首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metabolic fluxes in the central metabolism were determined for lysine-producing Corynebacterium glutamicum ATCC 21526 with sucrose as a carbon source, providing an insight into molasses-based industrial production processes with this organism. For this purpose, 13C metabolic flux analysis with parallel studies on [1-13CFru]sucrose, [1-13CGlc]sucrose, and [13C6Fru]sucrose was carried out. C. glutamicum directed 27.4% of sucrose toward extracellular lysine. The strain exhibited a relatively high flux of 55.7% (normalized to an uptake flux of hexose units of 100%) through the pentose phosphate pathway (PPP). The glucose monomer of sucrose was completely channeled into the PPP. After transient efflux, the fructose residue was mainly taken up by the fructose-specific phosphotransferase system (PTS) and entered glycolysis at the level of fructose-1,6-bisphosphate. Glucose-6-phosphate isomerase operated in the gluconeogenetic direction from fructose-6-phosphate to glucose-6-phosphate and supplied additional carbon (7.2%) from the fructose part of the substrate toward the PPP. This involved supply of fructose-6-phosphate from the fructose part of sucrose either by PTSMan or by fructose-1,6-bisphosphatase. C. glutamicum further exhibited a high tricarboxylic acid (TCA) cycle flux of 78.2%. Isocitrate dehydrogenase therefore significantly contributed to the total NADPH supply of 190%. The demands for lysine (110%) and anabolism (32%) were lower than the supply, resulting in an apparent NADPH excess. The high TCA cycle flux and the significant secretion of dihydroxyacetone and glycerol display interesting targets to be approached by genetic engineers for optimization of the strain investigated.  相似文献   

2.
3.
Asaia bogorensis, a member of acetic acid bacteria (AAB), is an aerobic bacterium isolated from flowers and fruits, as well as an opportunistic pathogen that causes human peritonitis and bacteraemia. Here, we determined the complete genomic sequence of the As. bogorensis type strain NBRC 16594, and conducted comparative analyses of gene expression under different conditions of co-culture with mammalian cells and standard AAB culture. The genome of As. bogorensis contained 2,758 protein-coding genes within a circular chromosome of 3,198,265 bp. There were two complete operons encoding cytochrome bo3-type ubiquinol terminal oxidases: cyoABCD-1 and cyoABCD-2. The cyoABCD-1 operon was phylogenetically common to AAB genomes, whereas the cyoABCD-2 operon belonged to a lineage distinctive from the cyoABCD-1 operon. Interestingly, cyoABCD-1 was less expressed under co-culture conditions than under the AAB culture conditions, whereas the converse was true for cyoABCD-2. Asaia bogorensis shared pathogenesis-related genes with another pathogenic AAB, Granulibacter bethesdensis, including a gene coding pathogen-specific large bacterial adhesin and additional genes for the inhibition of oxidation and antibiotic resistance. Expression alteration of the respiratory chain and unique hypothetical genes may be key traits that enable the bacterium to survive under the co-culture conditions.  相似文献   

4.
Fifty-three plant-associated microorganisms were investigated for their ability to convert sucrose to its isomers. These microorganisms included one Dickeya zeae isolate and 7 Enterobacter, 3 Pantoea, and 43 Pectobacterium species. Eleven out of the 53 strains (21%) showed the ability to transform sucrose to isomaltulose and trehalulose. Among those, Pectobacterium carotovorum KKH 3-1 showed the highest bioconversion yield (97.4%) from sucrose to its isomers. In this strain, the addition of up to 14% sucrose in the medium enhanced sucrose isomerase (SIase) production. The SIase activity at 14% sucrose (47.6 U/mg dcw) was about 3.6-fold higher than that of the negative control (13.3 U/mg dcw at 0% sucrose). The gene encoding SIase, which is comprised a 1776 bp open reading frame (ORF) encoding 591 amino acids, was cloned from P. carotovorum KKH 3-1 and expressed in Escherichia coli. The recombinant SIase (PCSI) was shown to have optimum activity at pH 6.0 and 40 °C. The reaction temperature significantly affected the ratio of sucrose isomers produced by PCSI. The amount of trehalulose increased from 47.5% to 79.1% as temperature was lowered from 50 °C to 30 °C, implying that SIase activity can be controlled by reaction temperature.  相似文献   

