首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 492 毫秒
1.
科技信息     
共生固氮微生物与农作物固氮蓝细菌与满江红、苏铁共生,还与真菌、苔藓、裸子植物和被子植物某些种属建立共生固氮体系;此固氮蓝细菌是地球上最早的绿色自养原核生物,行光合作用和放氧;还具共生固氮(N2)功能。已从那些固氮微生物中获得固氮基因,若能通过某种分子载体转移到水稻  相似文献   

2.
郑典元 《生物学通报》1990,(11):20-20,3
蓝细菌又称蓝藻,有许多种,其中有些营自由生活,有些和其它生物营共生生活,其中有许多种类能够固氮,大都属于念球蓝细菌科(Nostoceae),胶须蓝细菌科(Rivulariaceae)和伪歧蓝细菌科(Scytonemataceae)及真枝蓝细菌科(Stigonemataceac)。本文介绍自由生活蓝细菌和营共生生活的蓝细菌固氮的一些问题。一、自生蓝细菌的固氮蓝细菌能生长于有光的无机培养基中,利用CO_2作为碳源,N_2作为氮源,并且能产氧。但这里显然有矛盾,因固氮作用的关健酶——固氮酶在有氧的情况下将失去活性,固氮将停止。那么这个矛盾是如何解决的,通过研究发现,已知的固氮的蓝细菌除少数种外,都是丝状体,丝状体中有一种特殊细胞——异形胞。实验证明固氮作用可以在异形胞中完成。这类专化性细胞与营养细胞有如下几点区别:1.有厚外衣,2.色素弱而不强,3.与营养细胞接合处有明显的折光性颗粒。另  相似文献   

3.
真核生物起源的可能途径杨景宇(天水师范专科学校741016)现存生物中,发现有固氮作用的微生物近50个属,主要包括细菌、放线菌和蓝细菌,都是原核微生物。他们有的是好氧的,有的是厌氧的,也有的为兼性厌氧;有的自由生活固氮的,也有联合固氮或共生固氮的,但...  相似文献   

4.
硝酸盐调控豆科植物与根瘤菌共生固氮的机制研究   总被引:1,自引:0,他引:1  
氮是植物生长发育所需的大量营养元素之一。硝态氮不仅可以被植物直接吸收利用,还可以作为重要的信号分子调控植物对氮素的响应、吸收、代谢相关基因的表达,从而影响植物的生长和发育。豆科植物可以通过与根瘤菌共生互作来获得生长所需的氮,但共生固氮是一个耗费植物能量的过程。当土壤中存在高浓度的氮素时,氮作为信号分子会影响共生固氮基因的功能从而抑制共生固氮过程。目前的研究表明,硝酸盐通过局部和系统的调控方式抑制共生固氮过程;结瘤自主调控(Autoregulation of nodulation,AON)和NLPs(NIN-like proteins)转录因子在硝酸盐抑制豆科植物根瘤形成中有着重要的作用。本文结合最近的研究进展,重点讨论NLPs转录因子和AON途径在硝酸盐抑制共生固氮过程的作用。  相似文献   

5.
魏江春 《菌物学报》2018,37(7):811-811
正地衣曾被认为是低等植物或孢子植物。实际上,它并非植物,而是地球生物圈内生态系统中地衣型真菌与相应的藻类或蓝细菌结成稳定的胞外共生的生态群落。每一个共生的生态群落都是由一种地衣型真菌作为建群种和一种相应的藻类或蓝细菌作为伴生种所组成。所谓地衣型真菌,是指这些真菌只能在和相应的藻类或蓝细菌处于稳定共生状态下才能存活于自然界。除此而外,该共生群落中有时还伴有生长在地衣体外表的外生真菌;生  相似文献   

6.
固氮蓝细菌束毛藻(Tricodesmium)是海洋中丰度最高的固氮微生物,贡献了约42%的海洋生物固氮,为海洋生态系统提供了新的氮源,驱动海洋初级生产力和食物网,在海洋生物地球化学循环中发挥重要作用。作为海洋中“新氮”主要贡献者,束毛藻是一种不产生异形胞的丝状固氮蓝细菌。因为生物固氮的关键酶固氮酶对氧气十分敏感,一般固氮蓝细菌通常产生异形胞或采用夜间固氮的方式进行生物固氮,避免氧气对固氮酶的抑制作用。近年来研究发现,束毛藻具有一套独特的生物固氮体系,能够使同一藻丝在白天同时完成光合作用和生物固氮,并具有复杂的调控机制。本文综述了近年来束毛藻生物固氮策略的最新研究进展,介绍了其生物固氮和光合作用之间的精密调控机制,对拓展固氮微生物尤其是海洋蓝细菌固氮机制的认识具有借鉴意义。  相似文献   

