首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present the synthesis of a highly stable protein hydrogel mediated by a split-intein-catalyzed protein trans-splicing reaction. The building blocks of this hydrogel are two protein block-copolymers each containing a subunit of a trimeric protein that serves as a crosslinker and one half of a split intein. A highly hydrophilic random coil is inserted into one of the block-copolymers for water retention. Mixing of the two protein block copolymers triggers an intein trans-splicing reaction, yielding a polypeptide unit with crosslinkers at either end that rapidly self-assembles into a hydrogel. This hydrogel is very stable under both acidic and basic conditions, at temperatures up to 50 °C, and in organic solvents. The hydrogel rapidly reforms after shear-induced rupture. Incorporation of a "docking station peptide" into the hydrogel building block enables convenient incorporation of "docking protein"-tagged target proteins. The hydrogel is compatible with tissue culture growth media, supports the diffusion of 20 kDa molecules, and enables the immobilization of bioactive globular proteins. The application of the intein-mediated protein hydrogel as an organic-solvent-compatible biocatalyst was demonstrated by encapsulating the horseradish peroxidase enzyme and corroborating its activity.  相似文献   

2.
Wu M  Ye Z  Liu Y  Liu B  Zhao X 《Molecular bioSystems》2011,7(6):2040-2047
A newly designed self-assembling peptide, P4 (Ac-NH-LDLKLELKLDLKLELK-CONH(2)), capable of stabilizing hydrophobic compounds in aqueous solution has been discovered. The ionic self-complementary peptide P4 has 16 amino acids, ~5 nm in size, with an alternating polar and non-polar pattern. Circular dichroism analysis demonstrated that P4 forms stable β-sheet structures, and self-assembles into nanofibers, which was demonstrated by atomic force microscopy. These nanofibers can form a scaffold hydrogel consisting of >99% water. It showed that the P4 hydrogel had stable hydrogel rheological properties. The ability of the peptide to stabilize the hydrophobic anticancer agent ellipticine was tested in this research. The results showed that the state of ellipticine in the complexes was dependent on the concentration of the peptide, which also affected the size and morphology of the complex. The anticancer activity of the complexes was studied by testing the viability with a MTT assay and a LIVE/DEAD Viability/Cytotoxicity kit in two cancer cell lines including SMMC7721 and EC9706. The viability results showed that complexes of protonated ellipticine could significantly reduce the viability of the two cell lines. The results described herein provide further incentives for basic studies on self-assembling peptide-based delivery of hydrophobic anticancer drugs.  相似文献   

3.
A new injectable biodegradable hydrogel system with thermosensitive sol-gel transition behavior was developed. A series of A-B-A triblock copolymers consisting of Pluronic copolymer end-capped with D- or L-lactic acid oligomers (PL-LA(n)) with various chain lengths (n = 5,12) was synthesized. It was assumed that a pair of two triblock copolymers with enantiomeric oligolactide chains, when blended in an equimolar mixture, would form more stable, self-assembled, and stereocomplexed (ST) hydrogels. A series of blend hydrogels encapsulating human growth hormone (hGH) was prepared by varying blend ratios between PL and stereocomplexed PL copolymers. They showed sustained release of hGH via an erosion-dependent mechanism. The hydrogel with a 5% blending ratio exhibited the most delayed mass erosion as well as sustained protein release patterns in vitro possibly due to the formation of a fish-net like 3-D mesh structure. The effect of incubation condition on hGH release and degradation behaviors was also assessed.  相似文献   

4.
This paper reports on the swelling degree and the rheological and structural characteristics of a hydrogel composed by chitosan and xanthan. The latter is a polyionic hydrogel obtained by complexation between the both polysaccharides. The swelling degree has been found to be influenced by the time of coacervation, the pH of the solution of chitosan used to form the hydrogel and the pH of the swelling solution. The molecular weight and the degree of acetylation of the chitosan also influence the swelling degree of this matrix. The connectivity between chitosan and xanthan affects the swelling degree of this matrix. A rheological study has been carried out in order to understand the formation of the coacervate and of the subsequent hydrogel. The evolution of the storage modulus with time during the coacervation has allowed to optimize the time of coacervation required for a subsequently hydrogel, with desirable swelling degree. The kinetics has shown that (a) the coacervate is formed in two distinct steps and (b) the storage modulus of the hydrogel reaches a stable plateau. The values of the storage modulus have been correlated with the swelling degree. The microscopic characterization has shown the presence of a porous network with a fibrillar structure. To complete the characterization studies fine powder of this hydrogel has been used to determine the surface, perimeter, Feret diameter and sphericity factor distribution of dry and hydrated (swollen) particles.  相似文献   