5.
Carbon signaling can override carbon supply in the regulation of growth. At least some of this regulation is imparted by the sugar signal trehalose 6-phosphate (T6P) through the protein kinase, SnRK1. This signaling pathway regulates biosynthetic processes involved in growth under optimal growing conditions. Recently, using a seedling system we showed that under sub-optimal conditions, such as cold, carbon signaling by T6P/ SnRK1 enables recovery of growth following relief of the stress. The T6P/ SnRK1 mechanism thus could be selected as a means of improving low temperature tolerance. High-throughput automated Fv/Fm measurements provide a potential means to screen for T6P/ SnRK1, and here we confirm through measurements of Fv/Fm in rosettes that T6P promotes low temperature tolerance and recovery during cold to warm transfer. Further, to better understand the coordination between sugars, trehalose pathway, and temperature-dependent growth, we examine the interrelationship between sugars, trehalose phosphate synthase (TPS), and trehalose phosphate phosphatase (TPP) gene expression and T6P content in seedlings. Sucrose, particularly when fed exogenously, correlated well with TPS1 and TPPB gene expression, suggesting that these enzymes are involved in maintaining carbon flux through the pathway in relation to sucrose supply. However, when sucrose accumulated to higher levels under low temperature and low N, TPS1 and TPPB expression were less directly related to sucrose; other factors may also contribute to regulation of TPS1 and TPPB expression under these conditions. TPPA expression was not related to sucrose content and all genes were not well correlated with endogenous glucose. Our work has implications for understanding acclimation to sink-limited growth conditions such as low temperature and for screening cold-tolerant genotypes with altered T6P/ SnRK1 signaling.  相似文献   

6.
A heterolobosean amoeba strain 6_5F was isolated from an Italian rice field soil. Although 18S rRNA gene sequence analysis demonstrated that the new isolate was closely related to Stachyamoeba sp. ATCC 50324, further molecular analysis and morphological observation showed distinct differences amongst the two. The 5.8S rRNA gene was successfully amplified and sequenced for strain 6_5F but not for strain ATCC 50324. Trophozoites of strain ATCC 50324 transform into flagellate forms in the late stage of incubation before encystment, while strain 6_5F do not show flagellate forms under different conditions of the flagellation test. Light and electron microscopic observation showed the structural difference of cysts of strain 6_5F from strain ATCC 50324 and also from the type strain Stachyamoeba lipophora. The results show that the strain 6_5F is distinct from Stachyamoeba spp. and we propose a new genus and species for this isolate, Vrihiamoeba italica gen. nov., sp. nov.  相似文献   

7.
8.
A steinernematid nematode was isolated from soil samples collected near St. John''s, Newfoundland, Canada. On the basis of its morphometry and RFLPs in ribosomal DNA spacer, it was designated as a new strain, NF, of Steinernema feltiae. Cellulose acetate electrophoresis was used to separate isozymes of eight enzymes in infective juveniles of S. feltiae NF as well as four other isolates: S. feltiae Umeå strain, S. feltiae L1C strain, Steinernema carpocapsae All strain, and Steinernema riobravis TX strain. Based on comparisons of the relative electrophoretic mobilities (μ) of the isozymes, one of the eight enzymes (arginine kinase) yielded zymograms that were distinctive for each of the isolates, except for the Umeå and NF strains of S. feltiae, which had identical banding patterns. Four enzymes (fumarate hydratase, phosphoglucoisomerase, phosphoglucomutase, and 6-phosphogluconate dehydrogenase) yielded isozyme banding patterns that were characteristic for all isolates, except for the L1C and NF strains of S. feltiae, which were identical. Two enzymes (aspartate amino transferase and glycerol-3-phosphate dehydrogenase) yielded zymograms that permitted S. carpocapsae All strain to be discriminated from the other four isolates, while the remaining enzyme (mannose-6-phosphate isomerase) was discriminatory for S. riobravis TX strain. Except for one enzyme, the isozyme banding pattern of the NF isolate of S. feltiae was the same as in the L1C strain, isolated 13 years previously from Newfoundland. Cellulose acetate electrophoresis could prove invaluable for taxonomic identification of isolates of steinernematids, provided that a combination of enzymes is used.  相似文献   

