首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A newly isolated biopolymer-degrading halophilic bacterium, Halomonas sp. strain PS47, yielded higher cellulase activity (0.0076 U/ml) in mineral salt medium (MM63). Activity increased to 0.029 U/ml when carboxymethyl cellulose (0.5 % w/v) was used as carbon source and further to 0.138 U/ml when a combination of yeast extract and peptone was used as nitrogen source. Enzyme secretion was maximal during late exponential and stationary phases (0.15 U/ml, 48 h). Among different agro-residues (1 % w/v), wheat bran gave the highest activity (0.12 U/ml) at pH 7.5, 30 °C and 6 % (w/v) NaCl. The cellulase exhibited higher activity at pH 7.1 and 50 °C. The enzyme exhibited activity over a wide range of NaCl concentrations (0–4 M). Optimum activity was at 0–1 M NaCl. At 4 M NaCl, activity was reduced to 65 % of the initial value. The present investigation thus contributes to the limited information available on halostable cellulases.  相似文献   

2.
A protease producing marine bacterium, Bacillus halodurans CAS6 isolated from marine sediments, was found to produce higher enzyme by utilizing shrimp shell powder. Optimum culture conditions for protease production were 50 °C, pH 9.0, 30 % NaCl and 1 % shrimp shell powder (SSP) and the protease purified with a specific activity of 509.84 U/mg. The enzyme retained 100 % of its original activity even at 70 °C, pH 10.0 and 30 % NaCl for 1 h. The purified protease exhibited higher stability when treated with ionic, non-ionic (72–94 %) and commercial detergents (76–88 %), and organic solvents (88–126 %). Significant blood stain removal activity was found with the enzyme in washing experiments. The culture supernatant supplemented with 1 % SSP showed 93.67 ± 2.52 % scavenging activity and FT-IR analysis of the reaction mixture confirmed the presence of antioxidants such as cyclohexane and cyclic depsipeptide with aliphatic amino groups. These remarkable qualities found with this enzyme produced by Bacillus halodurans CAS6 could make this as an ideal candidate to develop the industrial process for bioconversion of marine wastes and antioxidant synthesis.  相似文献   

3.
A halophilic bacterium Halolactibacillus sp. SK71 producing extracellular glucoamylase was isolated from saline soil of Yuncheng Salt Lake, China. Enzyme production was strongly influenced by the salinity of growth medium with maximum in the presence of 5% NaCl. The glucoamylase was purified to homogeneity with a molecular mass of 78.5 kDa. It showed broad substrate specificity and raw starch hydrolyzing activity. Analysis of hydrolysis products from soluble starch by thin‐layer chromatography revealed that glucose was the sole end‐product, indicating the enzyme was a true glucoamylase. Optimal enzyme activity was found to be at 70°C, pH 8.0, and 7.5% NaCl. In addition, it was highly active and stable over broad ranges of temperature (0–100°C), pH (7.0–12.0), and NaCl concentration (0–20%), showing excellent thermostable, alkali stable, and halotolerant properties. Furthermore, it displayed high stability in the presence of hydrophobic organic solvents. The purified glucoamylase was applied for raw corn starch hydrolysis and subsequent bioethanol production using Saccharomyces cerevisiae. The yield in terms of grams of ethanol produced per gram of sugar consumed was 0.365 g/g, with 71.6% of theoretical yield from raw corn starch. This study demonstrated the feasibility of using enzymes from halophiles for further application in bioenergy production. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1262–1268, 2014  相似文献   