5.
Poly(vinyl alcohol)/hydroxylapatite(PVA/HA)composite hydrogel was prepared by repeated freezing and thawing.Thewater loss properties of the resultant hydrogel were investigated by using optical microscope.Long time immersion tests ofPVA/HA composite hydrogel were carried out in the diluted calf serum solution to study the change laws of swelling propertieswith the freezing-thawing cycles and HA content.The micro-morphologies of PVA/HA composite hydrogel after long timeimmersion were observed by means of the high-accuracy 3D profiler.The results show that the swelling process of PVA/HAcomposite hydrogel is the converse process of its water loss.Long time swelling ratio curves of PVA/HA composite hydrogel inthe calf serum solution are manifested as four stages of quick increase,decrease,slow decrease and stable balance,and itsequilibrium swelling ratio decreases with the increase of freezing-thawing cycles and HA content.It is revealed that the networkstructure of the composite hydrogel immersed for a long period is significantly improved with the increase of HA content.Perfect network structures of PVA/HA composite hydrogel as well as full and equilibrium tissues after swelling equilibrium areobtained when the HA content is 3% and the number of freezing-thawing cycles is 7.  相似文献   

6.
In this contribution, we describe the effects of amide coupling reactions on the physical properties of thermoresponsive hydrogel microparticles (microgels). These microgels, when treated via aqueous carbodiimide/sulfo-succinimide coupling protocols, displayed a dramatic modulation of the microgel phase transition thermodynamics. UV spectrophotometry was used to determine that this modulation was due to remarkably stable hydrogel conjugates of sulfo-NHS that resisted degradation under standard hydrolysis protocols. These intermediates result in a shift of the phase transition, along with a large increase in equilibrium microgel swelling degree, due to an increase in chain-chain Coulombic repulsion. Only aggressive hydrolysis protocols resulted in the recovery of the native microgel phase transition, suggesting that an unusually stable succinimidyl ester is formed in the microgel during coupling.  相似文献   

7.
Bottom-up fabrication by molecular self-assembly is now widely recognized as a potent method for generating interesting and functional nano- and mesoscale structures. Hydrogels from biocompatible molecules are an interesting class of mesoscale assemblies with potential biomedical applications. The self-assembly of a proteolysis resistant aromatic dipeptide containing a conformational constraining residue (DeltaPhe) into a stable hydrogel has been studied in this work. The reported dipeptide has free -N and -C termini. The hydrogel was self-supportive, was fractaline in nature, and possessed high mechanical strength. It was responsive to environmental conditions like pH, temperature, and ionic strength. The gel matrix could encapsulate and release bioactive molecules in a sustained manner. The described hydrogel showed no observable cytotoxicity to the HeLa and L929 cell lines in culture.  相似文献   

8.
Salmon milt DNA hydrogel beads were synthesized by an inverse suspension polymerization of acrylamide in the continuous phase of cyclohexane. These DNA hydrogel beads in water medium are stable, more than 82% (w/w) of the DNA can be retained in the hydrogel after a sufficient soaking in water. Comparing with normal adsorbents such as activated carbon and alumina, this DNA matrix showed a selective adsorptivity for the dioxin derivatives with planar structure such as dibenzo-p-dioxin (DD), dibenzofuran (DF) and biphenyl (BP). Rinsing with hexane can regenerate the DNA beads after adsorption by the dioxin derivatives, even the adsorption-regeneration process repeated four times, no significant decrease in the dioxin removal capacity was observed.  相似文献   