7.
3种水稻土中7株固氮蓝细菌的分离与特征   总被引:1,自引:0,他引:1  
【背景】蓝细菌是水生和陆地生态系统中生物固氮的主要贡献者。【目的】增加对稻田土壤固氮蓝细菌的了解,获得用于进一步研究的可培养固氮蓝细菌菌株。【方法】选择3种具有不同固氮能力的水稻土,采用BG11-N培养基分离培养固氮蓝细菌菌株,对新分离菌株进行形态特征观察,通过基因组DNA的nifH基因扩增明确其固氮潜力,进一步采用乙炔还原法和~(15)N_2示踪法定量测定其固氮能力,通过基因组DNA的16SrRNA基因序列比对进行鉴定。【结果】在光照培养条件下,采用BG11-N培养基共分离纯化得到自养菌株7株,细胞呈圆形或椭圆形、单列、无分枝、丝状和念珠状,在固体培养基上形成团垫状菌落。新分离菌株在BG11-N培养基中生长状况良好,以基因组DNA为模板可扩增出nifH基因,乙炔还原法和~(15)N_2示踪法测定结果显示具有较高固氮能力,同时具有铁载体生成能力。结合16S rRNA基因序列比对和形态特征,7株菌被初步鉴定隶属于念珠藻科(Nostocaceae)。【结论】从水稻土中分离到在稻田生物固氮中发挥重要作用的蓝细菌(念珠藻科)菌株,可培养固氮蓝细菌菌株固氮能力较高,兼具铁载体生成能力,可作为进一步深入研究的微生物资源,具有潜在的研究应用价值。  相似文献   

8.
根瘤菌共生固氮能力的进化模式   总被引:2,自引:0,他引:2  
根瘤菌-豆科植物共生固氮体系对农业的可持续性发展至关重要,也是研究原核与真核生物互利共生的模式体系之一。长期以来,根瘤菌共生固氮相关研究主要集中在结瘤因子与固氮酶合成及调控等少数关键基因,但仅获得这些关键基因却不能保证细菌获得结瘤固氮能力。随着比较和功能基因组学的快速发展和应用,越来越多的研究发现根瘤菌使用了很多系统发育分支特异的遗传机制与豆科植物建立有效的共生关系,进一步揭示了双方互利共生的复杂性。本综述总结了近年来比较基因组学、遗传学以及实验进化等方面的相关研究进展,在此基础上讨论根瘤菌共生固氮能力的进化模式。  相似文献   

9.
张骁栋  王金枝  颜亮  李勇  吴海东  康晓明 《生态学报》2020,40(21):7630-7637
高寒湿地中土壤微生物固氮是氮元素进入生态系统的主要途径之一,环境因子变化对土壤固氮功能的影响仍不明晰。在四川若尔盖高寒湿地搭建了由27个生态模拟箱组成的中宇宙实验系统,通过控制水位和模拟氮沉降,研究水位变化和施氮对土壤非共生固氮的影响。实验设计了3水位水平×3施氮水平共9个处理,测定了生态模拟箱中表层土壤的非共生固氮速率,土壤碳、氮含量,以及地上植物生物量和植物氮含量,比较不同水位和施氮处理下非共生固氮速率的变化规律并分析其与土壤和植物碳、氮含量的关系。研究发现:生态模拟箱中土壤非共生固氮速率范围是0.003-7.35 μg N g-1 d-1,从不淹水到淹水的处理土壤非共生固氮速率提高约2倍。施氮处理中固氮速率随土壤含水量升高而增强的敏感性高于施氮对照处理,且施氮处理下的生态模拟箱中土壤有机碳含量显著升高,据此推测施氮可能使淹水的生态模拟箱中的浮游植物提高生产力而释放可利用有机碳,从而间接促进土壤非共生固氮。本研究获得以下结论:(1)若尔盖高寒湿地中土壤水位是限制固氮速率的重要因子;(2)施氮背景下土壤含水量对非共生固氮的促进效应更明显。  相似文献   