4.
A halophilic strain W33 showing lipolytic activity was isolated from the saline soil of Yuncheng Salt Lake, China. Biochemical and physiological characterization along with 16S rRNA gene sequence analysis placed the isolate in the genus Idiomarina. The extracellular lipase was purified to homogeneity by 75 % ammonium sulphate precipitation, DEAE-Sepharose anion exchange and Sephacryl S-200 gel filtration chromatography. The molecular mass of the purified lipase was estimated to be 67 kDa by SDS-PAGE. Substrate specificity test indicated that it preferred long-chain p-nitrophenyl esters. Optimal lipase activity was found to be at 60 °C, pH 7.0–9.0 and 10 % NaCl, and it was highly active and stable over broad temperature (30–90 °C), pH (7.0–11.0) and NaCl concentration (0–25 %) ranges, showing excellent thermostable, alkali-stable and halotolerant properties. Significant inhibition by diethyl pyrocarbonate and phenylarsine oxide was observed, implying histidine and cysteine residues were essential for enzyme catalysis. In addition, the lipase displayed high stability and activity in the presence of hydrophobic organic solvents with log P ow ≥ 2.13. The free and immobilized lipases produced by Idiomarina sp. W33 were applied for biodiesel production using Jatropha oil, and about 84 and 91 % of yields were achieved, respectively. This study formed the basic trials conducted to test the feasibility of using lipases from halophile for biodiesel production.  相似文献   

5.
Alcohol dehydrogenase from halophilic archaeon Haloferax volcanii (HvADH2) was successfully covalently immobilized on metal-derivatized epoxy Sepabeads. The immobilization conditions were optimized by investigating several parameters that affect the halophilic enzyme–support interaction. The highest immobilization efficiency (100 %) and retention activity (60 %) were achieved after 48 h of incubation of the enzyme with Ni-epoxy Sepabeads support in 100 mM Tris–HCl buffer, pH 8, containing 3 M KCl at 5 °C. No significant stabilization was observed after blocking the unreacted epoxy groups with commonly used hydrophilic agents. A significant increase in the stability of the immobilized enzyme was achieved by blocking the unreacted epoxy groups with ethylamine. The immobilization process increased the enzyme stability, thermal activity, and organic solvents tolerance when compared to its soluble counterpart, indicating that the immobilization enhances the structural and conformational stability. One step purification–immobilization of this enzyme has been carried out on metal chelate-epoxy Sepabeads, as an efficient method to obtain immobilized biocatalyst directly from bacterial extracts.  相似文献   

6.
A haloarchaeal strain G41 showing lipolytic activity was isolated from the saline soil of Yuncheng Salt Lake, China. Biochemical and physiological characterizations along with 16S rRNA gene sequence analysis placed the isolate in the genus Haloarcula. Lipase production was strongly influenced by the salinity of growth medium with maximum in the presence of 20 % NaCl or 15 % Na2SO4. The lipase was purified to homogeneity with a molecular mass of 45 kDa. Substrate specificity test revealed that it preferred long-chain p-nitrophenyl esters. The lipase was highly active and stable over broad ranges of temperature (30–80 °C), pH (6.0–11.0), and NaCl concentration (10–25 %), with an optimum at 70 °C, pH 8.0, and 15 % NaCl, showing thermostable, alkali-stable, and halostable properties. Enzyme inhibition studies indicated that the lipase was a metalloenzyme, with serine and cysteine residues essential for enzyme function. Moreover, it displayed high stability and activation in the presence of hydrophobic organic solvents with log P ow?≥?2.73. The free and immobilized lipases from strain G41 were applied for biodiesel production, and 80.5 and 89.2 % of yields were achieved, respectively. This study demonstrated the feasibility of using lipases from halophilic archaea for biodiesel production.  相似文献   

7.
Halophilic enzymes have been established for their stability and catalytic abilities under harsh operational conditions. These have been documented to withstand denaturation at high temperature, pH, organic solvents, and chaotropic agents. However, this stability is modulated by salt. The present study targets an important aspect in understanding protein–urea/GdmCl interactions using proteases from halophilic Bacillus sp. EMB9 and non-halophilic subtilisin (Carlsberg) from Bacillus licheniformis as model systems. While, halophilic protease containing 1 % (w/v) NaCl (0.17 M) retained full activity towards urea (8 M), non-halophilic protease lost about 90 % activity under similar conditions. The secondary and tertiary structure were lost in non-halophilic but preserved for halophilic protein. This effect could be due to the possible charge screening and shielding of the protein surface by Ca2+ and Na+ ions rendering it stable against denaturation. The dialyzed halophilic protease almost behaved like the non-halophilic counterpart. Incorporation of NaCl (up to 5 %, w/v or 0.85 M) in dialyzed EMB9 protease containing urea/GdmCl, not only helped regain of proteolytic activity but also evaded denaturing action. Deciphering the basis of this salt modulated stability amidst a denaturing milieu will provide guidelines and templates for engineering stable proteins/enzymes for biotechnological applications.  相似文献   

