共查询到20条相似文献,搜索用时 0 毫秒
1.
Lorenzo Carré Daniel Gonzalez Éric Girard Bruno Franzetti 《Environmental microbiology》2023,25(11):2216-2230
Halophilic archaea thriving in hypersaline environments, such as salt lakes, offer models for putative life in extraterrestrial brines such as those found on Mars. However, little is known about the effect of the chaotropic salts that could be found in such brines, such as MgCl2, CaCl2 and (per)chlorate salts, on complex biological samples like cell lysates which could be expected to be more representative of biomarkers left behind putative extraterrestrial life forms. We used intrinsic fluorescence to study the salt dependence of proteomes extracted from five halophilic strains: Haloarcula marismortui, Halobacterium salinarum, Haloferax mediterranei, Halorubrum sodomense and Haloferax volcanii. These strains were isolated from Earth environments with different salt compositions. Among the five strains that were analysed, H. mediterranei stood out as a results of its high dependency on NaCl for its proteome stabilization. Interestingly, the results showed contrasting denaturation responses of the proteomes to chaotropic salts. In particular, the proteomes of strains that are most dependent or tolerant on MgCl2 for growth exhibited higher tolerance towards chaotropic salts that are abundant in terrestrial and Martian brines. These experiments bridge together global protein properties and environmental adaptation and help guide the search for protein-like biomarkers in extraterrestrial briny environments. 相似文献
2.
3.
A Brack P Clancy B Fitton B Hoffmann G Horneck G Kurat J Maxwell G Ori C Pillinger F Raulin N Thomas F Westall 《Biological Sciences in Space》1998,12(2):119-123
A multi-user integrated suite of instruments designed to optimize the search for evidence of life on Mars is described. The package includes: -Surface inspection and surface environment analysis to identify the potential Mars landing sites, to inspect the surface geology and mineralogy, to search for visible surficial microbial macrofossils, to study the surface radiation budget and surface oxidation processes, to search for niches for extant life. -Subsurface sample acquisition by core drilling -Analysis of surface and subsurface minerals and organics to characterize the surface mineralogy, to analyse the surface and subsurface oxidants, to analyse the mineralogy of subsurface aliquots, to analyse the organics present in the subsurface aliquots (elemental and molecular composition, isotopes, chirality). -Macroscopic and microscopic inspection of subsurface aliquots to search for life's indicators (paleontological, biological, mineralogical) and to characterize the mineralogy of the subsurface aliquots. The study is led by ESA Manned Spaceflight and Microgravity Directorate. 相似文献
4.
Lynn Margulis Peter Mazur Elso S. Barghoorn Harlyn O. Halvorson Thomas H. Jukes Isaac R. Kaplan 《Journal of molecular evolution》1979,14(1-3):223-232
Summary The results of the Viking Biology experiments are best explained by non-biological phenomena: The interaction of the reagents with the materials comprising the regolith. Conditions of water activity, temperature, availability of carbon sources and others in most regions of the planet are too extreme for survival and growth of any known Earth microorganisms. Although the possibility persists that some very unusual form of life is somewhere on that planet the evidence is best interpreted as negative. Even though there is no evidence for current life on Mars, whether or not life ever originated there is not known. 相似文献
5.
6.
M. A. Mitz 《Origins of life and evolution of the biosphere》1974,5(3-4):457-462
In the evolution of life forms non-photosynthetic mechanisms have developed. The question remains whether a total life system could evolve which is not dependent upon photosynthesis. In trying to visualize life on other planets, the photosynthetic process has problems. On Mars, the high intensity of light at the surface is a concern and alternative mechanisms need to be defined and analyzed. In the UV search for alternate mechanisms, several different areas may be identified. These involve activated inorganic compounds in the atmosphere, such as the products of photodissociation of carbon dioxide and the organic material which may be created by natural phenomena. In addition, a life system based on the pressure of the atmospheric constituents, such as carbon dioxide, is a possibility. These considerations may be important for the understanding of evolutionary processes of life on another planet. Model systems which depend on these alternative mechanisms are defined and related to our presently planned and future planetary missions. 相似文献
7.
Molecular signature of hypersaline adaptation: insights from genome and proteome composition of halophilic prokaryotes 总被引:2,自引:0,他引:2 下载免费PDF全文
Background
Halophilic prokaryotes are adapted to thrive in extreme conditions of salinity. Identification and analysis of distinct macromolecular characteristics of halophiles provide insight into the factors responsible for their adaptation to high-salt environments. The current report presents an extensive and systematic comparative analysis of genome and proteome composition of halophilic and non-halophilic microorganisms, with a view to identify such macromolecular signatures of haloadaptation. 相似文献8.
