevisiae are thus K+ and H+, whereas Na+ and Cl- do not perceptibly contribute to measured delta psi. The strongly pHout-dependent depolarisation caused by the protonophores CCCP and FCCP, lack of effect of the respiratory chain inhibitors rotenone and HQNO on the delta psi, as well as results obtained with a respiration-deficient rho- mutant show that the major component of the diS-C3(3)-reported membrane potential is the delta psi formed on the plasma membrane while mitochondrial potential forms a minor part of the delta psi. Its role may be reflected in the slight depolarisation caused by the F1F0-ATPase inhibitor azide in both rho- mutant and wildtype cells. Blocking the plasma membrane H(+)-ATPase with the DMM-11 inhibitor showed that the enzyme participates in delta psi build-up both in the absence and in the presence of added glucose. Pore-forming agents such as nystatin cause a fast probe entry into the cells signifying membrane damage and extensive binding of the probe to cell constituents reflecting obviously disruption of ionic balance in permeabilised cells. In damaged cells the probe therefore no longer reports on membrane potential but on loss of membrane integrity. The delta psi-independent probe entry signalling membrane damage can be distinguished from the potential-dependent diS-C3(3) uptake into intact cells by being insensitive to the depolarising action of CCCP.  相似文献   

6.
Rat liver mitochondria became permeabilized to sucrose according to an apparent first-order process after accumulating 35 nmol of Ca2+/mg of protein in the presence of 2.5 mM-Pi, but not in its absence. A fraction (24-32%) of the internal space remains sucrose-inaccessible. The rate constant for permeabilization to sucrose decreases slightly when the pH is decreased from 7.5 to 6.5, whereas the rate of inner-membrane potential (delta psi) dissipation is markedly increased, which indicates that H+ permeation precedes sucrose permeation. Permeabilization does not release mitochondrial proteins. [14C]Sucrose appears to enter permeabilized mitochondria instantaneously. Chelation of Ca2+ with EGTA restores delta psi and entraps sucrose in the matrix space. With 20 mM-sucrose at the instant of resealing, about 21 nmol of sucrose/mg of protein becomes entrapped. The amount of sucrose entrapped is proportional to the degree of permeabilization. Entrapped sucrose is not removed by dilution of the mitochondrial suspension. Resealed mitochondria washed three times retain about 74% of the entrapped sucrose. In the presence of Ruthenium Red and Ca2+ buffers permeabilized mitochondria reseal only partially with free [Ca2+] greater than 3 microM. [14C]Sucrose enters partially resealed mitochondria continuously with time, despite maintenance of delta psi, in accordance with continued interconversion of permeable and impermeable forms. Kinetic analyses of [14C]sucrose entry indicate two Ca2+-sensitive reactions in permeabilization. This conclusion is supported by the biphasic time courses of resealing and repolarization of permeabilized mitochondria and the acute dependence of the rapid repolarization on the free [Ca2+]. A hypothetical model of permeabilization and resealing is suggested and the potential of the procedure for matrix entrapment of substances is discussed.  相似文献   

7.
The decrease of steady-state transmembrane potential (delta psi) and loss of accumulated Ca2+ are magnified if palmitoyl-CoA is added to rat liver mitochondria exposed to Ca2+ and phosphate. The extent of this damage increases with increasing concentration of long-chain acyl-CoA. Addition of L-carnitine with or without the addition of palmitoyl-CoA considerably delays the deenergization. In the latter case, there is a substantial decrease in the assayed endogenous long-chain acyl-CoA content. This protective action of L-carnitine is abolished by L-aminocarnitine, a powerful inhibitor of carnitine palmitoyl transferase (palmitoyl-CoA: L-carnitine O-palmitoyltransferase, EC 2.3.1.21.). The removal of Ca2+ by EGTA, or the inhibition of its uptake by Ruthenium red or Mg2+ further enhances the degree of protection.  相似文献   