9.
Long-term effects of polyacrylamide hydrogel on human breast tissue   总被引:23,自引:0,他引:23  
Polyacrylamide hydrogel is an atoxic, stable, nonresorbable sterile watery gel consisting of approximately 2.5% cross-linked polyacrylamide and nonpyrogenic water. Polyacrylamide hydrogel is widely used in ophthalmic operations, drug treatment, food packaging products, and water purification. In the former Soviet Union, polyacrylamide hydrogel has been used in plastic and aesthetic surgery for more than 10 years, and Kiev City Hospital treats approximately 300 women a year for breast augmentation using the polyacrylamide hydrogel Interfall (Contura SA, Montreux, Switzerland). Capsule shrinkage following these injections has never been observed. The authors examined breast tissue samples from a total of 27 women who had polyacrylamide hydrogel injected at Kiev City Hospital up to 8 years and 10 months earlier. Age at operation, duration of polyacrylamide hydrogel implantation, history of possible side effects to the gel injection, other intercurrent diseases, the reason for present open breast operation, and breast palpation findings before operation were in each case compared with the histological findings on samples taken from breast tissue bordering the gel. The gel presented itself as a dark violet, homogenous mass with a rounded or ragged outline in large or medium-size deposits and as elongated strands, which mimicked the extracellular matrix, in small deposits. Histological findings of the breast tissue bordering the gel showed three different patterns: large collections of gel gave rise to a thick, soft-looking cellular membrane of macrophages and foreign-body giant cells; medium-size deposits were surrounded by just a thin layer of macrophages; and small deposits were not associated with any reaction in the surrounding tissue. Projections of the cellular soft membrane, known as granulomas, were seen in six patients. The granulomas were composed of macrophages, foreign-body giant cells, lymphocytes, and blood cells. A thin layer of fibrous connective tissue was occasionally present around the foreign-body membrane, but the thick fibrous capsule, which has been described in connection with silicone implants, was completely absent. The gel changes could be correlated to neither time since gel injection nor a history of recent injury or inflammation. It is concluded that the polyacrylamide hydrogel Interfall, which has been used in the former Soviet Union, is stable over time, nondegradable, confined to the breast, and diffusion and migration resistant. When the hydrogel is injected in medium-size or large quantities a cellular foreign-body reaction occurs, but in small amounts it is capable of splitting up individual connective tissue fibers and fat cells, substituting for the extracellular connective tissue matrix without eliciting any foreign-body reaction. As far as these data are concerned, polyacrylamide hydrogel is well tolerated by the breast and does not give rise to severe fibrosis, pain, or capsule shrinkage. However, to determine safety with more certainty, a larger sample size would be necessary.  相似文献   

10.
An injectable, in situ physically and chemically crosslinkable gellan hydrogel is synthesized via gellan thiolation. The thiolation does not alter the gellan's unique 3-D conformation, but leads to a lower phase transition temperature under physiological conditions and stable chemical crosslinking. The synthesis and hydrogels are characterized by (1)H NMR, FT-IR, CD, or rheology measurements. The injectability and the tissue culture cell viability is also tested. The thiolated gellan hydrogel exhibits merits, such as ease for injection, quick gelation, lower gelling temperature, stable structure, and nontoxicity, which make it promising in biomedicine and bioengineering as an injectable hydrogel.  相似文献   

11.
-Galactosidase was immobilized in a crosslinked poly(N-isopropylacrylamide-co-acrylamide) hydrogel which exhibits an LCST(lower critical solution temperature) behavior. The hydrogel collapses above the LCST, and expands below the LCST. The temperature-dependent phase transition was around 37 °C. The stability of immobilized enzyme was investigated at different temperatures which allow different degrees of collapse in the hydrogel matrix. It was hypothesized that the immobilzed enzyme is more stable in the collapsed matrix due to the physical restraint imposed on the enzyme entrapped.  相似文献   

12.
A hydrogel membrane containing immobilized ligands and receptors was synthesized and investigated for the controlled diffusion of test proteins (cytochrome C and hemoglobin). Both Cibacron blue (ligand) and lysozyme (receptor) were covalently linked to dextran molecules that were subsequently crosslinked to form a gel. The resulting stable hydrogels contained both covalent and affinity crosslinks such that their intrinsic porosities were sensitive to competitive displacers of the affinity interaction between lysozyme and Cibacron blue. Transport experiments in a twin chamber diffusion cell showed that as NAD was added to the donor side, the dissociation of the binding sites between the Cibacron blue and the lysozyme led to an increase in protein diffusion through the hydrogel. The results showed that addition of NAD caused a saturable concentration-dependent increase in the transport of both cytochrome C and hemoglobin. This effect was shown to be both specific and reversible.  相似文献   