8.
An extracellular, halophilic, alkalithermophilic serine protease from the halo-alkaliphilic Alkalibacillus sp. NM-Da2 was purified to homogeneity by ethanol precipitation and anion-exchange chromatography. The purified protease was a monomeric enzyme with an approximate molecular mass of 35 kDa and exhibited maximal activity at 2.7 M NaCl, pH55 °C 9 and 56 °C. The protease showed great temperature stability, retaining greater than 80 % of initial activity after 2 h incubation at 55 °C. The protease was also extremely pH tolerant, retaining 80 % of initial activity at pH55 °C 10.5 after 30 min incubation. Protease hydrolyzed complex substrates, displaying activity on yeast extract, tryptone, casein, gelatin and peptone. Protease activity was inhibited at casein concentrations greater than 1.2 mg/mL. The enzyme was stable and active in 40 % (v/v) solutions of isopropanol, ethanol and benzene and was stable in the presence of the polysorbate surfactant Tween 80. Activity was stimulated with the oxidizing agent hydrogen peroxide. Inhibition with phenyl methylsulfonylfluoride indicates it is a serine protease. Synthetic saline wastewater treated with the protease showed 50 % protein removal after 5 h. Being halophilic, alkaliphilic and thermophilic, in addition to being resistant to organic solvents, this protease has potential for various applications in biotechnological and pharmaceutical industries.  相似文献   

9.
A gene encoding amylopullulanase (gt-apu) of the extremely thermophilic Geobacillus thermoleovorans NP33 was cloned and expressed in Escherichia coli. The gene has an open reading frame of 4,965 bp that encodes a protein of 1,655 amino acids with molecular mass of 182 kDa. The six conserved regions, characteristic of GH13 family, have been detected in gt-apu. The recombinant enzyme has only one active site for α-amylase and pullulanase activities based on the enzyme kinetic analyses in a system that contains starch as well as pullulan as competing substrates and response to inhibitors. The end-product analysis confirmed that this is an endoacting enzyme. The specific enzyme activities for α-amylase and pullulanase of the truncated amylopullulanase (gt-apuT) are higher than gt-apu. Both enzymes exhibited similar temperature (60 °C) and pH (7.0) optima, although gt-apuT possessed a higher thermostability than gt-apu. The overall catalytic efficiency (K cat/K m) of gt-apuT is greater than that of gt-apu, with almost similar substrate specificities. The C-terminal region of gt-apu appeared to be non-essential, and furthermore, it negatively affects the substrate binding and stability of the enzyme.  相似文献   

10.
Enzymes produced by halophilic archaea are generally heat resistant and organic solvent tolerant, and accordingly important for biocatalytic applications in ‘green chemistry’, frequently requiring a low-water environment. NAD+-dependent glutamate dehydrogenase from an extremely halophilic archaeon Halobacterium salinarum strain NRC-36014 was selected to explore the biotechnological potential of this enzyme and genetically engineered derivatives. Over-expression in a halophilic host Haloferax volcanii provided a soluble, active recombinant enzyme, not achievable in mesophilic Escherichia coli, and an efficient purification procedure was developed. pH and salt dependence, thermostability, organic solvent stability and kinetic parameters were explored. The enzyme is active up to 90 °C and fully stable up to 70 °C. It shows good tolerance of various miscible organic solvents. High concentrations of salt may be substituted with 30 % DMSO or betaine with good stability and activity. The robustness of this enzyme under a wide range of conditions offers a promising scaffold for protein engineering.  相似文献   