8.
The effect of exogenous octadecadienoic acid hydroperoxide (HPODE) on the functional properties of inner membrane of isolated rat liver mitochondria, as evaluated by the measurement of the membrane potential (delta psi) has been studied. Very low concentrations of HPODE (1.5-4.5 nmol/mg prot.) do not modify the delta psi of control mitochondria appreciably while bringing about the drop of delta psi, in a concentration-dependent mode, in mitochondria with a GSH level diminished by approx. 60%. Mitochondrial GSH depletion was obtained by intraperitoneal administration of buthionine sulfoximine, a specific inhibitor of GSH synthesis, to rats. The presence in the incubation system of GSH-methyl ester which normalizes mitochondrial GSH, fully prevents any drop in levels of delta psi induced by HPODE. The same protective effect has been presented by EGTA, which chelates the available Ca2+. Neither an antioxidant nor a specific inhibitor of mitochondrial phospholipase A2 are able to prevent the HPODE effect. From the results obtained we can assume that HPODE itself, at the concentrations used here, induces permeability changes in the inner membrane, with the loss of coupled functions, when the GSH mitochondrial level is below a critical value.  相似文献   

9.
During hypoxia of isolated cardiomyocytes, Ca2+ entry into mitochondria may occur via the Na/Ca exchanger, the normal efflux pathway, and not the Ca-uniporter, the normal influx route. If this is the case, then depletion of myocyte Na+ should inhibit Ca2+ uptake, and collapse of the mitochondrial membrane potential (delta psi(m)) would inhibit the uniporter. To test these hypotheses, isolated rat myocytes were exposed to metabolic inhibition, to mimic hypoxia, and [Ca2+]m and [Ca2+]c determined by selective loading of indo-1 into these compartments. Delta psi(m) was determined using rhodamine 123. Following metabolic inhibition, [Ca2+]m was significantly lower in Na-depleted cells than controls (P<0.001), [Ca2+]c was approximately the same in both groups, and mitochondria depolarised completely. Thus Na-depletion inhibited mitochondrial Ca2+ uptake, suggesting that Ca2+ entry occurred via Na/Ca exchange, and the collapse of delta psi(m) during metabolic inhibition is consistent with inactivity of the Ca-uniporter.  相似文献   

10.
The mitochondrial membrane potential (delta psi m) in intact lymphocytes was calculated by measuring the distribution of radiolabelled methyltriphenylphosphonium cation. The value obtained was 120 mV. The pH gradient across the mitochondrial membrane in situ (delta pH m) was estimated to be 73 mV (1.2 pH units). Thus the electrochemical gradient of protons was about 190 mV. Addition of the mitogen concanavalin A did not alter delta psi m, showing that, if movement of Ca2+ across the inner membrane of lymphocyte mitochondria occurs when concanavalin A is added, it is accompanied by charge-compensating ion movements.  相似文献   

11.
The mechanism by which a number of agents such as hydroperoxides, inorganic phosphate, azodicarboxylic acid bis(dimethylamide) (diamide), 2-methyl-1,4-naphthoquinone (menadione) and aging, induce Ca2+ release from rat liver mitochondria has been analyzed by following Ca2+ fluxes in parallel with K+ fluxes, matrix swelling and triphenylmethylphosphonium fluxes (as an index of transmembrane potential). Addition of hydroperoxides causes a cycle of Ca2+ efflux and reuptake and an almost parallel cycle of delta psi depression. The hydroperoxide-induced delta psi depression is biphasic. The first phase is rapid and insensitive to ATP and is presumably due to activation of the transhydrogenase reaction during the metabolization of the hydroperoxides. The second phase is slow and markedly inhibited by ATP and presumably linked to the activation of a Ca2+-dependent reaction. The slow phase of delta psi depression is paralleled by matrix K+ release and mitochondrial swelling. Nupercaine and ATP reduce or abolish also K+ release and swelling. Inorganic phosphate, diamide, menadione or aging also cause a process of Ca2+ efflux which is paralleled by a slow delta psi depression, K+ release and swelling. All these processes are reduced or abolished by Nupercaine and ATP. The slow delta psi depression following addition of hydroperoxide and diamide is largely reversible at low Ca2+ concentration but tends to become irreversible at high Ca2+ concentration. The delta psi depression increases with the increase of hydroperoxide, diamide and menadione concentration, but is irreversible only in the latter case. Addition of ruthenium red before the hydroperoxides reduces the extent of the slow but not of the rapid phase of delta psi depression. Addition of ruthenium red after the hydroperoxides results in a slow increase of delta psi. Such an effect differs from the rapid increase of delta psi due to ruthenium-red-induced inhibition of Ca2+ cycling in A23187-supplemented mitochondria. Metabolization of hydroperoxides and diamide is accompanied by a cycle of reversible pyridine nucleotide oxidation. Above certain hydroperoxide and diamide concentrations the pyridine nucleotide oxidation becomes irreversible. Addition of menadione results always in an irreversible nucleotide oxidation. The kinetic correlation between Ca2+ efflux and delta psi decline suggests that hydroperoxides, diamide, menadione, inorganic phosphate and aging cause, in the presence of Ca2+, an increase of the permeability for protons of the inner mitochondrial membrane. This is followed by Ca2+ efflux through a pathway which is not the H+/Ca2+ exchange.  相似文献   