10.
共生菌的发育及光合共生物的调节 在具有衣瘿的地衣中,共生菌能发育成两类构造,即:它与一种藻类共生形成地衣的主体;还能与蓝细菌共生形成衣瘿。偶尔有些地衣(如:地卷属)的衣瘿,能长成完整、独立的叶状体。在牛皮衣属(Sticta)和肺衣属(Lobaria)的地衣中,同种共生菌既能与蓝细菌共生,又能与绿藻共生,形成不同的、适合于不同生理需要的小环境的地衣体,它们有着不同的外貌和生态学特点(见上期图3),被称为:光合共生混交群体(phycosymbiodemes)。尽管人们把它们看做不同的种,但利用分子遗传学技术已经进一步证实:共生菌是完全相同的。  相似文献   

11.
二、共生固氮的生化遗传学共生固氮是固氮生物和宿主植物两者相互作用和协调的结果。前者将固定的氮供宿主植物合成氨基酸和蛋白质,后者将光合作用部分产物输送到根瘤,为细菌进行固氮提供能量。共生固氮的生化遗传学更为复杂。涉及到细菌和植物各自的遗传学和它们之间的相互作用,其研究比较困难。但由于分子  相似文献   

12.
从豇豆根瘤菌330菌株分离获得三株菌落型(330S,330L和330V)。共生固氮和自生(非共生)固氮研究表明,330V的固氮作用比330S明显有效,330S中等有效,而330L无效。对它们的一些特征作了比较,看来有五个特征是有相关性的:非共生固氮活性高,菌株与豇豆宿主形成的共生固氮活性高,菌落形态小;世代时间长;比粘度低。 这三个菌落型均为革兰氏阴性杆菌,菌体大小为0.7×2.0微米,都有极生鞭毛。它们DNA的解链温度相同。在凝胶免疫扩散中,各菌株的可溶性抗原分别与330S抗血清的抗体形成一条沉淀带,330S与330V抗原性相同,330L与330S或330V有关但不同一。它们对50毫克分子盐的敏感度亦相似。本文讨论了它们的亲缘关系。  相似文献   

13.
非共生生物固氮微生物分子生态学研究进展   总被引:3,自引:0,他引:3  
氮是限制生态系统生产力的主要元素,生物固氮是自然生态系统中氮的主要来源.生物固氮包括共生、联合和自生固氮3种类型,其中联合固氮和自生固氮统称为非共生固氮.相对于共生固氮而言,非共生固氮速率虽然较低,但其不需要与其他生物形成共生体系就可以生存并进行固氮,在时空分布上更加广泛,因此对生态系统氮循环特别是素输入具有重要贡献.本文对近年有关非共生固氮微生物的多样性、土壤和叶际固氮微生物的分布特征及影响因素等研究进展进行了综述,并在此基础上阐述了现有研究中存在的问题和发展前景.  相似文献   

14.
李友国  周俊初   《微生物学通报》2003,30(5):110-115
根瘤菌-豆科植物共生体系进行的共生固氮是一个需要消耗大量能量的生物学过程,植物提供类菌体将空气中的分子态氮转变为氨必需的光合产物。大量的研究结果证明:苹果酸、琥珀酸和延胡索酸等四碳二羧酸(dCAs)是植物直接供给类菌体以支持共生固氮所需要的碳源及能源(Finan T M,et al.,1983;Roson C W,et al.,1984;Vance C P,et al.,1997)。它们必须通过细胞膜和类菌体周膜(PBM)两道屏障才能进入类菌体细胞。研究还发现了一个运输四碳二羧酸的共同系统-Dct转运系统(Streeter J G,1995)。就四碳二羧酸等有机酸的产生、转移、如基因的结构、功能与表达调控、如基因与根瘤菌共生固氮的遗传改造等方面作一简单介绍。  相似文献   

15.
植物的血红蛋白   总被引:5,自引:0,他引:5  
近几年来,植物血红蛋白的研究进展十分迅速,豆科植物中与共生固氮无关的血红蛋白基因和包括禾本科植物在内的许多非豆科植物血红蛋白基因的发现使人们对植物血红蛋白有了新的认识,进而把植物血红蛋白分为共生血红蛋白和非共生血红蛋白两种类型。对这两种血红蛋白的性质、功能、基因结构及表达等方面的研究不仅对共生固氮中植物与微生物的相互关系和固氮工程研究;而且对植物细胞的呼吸代谢和耐涝机理等研究有重要价值。  相似文献   