Anand M Russell SS Blackhurst RL Grady MM 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2006,361(1474):1715-1720
Recent spacecraft and lander missions to Mars have reinforced previous interpretations that Mars was a wet and warm planet in the geological past. The role of liquid water in shaping many of the surface features on Mars has long been recognized. Since the presence of liquid water is essential for survival of life, conditions on early Mars might have been more favourable for the emergence and evolution of life. Until a sample return mission to Mars, one of the ways of studying the past environmental conditions on Mars is through chemical and isotopic studies of Martian meteorites. Over 35 individual meteorite samples, believed to have originated on Mars, are now available for lab-based studies. Fe is a key element that is present in both primary and secondary minerals in the Martian meteorites. Fe-isotope ratios can be fractionated by low-temperature processes which includes biological activity. Experimental investigations of Fe reduction and oxidation by bacteria have produced large fractionation in Fe-isotope ratios. Hence, it is considered likely that if there is/were any form of life present on Mars then it might be possible to detect its signature by Fe-isotope studies of Martian meteorites. In the present study, we have analysed a number of Martian meteorites for their bulk-Fe-isotope composition. In addition, a set of terrestrial analogue material has also been analysed to compare the results and draw inferences. So far, our studies have not found any measurable Fe-isotopic fractionation in bulk Martian meteorites that can be ascribed to any low-temperature process operative on Mars. 相似文献
9.
Magnetite biomineralization and ancient life on Mars 总被引:2,自引:0,他引:2
Certain chemical and mineral features of the Martian meteorite ALH84001 were reported in 1996 to be probable evidence of ancient life on Mars. In spite of new observations and interpretations, the question of ancient life on Mars remains unresolved. Putative biogenic, nanometer magnetite has now become a leading focus in the debate. 相似文献
10.
Pernthaler J 《Nature reviews. Microbiology》2005,3(7):537-546
The oxic realms of freshwater and marine environments are zones of high prokaryotic mortality. Lysis by viruses and predation by ciliated and flagellated protists result in the consumption of microbial biomass at approximately the same rate as it is produced. Protist predation can favour or suppress particular bacterial species, and the successful microbial groups in the water column are those that survive this selective grazing pressure. In turn, aquatic bacteria have developed various antipredator strategies that range from simply 'outrunning' protists to the production of highly effective cytotoxins. This ancient predator-prey system can be regarded as an evolutionary precursor of many other interactions between prokaryotic and eukaryotic organisms. 相似文献
11.
《Molecular medicine today》1996,2(12):510-518
Atherosclerosis and hypercholesterolaemia disturb the endothelium-dependent regulation of the vascular tone by the labile liposoluble radical nitric oxide. This defect predisposes to vasospasm and ischaemia, with anginal pain as a clinical manifestation. It is now appreciated that endothelial dysfunction is an early event in atherogenesis, possibly also involving the microcirculation, in which atherosclerosis does not develop. Furthermore, it is becoming clear that nitric oxide, in addition to regulating vasomotion, might also modulate the progression of the disease process. The latter notion could have therapeutic implications. 相似文献
12.
13.
Genome-scale compositional analyses of non-coding sequences from 410 microbes of varying GC-content, lineage, environment/life-style, reveal presence of a distinct trend in GC-usage in spacers between intra-operonic and extra-operonic gene-pairs. For most of the microbes, average GC-content of the intra-operonic spacers are consistently higher than those between extra-operonic unidirectional gene-pairs. Also, unidirectional gene-pairs exhibiting higher cross-species conservation, irrespective of their operonic context, house relatively GC-rich spacers. A few prokaryotes, most of which represent known cases of genome degradation, stand out as exceptions defying this trend. GC-enrichment of intra-operonic spacers therefore appears to be an evolutionary strategy facilitating preservation of operonic gene-order. 相似文献
14.
15.