12.
Influx of Ca2+ into cells of Saccharomyces cerevisiae was measured under non-steady-state conditions, which enable measurements of the initial rate of transport across plasma membranes without interference by the vacuolar Ca2+ transport system. Removal of glucose from the incubation medium led to inactivation of Ca2+ influx within 5 min. Readdition of glucose led to a transient increase in the rate of Ca2+ transport, reaching a peak after 3-5 min. A second increase was observed 60-80 min later. To examine whether the first transient activation of Ca2+ influx by glucose was mediated by membrane hyperpolarization, influx of 45Ca2+ was measured in the presence and absence of metabolic substrates (glucose, glycerol, and glucose plus antimycin A) in cells hyperpolarized to different values of membrane potential (delta psi). Logarithms of the rate of Ca2+ influx were plotted against values of delta psi. Two different slopes were obtained, depending upon whether the metabolic substrate was present or absent. Ca2+ influx in the presence of the metabolic substrates was always higher than expected by their effect on delta psi. Glycerol plus antimycin A did not affect Ca2+ influx. It was concluded that metabolized substrates activate Ca2+ influx not only by effects on delta psi but also by additional mechanism(s). Since no simple correlation between Ca2+ influx and intracellular ATP levels was observed, it was concluded that ATP levels do not affect the initial rates of Ca2+ transport across the plasma membrane of S. cerevisiae.  相似文献   

13.
The role of the plasma membrane potential (delta psi p) in the commitment to differentiation of murine erythroleukemia (MEL) cells has been studied by analyzing the ionic basis and the time course of this potential in the absence or the presence of different types of inducers. delta psi p was determined by measuring the distribution of tetraphenylphosphonium (TPP+) across the plasma membrane and displayed a 22-hour depolarization phase (from -28 to +5 mV) triggered by factors contained in foetal calf serum (FCS) and followed by a nearly symmetrical repolarization phase. After measuring the electrochemical equilibrium potential of Na+, K+, and Cl-, the relative contribution of these ions to delta psi p was evaluated by means of ion substitution experiments and by the addition of ion flux inhibitors (tetrodotoxin [TTX], 4-acetoamide-4'-isothiocyanostilbene-2,2'-disulfonate [SITS]) and ionophores (Valinomycin, A23187). The Na+ contribution to delta psi p appeared negligible, the potential being essentially generated by K+ and Cl- fluxes. When evaluated by a new mathematical approach, the effects of Valinomycin and A23187 at different times of incubation provided evidence that both the depolarization and the repolarization phase were due to variations of the K+ permeability across the plasma membrane (PK) mediated by Ca2+-activated K+ channels. All the inducers tested (dimethylsulfoxide [DMSO], hexamethylen-bis-acetamide [HMBA], diazepam), although they did not modify the ionic basis of delta psi p, strongly attenuated the depolarization rate of this potential. This attenuation was not brought about when the inducers were added to noninducible MEL cell clonal sublines. Cell commitment occurred only during the depolarization phase and increased proportionally to the attenuation of this phase up to a threshold beyond which the further increase of the attenuation was associated with the inhibition of commitment. The major role of the inducers apparently consisted of the stabilization of the Ca2+-activated K+ channels, suggesting that a properly modulated delta psi p depolarization through these channels is primarily involved in the signal generation for MEL cell commitment to differentiation.  相似文献   

