首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In a study of 4-hr hemorrhagic hypotension in dogs, the plasma levels of the lysosomal enzymes, cathepsin (CATH) and acid phosphatase (AP) showed early and progressive increases in activity. The plasma levels of the intestinal fraction of alkaline phosphatase (IAkP) and aspartate aminotransferase (AAT) were increased after 2 hr of hypotension and the liver specific enzyme, ornithine carbamyltransferase (OCT), and creatine phosphokinase (CPK), after 3 hr. All of the enzymes showed large increases after 4 hr of hypotension. The plasma levels of CATH showed the earliest and largest relative increase indicating that with the shock model used, this enzyme was the most sensitive indicator of shock severity. The increase in plasma enzyme levels was probably the result of tissue damage in the splanchnic region but the elevation of plasma CPK, a muscle specific enzyme, indicates some muscle cell damage as well. While the increase in the plasma enzyme activity is probably due, in large part, to cellular damage, it is likely that a decreased enzyme removal rate--resulting from a hypofunctional RES--also contributes to the elevated plasma enzyme levels during hemorrhagic hypotension.  相似文献   

2.
3.
A B Kamble  A Mellors 《Steroids》1974,23(4):517-534
A steroid which stabilizes lysosomes in vitro and a pyrogenic steroid which labilizes lysosomes in vitro were compared with respect to their ability to modify lysosomal uptake and lysosomal enzyme levels in vivo. Cortisone acetate increased the uptake of acridine orange by rat liver lysosomes when the dye was administered by intrathoracic injection. The steroid increased and accelerated the uptake of acridine orange so that, in liver lysosomes from treated rats, the maximum uptake was double that of controls and was reached at 2h, whereas in controls the maximum uptake was at 4h after the injection of the dye. This large elevation of uptake is specific to the lysosomal fraction and is not seen in other subcellular fractions of rat liver. The specific activities of a lysosomal enzyme β-N-acetylglucosaminidase were increased in lysosomal fractions from cortisone acetate-treated rats. Etiocholanolone, a steroid which labilizes lysosome in vitro, similarly accelerated and increased acridine orange uptake by lysosomes but had little effect on lysosomal β-N-acetylglucosaminidase levels. Thus the ability of steroids to stabilize or labilize lysosomes in vitro does not correlate with their effect on lysosomal uptake of injected substances in vivo, or with their ability to induce increased specific activities of lysosomal enzymes.  相似文献   

4.
5.
6.
7.
Intercellular exchange of N-acetyl-β-D-glucosaminidase (EC 3.2.1.30) β-galactosidase (EC 3.2.1.23) and acid α-glucosidase (EC 3.2.1.20) was studied after cocultivation of normal and enzyme deficient human fibroblasts in confluent cultures. Enzyme activities were measured in single cells using microchemical procedures. After co-cultivation of normal control fibroblasts and those from a patient with Sandhoff's disease an increase of activity of N-acetyl-β-D-glucosaminidase was found in Sandhoff cells, together with a decrease of activity in normal control cells. After co-cultivation of normal fibroblasts and those from patients with glycogenosis II and GM1-gangliosidosis, no indication was found for intercellular transfer of acid α-glucosidase and β-galactosidase respectively. The significance of the results is discussed in respect of the hypothesis of Hickman and Neufeld about secretion and uptake of lysosomal enzymes.  相似文献   

8.
Cultured mouse peritoneal macrophages were shown to secrete the lysosomal enzyme N-acetyl-glucosaminidase (N-ac-Glu) in response to IgG-Sepharose and some other non-endocytosable particles without substantial release of the cytoplasmic enzyme, lactate dehydrogenase. The interaction with IgG-Sepharose was studied in some detail, and was shown to be time- and dose-dependent, and to leave the cells viable. Ovalbumin and glycine insolubilised on Sepharose did not induce secretion. By means of several control experiments, it was demonstrated that the IgG-Sepharose exerted its effects directly on the plasma membrane. Thus, normal macrophages can secrete in response to certain agents which act solely on the plasma membrane. This mechanism of induction of secretion is probably quite distinct from those previously established, which involve secretion during phagocytosis, during intracellular storage of phagocytosed materials or during pharmacological intervention by cytochalasin B.  相似文献   