16.
豆科植物与根瘤菌之间形成的共生固氮是自然界效率最高的一种固氮体系,在农业生产上具有重要的应用价值。由于根瘤菌的宿主专一性较强,每种根瘤菌只能与有限的豆科植物形成共生关系,近来的一系列研究表明共生基因的水平转移和宿主条件下的适应性进化是推动根瘤菌进化的重要方式。综述了基因水平转移的主要方式在根瘤菌进化和扩大宿主范围上的重要作用,以及获得共生性状的菌株在建立共生体系时存在的问题和解决方法,旨为共生固氮在农业生产中更好地应用提供思路。  相似文献   

17.
红豆草根瘤侵染细胞的超微结构变化   总被引:8,自引:0,他引:8  
红豆草(Onobrychis viciaefolia Scop.)是一种抗旱、耐寒、耐热和耐瘠薄的优良豆科牧草,不仅是很好的饲料和绿肥,而且还能大量结瘤固氮,提高土地肥力。因此,它在我国甘肃和其他北方干旱和半干旱贫瘠地区广为种植。虽然不少学者曾对它的引种条件、生产性能、营养成分和形态解剖作过许多研究,但对其共生固氮,特别是与共生固氮息息相关的根瘤在发育中的变化却至今尚无系统报道。因此,为了更好开发利用这一资源,  相似文献   

18.
【目的】尿素ABC转运体透性酶亚基编码基因urtB可能参与尿素代谢及支链氨基酸转运;本文旨在获得实验证据阐明urtB基因对华癸根瘤菌结瘤和固氮的影响,为深入研究其功能机制提供一定的科学依据。【方法】利用生物信息学分析urtB基因的结构特征及生物学功能,通过荧光定量检测urtB基因在自生和共生条件下的时空表达特征和启动子原位表达技术检测urtB基因组织表达特征,采用插入突变构建urtB突变株,通过植物盆栽并结合添加氮素处理,检测与分析突变体的共生固氮表型变化。【结果】分析表明urtB基因对于氮素转运非常重要,在共生条件下的表达水平比自生培养条件下显著上调表达;在成熟根瘤的固氮区中大量表达;正确构建和筛选获得了根瘤菌urtB突变株;接种urtB突变株与野生型菌株7653R相比较,突变体根瘤发育异常;植株地上部分生物量和根瘤固氮酶活性显著降低;添加氮素可恢复其共生缺陷表型。【结论】华癸中慢生根瘤菌urtB基因可能通过影响根瘤中氮转运或同化,进而在根瘤发育与共生固氮中发挥重要作用。  相似文献   

19.
根瘤菌与豆科植物共生结瘤固氮被认为是地球上最重要的生物固氮体系. 裸子植物罗汉松与根瘤菌共生结瘤至今未见报道. 采用常规根瘤菌分离技术从罗汉松及其变种小叶罗汉松根瘤中分离获得11株内生细菌, 将它们回接宿主可导致结瘤, 乙炔还原法测出微弱的固氮酶活性. 传统的生理生化鉴定方法和16S rDNA全序列分析证明该内生细菌代表菌株GXLO 02隶属于根瘤菌.  相似文献   

20.
一氧化氮对豆科植物结瘤及固氮的影响机制   总被引:1,自引:0,他引:1  
豆科植物-根瘤菌共生过程受双方基因复杂且精细的调控, 能够产生特异的根瘤结构并可将大气中的惰性氮气(N2)转化为可被植物直接利用的氨态氮。结瘤与固氮受多种因素影响, 其中, 一氧化氮(NO)作为一种自由基反应性气体信号分子, 可参与调节植物的许多生长发育过程, 如植物的呼吸、光形态建成、种子萌发、组织和器官发育、衰老以及响应各种生物及非生物胁迫。在豆科植物中, NO不仅影响寄主与菌共生关系的建立, 还参与调控根瘤菌对氮气的固定并提高植株氮素营养利用效率。该文主要从豆科植物及共生菌内NO的产生、降解及其对结瘤、共生固氮的影响和对环境胁迫的响应, 阐述了NO调控豆科植物共生体系中根瘤形成和共生固氮过程的作用机制, 展望了NO信号分子在豆科植物共生固氮体系中的研究前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号