11.
A moderately halophilic alkalitolerant Bacillus sp. Strain TSCVKK, with an ability to produce extracellular halophilic, alkalitolerant, surfactant, and detergent-stable alpha-amylase was isolated from soil samples obtained from a salt-manufacturing industry in Chennai. The culture conditions for higher amylase production were optimized with respect to NaCl, substrate, pH, and temperature. Maximum amylase production of 592 mU/ml was achieved in the medium at 48 h with 10% NaCl, 1% dextrin, 0.4% yeast extract, 0.2% tryptone, and 0.2% CaCl2 at pH 8.0 at 30 °C. The enzyme activity in the culture supernatant was highest with 10% NaCl at pH 7.5 and 55 °C. The amylase that was partially purified by acetone precipitation was highly stable in various surfactants and detergents. Glucose, maltose, and maltooligosaccharides were the main end products of starch hydrolysis indicating that it is an alpha-amylase.  相似文献   

12.
A novel endoglucanase gene, mgcel44, was isolated from a mangrove soil metagenomic library by functional-based screening. It encodes a 648-aa peptide with a catalytic domain of glycosyl hydrolase family 44. The deduced amino acid sequence of mgcel44 shares less than 50 % identity with endoglucanases in GenBank database. mgcel44 was cloned and overexpressed in Escherichia coli. The recombinant enzyme, MgCel44, has a molecular mass of 70.8 kDa as determined by SDS-PAGE. Its optimal pH and temperature for activity were 6 and 45 °C, respectively. It was highly active at 25–45 °C and pH 5–8. Its activity was enhanced in 0.5 M NaCl by >1.6-fold and stable up to 1.5 M NaCl. MgCel44 was resistant to several organic solvents and had high activity at 15 % (v/v) solvent after incubating for 24 h at 25 °C.  相似文献   

13.
Cholesterol oxidase production (COD) by a new isolate characterized as Streptomyces sp. was studied in different production media and fermentation conditions. Individual supplementation of 1 % maltose, lactose, sucrose, peptone, soybean meal and yeast extract enhanced COD production by 80–110 % in comparison to the basal production medium (2.4 U/ml). Supplementation of 0.05 % cholesterol (inducer) enhanced COD production by 150 %. COD was purified 14.3-fold and its molecular weight was found to be 62 kDa. Vmax (21.93 μM/min mg) and substrate affinity Km (101.3 μM) suggested high affinity of the COD for cholesterol. In presence of Ba2+ and Hg2+ the enzyme activity was inhibited while Cu2+ enhanced the activity nearly threefold. Relative activity of the enzyme was found maximum in triton X-100 whereas sodium dodecyl sulfate inactivated the enzyme. The enzyme activity was also inhibited by the thiol-reducing reagents like Dithiothreitol and β-mercaptoethanol. The COD showed moderate stability towards all organic solvents except acetone, benzene and chloroform. The activity increased in presence of isopropanol and ethanol. The enzyme was most active at pH 7 and 37 °C temperature. This organism is not reported to produce COD.  相似文献   

14.
An extracellular halophilic α-amylase was purified from Nesterenkonia sp. strain F using 80 % ethanol precipitation and Q-Sepharose anion exchange chromatography. The enzyme showed a single band with an apparent molecular weight of 110 kDa by SDS-PAGE. The amylase exhibited maximal activity at pH 7-7.5, being relatively stable at pH 6.5-7.5. Optimal temperature for the amylase activity and stability was 45 °C. The purified enzyme was highly active in the broad range of NaCl concentrations (0-4 M) with optimal activity at 0.25 M NaCl. The amylase was highly stable in the presence of 3-4 M NaCl. Amylase activity was not influenced by Ca2?, Rb?, Li?, Cs?, Mg2? and Hg2?, whereas Fe3?, Cu2?, Zn2? and Al3?) strongly inhibited the enzyme activity. The α-amylase was inhibited by EDTA, but was not inhibited by PMSF and β-mercaptoethanol. K(m) value of the amylase for soluble starch was 6.6 mg/ml. Amylolytic activity of the enzyme was enhanced not only by 20 % of water-immiscible organic solvents but also by acetone, ethanol and chloroform. Higher concentration (50 %) of the water-miscible organic solvents had no significant effect on the amylase activity. To the best of our knowledge, this is the first report on increased activity of a microbial α-amylase in the presence of organic solvents.  相似文献   