9.
We have recently reported that human neutrophils can be permeabilized with the cholesterol complexing agent saponin and that these cells can be induced to secrete the granule enzyme lysozyme in response to micromolar levels of free calcium. We now report that digitonin can be used in place of saponin and that it has several advantages. Permeabilization of human neutrophils was accomplished with 10 micrograms/ml digitonin in a high potassium medium. Normally impermeant solutes such as [14C]sucrose and inulin [14C]carboxylic acid gained access to one half of the intracellular water space marked with [3H]H2O. Between 30 and 100% of the cytoplasmic enzyme, lactate dehydrogenase, leaked from the intracellular space. The permeabilization process and calcium-triggered granule secretion were critically dependent upon temperature, time and digitonin concentration. Permeabilized neutrophils secreted beta-glucuronidase, lysozyme and vitamin B-12 binding-protein, constituents of both azurophil and specific granules, when exposed to micromolar levels of free calcium. Release of specific granule constituents appeared to be more sensitive to free calcium than release from azurophil granules. Although the amount of permeabilization varied considerably with each batch of cells, release of these granule markers was a consistent finding. Release of granule markers was accompanied by resealing of the cells to high-molecular-weight (Mr greater than 5000) solutes. Electron microscopic evidence also suggested that granule and plasma membranes were intact following digitonin treatment and that fusion of these membranes occurred in response to calcium. These results suggest that elevation of intracellular free-calcium levels is a sufficient condition for lysosomal enzyme release.  相似文献   

10.
Recapture of lysosomal enzymes secreted by fibroblasts was inhibited by growing the cells in the presence of either free or immobilized antibodies against lysosomal enzymes or in the presence of phosphorylated carbohydrates known to interact with the cell-surface receptors for lysosomal enzymes. The following results were obtained. 1. Conditions that prevent recapture of released lysosomal enzymes increase the rate of extracellular accumulation of these enzymes up to twice that of controls. 2. Growing cells for 12 days in the presence of 0.5mm-mannose 6-phosphate, which decreases β-N-acetylglucosaminidase endocytosis to less than 10% of that of controls, has no effect on the intracellular activity of this and four other lysosomal enzymes. 3. Growing cells for 4 days in the presence of 50mm-mannose 6-phosphate, which is a 1000-fold higher concentration than that required for 50% inhibition of lysosomal enzyme endocytosis, leads to a 4-fold increase in extracellular β-N-acetylglucosaminidase accumulation and a decrease in intracellular enzyme. These results give evidence that, in fibroblasts, transfer of lysosomal enzymes into lysosomes does not require secretion before a receptor-mediated recapture [Hickman & Neufeld (1972) Biochem. Biophys. Res. Commun. 49, 992–999]. We propose that (a) lysosomal enzymes are present in a receptor-bound form in those vesicles that fuse with the cell membrane, (b) the major part of the lysosomal enzyme cycles via the cell surface in a receptor-bound form and (c) only a minor part of the lysosomal enzyme is released into the extracellular space during its life cycle.  相似文献   

11.
12.
Rapid and parallel secretion of lysosomal beta-N-acetylglucosaminidase and preloaded fluorescein-labelled dextran was initiated in macrophages by agents affecting intracellular pH (methylamine, chlorpromazine, and the ionophores monensin and nigericin). In order to evaluate the relative role of changes in lysosomal and cytosolic pH, these parameters were monitored by using pH-sensitive fluorescent probes [fluorescein-labelled dextran or 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein]. All agents except chlorpromazine caused large increases in lysosomal pH under conditions where they induced secretion. By varying extracellular pH and ion composition, the changes in lysosomal and cytosolic pH could be dissociated. Secretion was then found to be significantly modulated by changes in cytosolic pH, being enhanced by alkalinization and severely inhibited by cytosolic acidification. However, changes in cytosolic pH in the absence of stimulus were unable to initiate secretion. Dissociation of the effects on lysosomal and cytosolic pH was also achieved by combining stimuli with either nigericin or acetate. Further support for a role of intracellular pH in the control of lysosomal enzyme secretion was provided by experiments where bicarbonate was included in the medium. The present study demonstrates that an increase in lysosomal pH is sufficient to initiate lysosomal enzyme secretion in macrophages and provides evidence for a significant regulatory role of cytosolic pH.  相似文献   

13.
14.
Changes in the movements of Na+, K+, and Ca+2 across rabbit neutrophils under conditions of lysosomal enzyme release have been studied. We have found that in the presence of cytochalasin B, the chemotactic factor formyl methionyl leucyl phenylalanine (FMLP) induces within 30 s large enhancements in the influxes of both 22Na+ and 45Ca+2 and an increase in the cellular pool of exchangeable calcium. The magnitude of the changes induced by cytochalasin B and FMLP exceeds that induced by FMLP or cytochalasin B alone, and cannot be explained on the basis of an additive effect of the two agents. However, these compounds either separately or together produce much smaller enhancements in 45Ca efflux. The divalent cation ionophore A23187 also produces a rapid and large increase in the influxes of both 22Na and 45Ca+2 in the presence and absence of cytochalasin B. We have also found an excellent correlation between calcium influx and lysosomal enzyme release. 42K influx is not significantly affected by any of these compounds. On the other hand, a large and rapid increase of 42K efflux is observed under conditions which give rise to lysosomal enzyme release. A flow diagram of the events that are thought to accompany the stimulation of polymorphonuclear leukocytes (PMNs) by chemotactic or degranulating stimuli is presented.  相似文献   