14.
The lipophilic triphenylmethylphosphonium cation (TPMP+) has been employed to measure delta psi m, the electrical potential across the inner membrane of the mitochondria of intact hepatocytes. The present studies have examined the validity of this technique in hepatocytes exposed to graded concentrations of inhibitors of mitochondrial energy transduction. Under these conditions, TPMP+ uptake allows a reliable measure of delta psi m in intracellular mitochondria, provided that the ratio [TPMP+]i/[TPMP+]e is greater than 50:1 and that at the end of the incubation more than 80% of the hepatocytes exclude Trypan blue. Hepatocytes, staining with Trypan blue, incubated in the presence of Ca2+, do not concentrate TPMP+. The relationships between delta psi m and two other indicators of cellular energy state, delta GPc and Eh, or between delta psi m and J0, were examined in hepatocytes from fasted rats by titration with graded concentrations of inhibitors of mitochondrial energy transduction. Linear relationships were generally observed between delta psi m and delta GPc, Eh or J0 over the delta psi m range of 120-160 mV, except in the presence of carboxyatractyloside or oligomycin, where delta psi m remained constant. Both the magnitude and the direction of the slope of the observed relationships depended upon the nature of the inhibitor. Hepatocytes from fasted rats synthesized glucose from lactate or fructose, and urea from ammonia, at rates which were generally linear functions of the magnitude of delta psi m, except in the presence of oligomycin or carboxyatractyloside. Linear relationships were also observed between delta psi m and the rate of formation of lactate in cells incubated with fructose and in hepatocytes from fed rats. The linear property of these force-flow relationships is taken as evidence for the operation of thermodynamic regulatory mechanisms within hepatocytes.  相似文献   

15.
Calcium transport in membrane vesicles of Streptococcus cremoris   总被引:2,自引:0,他引:2  
Rightside-out membrane vesicles of Streptococcus cremoris were fused with proteoliposomes containing the light-driven proton pump bacteriorhodopsin by a low-pH fusion procedure reported earlier [Driessen, A.J.M., Hellingwerf, K.J. & Konings, W.N. (1985) Biochim. Biophys. Acta 808, 1-12]. In these fused membranes a proton motive force, interior positive and acid, can be generated in the light and this proton motive force can drive the uptake of Ca2+. Collapsing delta psi with a concomitant increase in delta pH stimulates Ca2+ uptake while dissipation of the delta pH results in a reduced rate of Ca2+ uptake. Also an artificially generated delta pH, interior acid, can drive Ca2+ uptake in S. cremoris membrane vesicles. Ca2+ uptake depends strongly on the presence of external phosphate while Ca2+-efflux-induced proton flux is independent of the presence of external phosphate. Ca2+ accumulation is abolished by the divalent cation ionophore A23187. Calcium extrusion from intact cells is accelerated by lactose. Collapse of the proton motive force by the uncoupler carbonylcyanide p-trifluoromethoxyphenylhydrazone or inhibition of the membrane-bound ATPase by N,N'-dicyclohexylcarbodiimide strongly inhibits Ca2+ release. Further studies on Ca2+ efflux at different external pH values in the presence of either valinomycin or nigericin suggested that Ca2+ exit from intact cells is an electrogenic process. It is concluded that Ca2+ efflux in S. cremoris is mediated by a secondary transport system catalyzing exchange of calcium ions and protons.  相似文献   

16.
Testosterone at physiological intratesticular concentrations induces a dose-dependent depolarisation and an increase in input resistance together with an increment of 45Ca2+ uptake in the Sertoli cells from seminiferous tubules of immature rat. Previous studies have implicated K(+)ATP channels in these testosterone actions. This study demonstrates that testosterone and sulphonylureas (glibenclamide and tolbutamide) depolarise the membrane potential, augment resistance and 45Ca2+ uptake in the Sertoli cells of seminiferous tubules from 10-15 day-old rats. These actions were nullified by the presence of the K(+)ATP channel opener diazoxide. The depolarisation was also observed with the impermeant bovine serum albumin-bound testosterone. Testosterone actions were blocked by both pertussis toxin and the phospholipase C (PLC) inhibitor U73122 implying the involvement of PLC - phosphatidylinositol 4-5 bisphosphate (PIP2) hydrolysis via G protein in testosterone actions. Polycations, including spermine and LaCl3, depolarised the membrane potential and increased the resistance. Hyperpolarisation caused by EGTA was reversed by LaCl3 and by the presence of testosterone. This last effect was nullified by the presence of U73122. All of the above results indicate that the action of testosterone on the Sertoli cell membrane is exercised on the K(+)ATP channels through PLC-PIP2 hydrolysis that closes the channel, depolarises the membrane, and stimulates 45Ca2+ uptake.  相似文献   