15.
Psychrotropic Bacillus sphaericus producing solvent stable cold-active lipase upon growth at low temperature was isolated from Gangotri glacier. Optimal parameters for lipase production were investigated and the strain was able to produce lipase even at 15 °C. An incubation period of 48 h and pH 8 was found to be conducive for cold-active lipase production. The addition of trybutyrin as substrate and lactose as additional carbon source increased lipase production. The enzyme was purified up to 17.74-fold by ammonium sulphate precipitation followed by DEAE cellulose column chromatography. The optimum temperature and pH for lipase activity were found to be 15 °C and 8.0, respectively. The lipase was found to be stable in the temperature range 20–30 °C and the pH range 6.0–9.0. The protein retained more than 83 % of its initial activity after exposure to organic solvents. The lipase exhibited significant stability in presence of acetone and DMSO retaining >90 % activity. The enzyme activity was inhibited by 10 mM CuSO4 and EDTA but showed no loss in activity after incubation with other metals or inhibitors examined in this study.  相似文献   

16.
The extremely thermophilic archaeon Thermococcus hydrothermalis, isolated from a deep-sea hydrothermal vent in the East Pacific Rise at 21°N, produced an extracellular pullulanase. This enzyme was purified 97-fold to homogeneity from cell-free culture supernatant. The purified pullulanase was composed of a single polypeptide chain having an estimated molecular mass of 110 kDa (gel filtration) or 128 kDa (sodium dodecyl sulfate/polyacryl amide gel electrophoresis). The enzyme showed optimum activity at pH 5.5 and 95 °C. The thermostability and the thermoactivity were considerably increased in the presence of Ca2+. The enzyme was activated by 2-mercaptoethanol and dithiothreitol, whereas N-bromosuccinimide and α-cyclodextrin were inhibitors. This enzyme was able to hydrolyze, in addition to the α-1,6-glucosidic linkages in pullulan, α-1,4-glucosidic linkages in amylose and soluble starch, and can therefore be classified as a type II pullulanase or an amylopullulanase. The purified enzyme displayed Michaelis constant (K m) values of 0.95 mg/ml for pullulan and 3.55 mg/ml for soluble starch without calcium and, in the presence of Ca2+, 0.25 mg/ml for pullulan and 1.45 mg/ml for soluble starch. Received: 19 November 1997 / Received revision: 9 March 1998 / Accepted: 14 March 1998  相似文献   

17.
An extremely halophilic Chromohalobacter sp. TVSP101 was isolated from solar salterns and screened for the production of extracellular halothermophilic protease. Identification of the bacterium was done based upon biochemical tests and the 16S rRNA sequence. The partially purified enzyme displayed maximum activity at pH 8 and required 4.5 M of NaCl for optimum proteolytic activity. In addition, this enzyme was thermophilic and active in broad range of temperature 60–80°C with 80°C as optimum. The Chromohalobacter sp. required 4 M NaCl for its optimum growth and protease secretion and no growth was observed below 1 M of NaCl. The initial pH of the medium for growth and enzyme production was in the range 7.0–8.0 with optimum at pH 7.2. Various cations at 1 mM concentration in the growth medium had no significant effect in enhancing the growth and enzyme production but 0.5 M MgCl2 concentration enhanced enzyme production. Casein or skim milk powder 1% (w/v) along with 1% peptone proved to be the best nitrogen sources for maximum biomass and enzyme production. The carbon sources glucose and glycerol repressed the protease secretion. Immobilization of whole cells in absence of NaCl proved to be useful for continuous production of halophilic protease.  相似文献   