13.
Li H  Ng TY  Yew YK  Lam KY 《Biomacromolecules》2005,6(1):109-120
The modulation of the swelling ability of the hydrogel matrix by pH-stimulus enables the dynamic control of the swelling forces, thereby obtaining effective diffusivity and permeability of the solutes, or mechanical energy from the hydrogel. In this work, a chemo-electro-mechanical model describing hydrogel behavior, based on multi-field effects, is developed to simulate the swelling and shrinking of these fascinating bio-materials, and it is termed the multi-effect-coupling pH-stimulus (MECpH) model. This model accounts for the ionic fluxes within both the hydrogel and solution, the coupling between the electric field, ionic fluxes, and mechanical deformations of the hydrogel. The main contribution of this model is to incorporate the relationship between the concentrations of the ionized fixed-charge groups and the diffusive hydrogen ion, which follows a Langmuir isotherm, into the Poisson-Nernst-Planck system. To validate this MECpH model, one-dimensional steady-state simulations under varying pH solution are carried out via a meshless Hermite-Cloud methodology, and the numerical results are compared with available experimental data. It is shown that the presently developed MECpH model is accurate, efficient, and numerically stable.  相似文献   

14.
Wang W  Wang H  Ren C  Wang J  Tan M  Shen J  Yang Z  Wang PG  Wang L 《Carbohydrate research》2011,346(8):1013-1017
It is well known that the saccharides forming the intricate sugar coat that surrounds the cells play important biological roles in intercellular communication and cell differentiation. Therefore, it is worthwhile developing saccharide-based hydrogels for cell culture study. In this study, three novel saccharide-based compounds were designed and synthesized. It was found that one of them could form hydrogels efficiently, while the other two precipitated from water. The stability of the resulting hydrogel was tested, and the supramolecular nanofiber with fiber diameters in the range of 80–300 nm was characterized as the structural element by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Fluorescence microscopy revealed that extensive hydrogen bonds between sugar rings assisted the formation of efficient π–π stacking between aromatic naphthalene groups, thus resulting in the formation of a stable hydrogel in aqueous solution. When the gel was applied for mouse embryonic fibroblast (NIH 3T3), human hepatocellular carcinoma (HepG2), AD293 and HeLa cells culture in two dimensional environments, all of them showed a very good adhesion and good proliferation rate on the top of the hydrogel. These results indicates that the biocompatible hydrogel reported here has a potential to be developed into useful materials for in vitro cell culture, drug delivery, and tissue engineering.  相似文献   

15.
A holographic sensor for the detection of glucose has been developed that is based on a hydrogel film containing phenylboronic acid receptors. Changes to the replay wavelength of the hologram were used to characterise the swelling and de-swelling behaviour of the hydrogel matrix upon receptor-ligand binding. The effect of introducing a fixed positive charge into the polymer matrix by modification of the hydrogel with a quaternary amine group (3-acrylamidopropyl)trimethylammonium chloride (ATMA), was investigated for a range of sugars and the alpha-hydroxy acid, lactate, at physiological pH. The quaternary amine-modified hydrogel matrix was found to contract in the presence of glucose, whereas, it was minimally responsive to other saccharides. The selectivity of the sensor for glucose compared to lactate was also significantly improved compared to the unmodified film. A crosslinking mechanism is proposed to explain the enhanced selectivity to glucose.  相似文献   

16.
Restorative medicine has a constant need for improved scaffold materials. Degradable biopolymers often suffer from uncontrolled chemical or enzymatic hydrolysis by the host. The need for a second surgery on the other hand is a major drawback for nondegradable scaffold materials. In this paper we report the design and synthesis of a novel polysialic acid-based hydrogel with promising properties. Hydrogel synthesis was optimized and enzymatic degradation was studied using a phage-born endosialidase. After addition of endosialidase, hydrogels readily degraded depending on the amount of initially used cross-linker within 2 to 11 days. This polysialic acid hydrogel is not cytotoxic, completely stable under physiological conditions, and could be evaluated as growth support for PC12 cells. Here, additional coating with collagen I, poly-L-lysine or matrigel is mandatory to improve the properties of the material.  相似文献   

17.
Biodendrimer-based hydrogel scaffolds for cartilage tissue repair   总被引:2,自引:0,他引:2  
Photo-crosslinkable dendritic macromolecules are attractive materials for the preparation of cartilage tissue engineering scaffolds that may be optimized for in situ formation of hydrated, mechanically stable, and well-integrated hydrogel scaffolds supporting chondrocytes and chondrogenesis. We designed and synthesized a novel hydrogel scaffold for cartilage repair, based on a multivalent and water-soluble tri-block copolymer consisting of a poly(ethylene glycol) core and methacrylated poly(glycerol succinic acid) dendrimer terminal blocks. The terminal methacrylates allow mild and biocompatible photo-crosslinking with a visible light, facilitating in vivo filling of irregularly shaped defects with the dendrimer-based scaffold. The multivalent dendrimer constituents allow high crosslink densities that inhibit swelling after crosslinking while simultaneously introducing biodegradation sites. The mechanical properties and water content of the hydrogel can easily be tuned by changing the biodendrimer concentration. In vitro chondrocyte encapsulation studies demonstrate significant synthesis of neocartilaginous material, containing proteoglycans and type II collagen.  相似文献   