J. WIERZCHOS B. CÁMARA A. DE LOS RÍOS A. F. DAVILA I. M. SÁNCHEZ ALMAZO O. ARTIEDA K. WIERZCHOS B. GÓMEZ‐SILVA C. MCKAY C. ASCASO 《Geobiology》2011,9(1):44-60
The scarcity of liquid water in the hyperarid core of the Atacama Desert makes this region one of the most challenging environments for life on Earth. The low numbers of microbial cells in the soils suggest that within the Atacama Desert lies the dry limit for life on our planet. Here, we show that the Ca‐sulfate crusts of this hyperarid core are the habitats of lithobiontic micro‐organisms. This microporous, translucent substrate is colonized by epilithic lichens, as well as endolithic free‐living algae, fungal hyphae, cyanobacteria and non photosynthetic bacteria. We also report a novel type of endolithic community, “hypoendoliths”, colonizing the undermost layer of the crusts. The colonization of gypsum crusts within the hyperarid core appears to be controlled by the moisture regime. Our data shows that the threshold for colonization is crossed within the dry core, with abundant colonization in gypsum crusts at one study site, while crusts at a drier site are virtually devoid of life. We show that the cumulative time in 1 year of relative humidity (RH) above 60% is the best parameter to explain the difference in colonization between both sites. This is supported by controlled humidity experiments, where we show that colonies of endolithic cyanobacteria in the Ca‐sulfate crust undergo imbibition process at RH >60%. Assuming that life once arose on Mars, it is conceivable that Martian micro‐organisms sought refuge in similar isolated evaporite microenvironments during their last struggle for life as their planet turned arid. 相似文献
16.
Osmotically induced response in representatives of halophilic prokaryotes: the bacterium Halomonas elongata and the archaeon Haloferax volcanii. 总被引:2,自引:0,他引:2 下载免费PDF全文
F J Mojica E Cisneros C Ferrer F Rodríguez-Valera G Juez 《Journal of bacteriology》1997,179(17):5471-5481
Haloferax volcanii and Halomonas elongata have been selected as representatives of halophilic Archaea and Bacteria, respectively, to analyze the responses to various osmolarities at the protein synthesis level. We have identified a set of high-salt-related proteins (39, 24, 20, and 15.5 kDa in H. elongata; 70, 68, 48, and 16 kDa in H. volcanii) whose synthesis rates increased with increasing salinities. A different set of proteins (60, 42, 15, and 6 kDa for H. elongata; 63, 44, 34, 18, 17, and 6 kDa for H. volcanii), some unique for low salinities, was induced under low-salt conditions. For both organisms, and especially for the haloarchaeon, adaptation to low-salt conditions involved a stronger and more specific response than adaptation to high-salt conditions, indicating that unique mechanisms may have evolved for low-salinity adaptation. In the case of H. volcanii, proteins with a typical transient response to osmotic shock, induced by both hypo- and hyperosmotic conditions, probably corresponding to described heat shock proteins and showing the characteristics of general stress proteins, have also been identified. Cell recovery after a shift to low salinities was immediate in both organisms. In contrast, adaptation to higher salinities in both cases involved a lag period during which growth and general protein synthesis were halted, although the high-salt-related proteins were induced rapidly. In H. volcanii, this lag period corresponded exactly to the time needed for cells to accumulate adequate intracellular potassium concentrations, while extrusion of potassium after the down-shift was immediate. Thus, reaching osmotic balance must be the main limiting factor for recovery of cell functions after the variation in salinity. 相似文献
17.
Elena Hutchens 《Fungal Biology Reviews》2009,23(4):115-121
In order to understand how microorganisms influence mineral surface processes, a better assessment of how microorganisms colonise mineral surfaces in situ is necessary. A crucial question in understanding mineral–microbial processes is whether colonization by microbial cells on mineral surfaces is a random process or whether it follows a selective pattern related primarily to the chemical composition of the mineral. 相似文献
18.
19.
Ramalho-Santos J Moreno RD Sutovsky P Chan AW Hewitson L Wessel GM Simerly CR Schatten G 《Developmental biology》2000,223(1):54-69
Soluble N-ethylmalameide-sensitive factor attachment protein receptor (SNARE) proteins are present in mammalian sperm and could be involved in critical membrane fusion events during fertilization, namely the acrosome reaction. Vesicle-associated membrane protein/synaptobrevin, a SNARE on the membrane of a vesicular carrier, and syntaxin 1, a SNARE on the target membrane, as well as the calcium sensor synaptotagmin I, are present in the acrosome of mammalian sperm (human, rhesus monkey, bull, hamster, mouse). Sperm SNAREs are sloughed off during the acrosome reaction, paralleling the release of sperm membrane vesicles and acrosomal contents, and SNARE antibodies inhibit both the acrosome reaction and fertilization, without inhibiting sperm-egg binding. In addition, sperm SNAREs may be responsible, together with other sperm components, for the asynchronous male DNA decondensation that occurs following intracytoplasmic sperm injection, an assisted reproduction technique that bypasses normal sperm-egg surface interactions. The results suggest the participation of sperm SNAREs during membrane fusion events at fertilization in mammals. 相似文献