17.
As to functional consequences of Ca2+ uptake in isolated rat liver mitochondria, we simultaneously measured 3H2O and [14C]sucrose spaces, monovalent cation distribution, membrane potential and delta pH across the inner membrane, and [32P]phosphate and 45Ca2+ content in parallel incubations of different ionic composition. Without added Ca2+ and phosphate, mitochondrial matrix volume, membrane potential, and delta pH depended on the concentration and permeability of monovalent cations. Despite large differences in membrane potential, maximal Ca2+ uptake was identical under all conditions. Ca2+ uptake never provoked a volume change from which an osmotic active state of mitochondrial Ca2+ could be concluded. If matrix volume shrunk this could be totally accounted for by the loss of alkali ions exchanging for calcium ions. Even phosphate taken up in conjunction with Ca2+ was osmotically silent. Volume increases here occurring if K+ was permeabilized, solely resulted from K+ uptake, though this condition may give rise to irreversible mitochondrial damage with Ca2+ and phosphate release. As mitochondrial Ca2+ is bound, an electro-chemical equilibrium across the membrane is impossible for this ion. This has to be considered in any model describing equilibria of Ca2+ with mitochondria, though present models neglect this state of mitochondrial Ca2+.  相似文献   

18.
The characteristics of the uptake of lipophilic cations tetraphenylphosphonium (TPP+) into Candida albicans have been investigated to establish whether TPP+ can be used as a membrane potential probe for this yeast. A membrane potential (delta psi, negative inside) across the plasma membrane of C. albicans was indicated by the intracellular accumulation of TPP+. The steady-state distribution of TPP+ was reached within 60 min and varied according to the expected changes of delta psi. Agents known to depolarize membrane potential caused a rapid and complete efflux of accumulated TPP+. The initial influx of TPP+ was linear over a wide range of TPP+ concentrations (2.5-600 microM), indicating a non mediated uptake. Thus, TPP+ is a suitable delta psi probe for this yeast.  相似文献   

19.
The paper analyzes the factors affecting the H+-K+ exchange catalyzed by rat liver mitochondria depleted of endogenous Mg2+ by treatment with the ionophore A23187. The exchange has been monitored as the rate of K+ efflux following addition of A23187 in low-K+ media. (1) The H+-K+ exchange is abolished by uncouplers and respiratory inhibitors. The inhibition is not related to the depression of delta pH, whereas a dependence is found on the magnitude of the transmembrane electrical potential, delta psi. Maximal rate of K+ efflux is observed at 180-190 mV, whereas K+ efflux is inhibited below 140-150 mV. (2) Activation of H+-K+ exchange leads to depression of delta pH but not of delta psi. Respiration is only slightly stimulated by the onset of H+-K+ exchange in the absence of valinomycin. These findings indicate that the exchange is electroneutral, and that the delta psi control presumably involves conformational changes of the carrier. (3) Incubation in hypotonic media at pH 7.4 or in isotonic media at alkaline pH results in a marked activation of the rate of H+-K+ exchange, while leaving unaffected the level of Mg2+ depletion. This type of activation results in partial 'uncoupling' from the delta psi control, suggesting that membrane stretching and alkaline pH induce conformational changes on the exchange carrier equivalent to those induced by high delta psi. (4) The available evidence suggests that the activity of the H+-K+ exchanger is modulated by the electrical field across the inner mitochondrial membrane.  相似文献   

20.
Data from a number of laboratories suggest that the exchange of glutamate for aspartate across the mitochondrial inner membrane is stimulated by glucagon and by Ca2+-mobilizing hormones. The purpose of this study was to determine the site of action of these hormones. Two possibilities were considered and tested. The first hypothesis is that the mitochondrial membrane electrical potential gradient (delta psi m) in the cells is increased by the hormones; and that the putative increase in delta psi m stimulates aspartate efflux. The second possibility is that Ca2+ mediates decreases in cellular levels of alpha-ketoglutarate, secondary to stimulation of alpha-ketoglutarate dehydrogenase, and that the decrease in alpha-ketoglutarate stimulates aspartate production by mitochondria. The effect of glucagon on delta psi m was estimated in intact hepatocytes using the lipophilic cation tetraphenyl phosphonium. No increase in delta psi m was observed due to hormone treatment. On the other hand, alpha-ketoglutarate was found to be an effective competitive inhibitor of aspartate formation via glutamate transamination by isolated liver mitochondria (Ki = 0.55 mM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号