15.
Rat liver beta-xylosidase, a lysosomal membrane enzyme.   总被引:1,自引:1,他引:0       下载免费PDF全文
  相似文献   

16.
Endocytosed proteins in hepatocytes are transported to lysosomes for degradation. Metabolites accumulating in these organelles are released into bile by exocytosis, a process that seems to be regulated by the bile salt taurocholate (TC). In this study we examined if TC is also involved in the control of the lysosomal degradation of endocytosed proteins. We used [(14)C]sucrose-labeled horseradish peroxidase ([(14)C]S-HRP), a probe suitable to evaluate lysosomal proteolysis. TC-infused rats as well as isolated rat hepatocytes exposed to TC showed a significant inhibition in the lysosomal degradation of [(14)C]S-HRP (approximately 30%), with no change in either the uptake or the amount of protein reaching lysosomes. Under these conditions, the in vitro assay of lysosomal cathepsins B, L, H, and D revealed no change in their activities, suggesting that a reversible inhibition (lysosomal alkalinization?) was taking place in hepatocytes. Nevertheless, lysosomal pH measured using fluorescein isothiocyanate-dextran was shown not to be altered by TC. In addition, TC was unable to inhibit proteolysis in [(14)C]S-HRP loaded lysosomes or interfere in cathepsin assays. The results suggest that TC inhibits the lysosomal degradation of endocytosed proteins in hepatocytes and that the mechanism does not involve an effect of the bile salt per se or a rise in lysosomal pH.  相似文献   

17.
18.
19.
Male rats of the Holtzman strain were fasted for 3 days and refed a diet high in carbohydrate (68.9%). The induction of liver glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase was monitored for up to 48 h after refeeding. Induction occurred by 24 h, and by 48 h, 4.2- and 1.5-fold increases were observed for glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase, respectively, compared with that of livers of pellet-fed rats. After refeeding, lysosomes increased in fragility as judged by an increased release of acid phosphatase activity during standard homogenization. Fragility was greatest 3 h after refeeding, but normal fragility was observed 24 h after refeeding. Nuclei were isolated from the liver samples before and after refeeding. Those isolated just before refeeding revealed small latent acid phosphatase activity (4–6%). However, after refeeding the carbohydrate-rich diet, a transient and significant (P < 0.01) increase in the latent activity occurred that was maximal (20%) at 1 h, returning to normal by 24 h. Cross-mixing the 800g nuclear pellet from livers of animals starved for 3 days with the 800g supernatant fraction from livers of animals refed the carbohydrate-containing diet did not alter the nuclear lysosomal-free (overt) or latent (detergent-released) enzyme activity. Similarly, mixing the 800g nuclear pellet from livers of animals refed for 1 h with the 800g supernatant fraction from livers of animals starved for 3 days, but not refed, did not change the nuclear lysosomalfree or latent enzyme activity. Purified nuclei, further washed in hypotonic buffer, lost acid phosphatase activity, but those isolated from livers of rats refed for 1 h retained 10% of the enzyme latency, whereas all latency was lost from those isolated from uninduced rats. A second lysosomal enzyme, β-galactosidase, became associated with the nuclei with the same temporal pattern as for acid phosphatase. However, no variation in nuclear content of cytosolic lactate dehydrogenase occurred as a result of feeding the high-carbohydrate diet to starved rats. When similarly starved rats were refed a diet high in lipid and carbohydrate-free, no induction of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase was observed. Lysosomes were not temporarily fragile and purified nuclei did not exhibit increased latency of acid phosphatase activity. Though the evidence presented does not establish a direct correlation between lysosome migration to nuclei as a required function in enzyme induction, the temporal and specific nature of the phenomenon support the hypothesis that liver lysosomal enzymes participate in early signals in the induction of enzymes of lipogenesis.  相似文献   

20.
Lysosomal targeting of soluble lysosomal hydrolases is mediated by mannose 6-phosphate receptors, which recognize and bind mannose 6-phosphate residues in the oligosaccharide chains of proteins destined for delivery to lysosomes. This recognition marker is generated by the sequential action of two enzymes, the first of which, UDP-N-acetylglucosamine phosphotransferase, recognizes lysosomal enzymes on the basis of a structural determinant in their polypeptide chains. This recognition event is a key step in lysosomal targeting of soluble proteins, but the exact nature of the recognition determinant is not well understood. In this study we have characterized the phosphotransferase recognition signals of human lysosomal aspartylglucosaminidase (AGA) using transient expression of polypeptides carrying targeted amino acid substitutions. We found that three lysine residues and a tyrosine residing in three spatially distinct regions of the AGA polypeptide are necessary for phosphorylation of the oligosaccharides. Two of the lysines are especially important for the lysosomal targeting efficiency of AGA, which seems to be mostly dictated by the degree of phosphorylation of the alpha subunit oligosaccharide. On the basis of the results of this and previous studies we suggest a general model for recognition of lysosomal enzymes by the phosphotransferase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号