18.
Thermostable amylopullulanases can catalyse the hydrolysis of both α-1,4 and α-1,6 glucosidic bonds and are of considerable interest in the starch saccharification industry. In this study, the gene Apu-Tk encoding an extracellular amylopullulanase was cloned from an extremely thermophilic anaerobic archaeon Thermococcus kodakarensis KOD1. Apu-Tk encodes an 1100-amino acid protein with a 27-residue signal peptide, which has a predicted mass of 125 kDa after signal peptide cleavage. Sequence alignments showed that Apu-Tk contains the five regions conserved in all GH57 family proteins. Full-length Apu-Tk was expressed in Escherichia coli and purified to homogeneity. The purified enzyme displayed both pullulanase and amylase activity. The optimal temperature for Apu-Tk to hydrolyse pullulan and soluble starch was >100 °C. Apu-Tk was also active at a broad range of pH (4–7), with an optimum pH of ~5.0–5.5. Apu-Tk also retained >30% of its original activity and partially folded globular structure in the presence of 8% SDS or 10% β-mercaptoethanol. The high yield, broad pH range, and stability of Apu-Tk implicate it as a potential enzyme for industrial applications.  相似文献   

19.
M ichelena , V.V. & C astillo , F.J. 1984. Production of amylase by Aspergillus foetidus on rice flour medium and characterization of the enzyme. Journal of Applied Bacteriology 56 , 395–407.
Aspergillus foetidus ATCC 10254 was selected from nine starch-utilizing microorganisms for its high amylolytic activity. This mould produced high levels of extracellular α-amylase in rice starch medium and degraded the available starch efficiently. Optimal conditions for enzyme production on 2.0% rice medium included 28C, initial pH of 6.6, and supplementations with 0.02% NaNO2, 0.08% KH2PO4, and 0.08% corn steep liquor. Eleven-fold purification of the enzyme was obtained after ammonium sulphate and ethanol precipitations from spent medium. The molecular weight was estimated at 41 500. Optimum pH and temperature for enzyme activity were 5.0 and 45C. Michaelis-Menten constants were 1.14 mg/ml on amylopectin, 2.19 mg/ml on soluble starch and 7.65 mg/ml on amylose. Amylose produced substrate inhibition while glucose or maltose did not inhibit the enzyme. This α-amylase may be used as a saccharifying enzyme for rice starch. Aspergillus foetidus ATCC 10254 also presents a potential for treatment of starch-containing waste waters.  相似文献   

20.
A moderately halophilic strain LY9 with high amylolytic activity was isolated from soil sample obtained from Yuncheng, China. Biochemical and physiological characterization along with 16S rRNA sequence analysis placed the isolate in the genus Halobacillus. Amylase production started from the post-exponential phase of bacterial growth and reached a maximum level during the early-stationary phase. The isolate LY9 was found to secrete the amylase, the production of which depended on the salinity of the growth medium. Maximum amylase production was observed in the presence of 10% KCl or 10% NaCl. Maltose was the main product of soluble starch hydrolysis, indicating a β-amylase activity. The enzyme showed optimal activity at 60°C, pH 8.0, and 10–12.5% of NaCl. It was highly active over broad temperature (50–70°C), NaCl concentration (5.0–20.0%), and pH (4.0–12.0) ranges, indicating its thermoactive and alkali-stable nature. However, activity dropped off dramatically at low NaCl concentrations, showing the amylase was halophilic. Ca2+ was found to stimulate the β-amylase activity, whereas ethylenediaminetetraacetic acid (EDTA), phenylarsine oxide (PAO), and diethyl pyrocarbonate (DEPC) strongly inhibited the enzyme, indicating it probably was a metalloenzyme with cysteine and histidine residues located in its active site. Moreover, the enzyme exhibited remarkable stability towards sodium dodecyl sulfate (SDS) and Triton X-100. This is the first report of β-amylase production from moderate halophiles. The present study indicates that the extracellular β-amylase of Halobacillus sp. LY9 may have considerable potential for industrial application owing to its properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号