18.
Li Z  Guo X  Guan J 《Biomacromolecules》2012,13(6):1956-1964
A thermosensitive hydrogel capable of differentiating mesenchymal stem cells (MSCs) into cardiomyocyte-like cells was synthesized. The hydrogel was based on N-isopropylacrylamide (NIPAAm), N-acryloxysuccinimide, acrylic acid, and hydroxyethyl methacrylate-poly(trimethylene carbonate). The hydrogel was highly flexible at body temperature with breaking strain >1000% and Young's modulus 45 kPa. When MSCs were encapsulated in the hydrogel and cultured under normal culture conditions (10% FBS and 21% O(2)), the cells differentiated into cardiomyocyte-like cells. However, the differentiation was retarded, and even diminished, under low nutrient and low oxygen conditions, which are typical of the infarcted heart. We hypothesized that enhancing MSC survival under low nutrient and low oxygen conditions would restore the differentiation. To enhance cell survival, a pro-survival growth factor (bFGF) was loaded in the hydrogel. bFGF was able to sustainedly release from the hydrogel for 21 days. Under the low nutrient and low oxygen conditions (1% O(2) and 1% FBS), bFGF enhanced MSC survival and differentiation in the hydrogel. After 14 days of culture, survival of 70.5% of MSCs remained in the bFGF-loaded hydrogel, while only 4.9% of MSCs remained in the hydrogel without bFGF. The differentiation toward cardiomyocyte-like cells was completely inhibited at 1% FBS and 1% oxygen. Loading bFGF in the hydrogel restored the differentiation, as confirmed by the expression of cardiac markers at both the gene (MEF2C and CACNA1c) and protein (cTnI and connexin 43) levels. bFGF loading also up-regulated the paracrine effect of MSCs. VEGF expression was significantly increased in the bFGF-loaded hydrogel. These results demonstrate that the developed bFGF-loaded hydrogel may potentially be used to deliver MSCs into hearts for regeneration of heart tissue.  相似文献   

19.
Ma D  Zhang LM 《Biomacromolecules》2011,12(9):3124-3130
A polymeric prodrug, PEGylated indomethacin (MPEG-indo), was prepared and then used to interact with α-cyclodextrin (α-CD) in their aqueous mixed system. This process could lead to the formation of supramolecular hydrogel under mild conditions and simultaneous encapsulation of MPEG-indo in the hydrogel matrix. For the formed supramolecular hydrogel, its gelation kinetics, mechanical strength, shear-thinning behavior and thixotropic response were investigated with respect to the effects of MPEG-indo and α-CD amounts by dynamic and steady rheological tests. Meanwhile, the possibility of using this hydrogel matrix as injectable drug delivery system was also explored. By in vitro release and cell viability tests, it was found that the encapsulated MPEG-indo could exhibit a controlled and sustained release behavior as well as maintain its biological activity.  相似文献   

20.
PVA-HA-Silk composite hydrogel was synthesized with polyvinyl alcohol (PVA),nano-hydroxyapatite (HA) and natural silk by using the method of repeated freezing and thawing.A series of tests were performed to study water content,stress relaxation behavior,elastic modulus,and creep characteristics of PVA-HA-Silk composite hydrogel.Orthogonal experimental design method was used to analyze the influence degree of PVA,HA and silk (three kinds of raw materials) on mechanical properties and water content of the PVA-HA-Silk composite hydrogel to select the best material ratio according to their overall performance.The results demonstrate that the mass percentage of PVA has the greatest impact on the water content,followed by HA and silk.Compression stress-strain variation of PVA-HA-Silk composite hydrogel presents a nonlinear relationship,which proves that it is a typical viscoelastic material.Comparing the mechanical properties of 16 formulas,the formula of PVA-HA-silk composite hydrogel with mass percentage of PVA 15%,HA 2.0% and silk 1.0% is the best.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号