9.
10.
Brown algae are one of the largest groups of oceanic primary producers for CO2 removal and carbon sinks for coastal regions. However, the mechanism for brown alga assimilation remains largely unknown in thermophilic microorganisms. In this work, a thermophilic alginolytic community was enriched from coastal sediment, from which an obligate anaerobic and thermophilic bacterial strain, designated Alg1, was isolated. Alg1 shared a 16S rRNA gene identity of 94.6% with Defluviitalea saccharophila LIND6LT2T. Phenotypic, chemotaxonomic, and phylogenetic studies suggested strain Alg1 represented a novel species of the genus Defluviitalea, for which the name Defluviitalea phaphyphila sp. nov. is proposed. Alg1 exhibited an intriguing ability to convert carbohydrates of brown algae, including alginate, laminarin, and mannitol, to ethanol and acetic acid. Three gene clusters participating in this process were predicted to be in the genome, and candidate enzymes were successfully expressed, purified, and characterized. Six alginate lyases were demonstrated to synergistically deconstruct alginate into unsaturated monosaccharide, followed by one uronic acid reductase and two 2-keto-3-deoxy-d-gluconate (KDG) kinases to produce pyruvate. A nonclassical mannitol 1-phosphate dehydrogenase, catalyzing d-mannitol 1-phosphate to fructose 1-phosphate in the presence of NAD+, and one laminarase also were disclosed. This work revealed that a thermophilic brown alga-decomposing system containing numerous novel thermophilic alginate lyases and a unique mannitol 1-phosphate dehydrogenase was adopted by the natural ethanologenic strain Alg1 during the process of evolution in hostile habitats.  相似文献   

11.
Phosphorus is an important macronutrient, but its availability in soil is limited. Many soil microorganisms improve the bioavailability of phosphate by releasing it from various organic compounds, including phytate. To investigate the diversity of phytate-hydrolyzing bacteria in soil, we sampled soils of various ecological habitats, including forest, private homesteads, large agricultural complexes, and urban landscapes. Bacterial isolate Pantoea sp. strain 3.5.1 with the highest level of phytase activity was isolated from forest soil and investigated further. The Pantoea sp. 3.5.1 agpP gene encoding a novel glucose-1-phosphatase with high phytase activity was identified, and the corresponding protein was purified to apparent homogeneity, sequenced by mass spectroscopy, and biochemically characterized. The AgpP enzyme exhibits maximum activity and stability at pH 4.5 and at 37°C. The enzyme belongs to a group of histidine acid phosphatases and has the lowest Km values toward phytate, glucose-6-phosphate, and glucose-1-phosphate. Unexpectedly, stimulation of enzymatic activity by several divalent metal ions was observed for the AgpP enzyme. High-performance liquid chromatography (HPLC) and high-performance ion chromatography (HPIC) analyses of phytate hydrolysis products identify dl-myo-inositol 1,2,4,5,6-pentakisphosphate as the final product of the reaction, indicating that the Pantoea sp. AgpP glucose-1-phosphatase can be classified as a 3-phytase. The identification of the Pantoea sp. AgpP phytase and its unusual regulation by metal ions highlight the remarkable diversity of phosphorus metabolism regulation in soil bacteria. Furthermore, our data indicate that natural forest soils harbor rich reservoirs of novel phytate-hydrolyzing enzymes with unique biochemical features.  相似文献   

12.
A novel protein-deamidating enzyme, which has potential for industrial applications, was purified from the culture supernatant of Chryseobacterium proteolyticum strain 9670T isolated from rice field soil in Tsukuba, Japan. The deamidating activities on carboxybenzoxy (Cbz)-Gln-Gly and caseins and protease activity were produced synchronously by the isolate. Both deamidating activities were eluted as identical peaks separated from several proteases by phenyl-Sepharose chromatography of the culture supernatant. The enzyme catalyzed the deamidation of native caseins with no protease and transglutaminase activities. Phenotypic characterization and DNA analyses of the isolate were performed to determine its taxonomy. Physiological and biochemical characteristics, 16S rRNA gene sequence analysis, and DNA-DNA relatedness data indicated that the isolate should be placed as a new species belonging to the genus Chryseobacterium. The isolate showed no growth on MacConkey agar and produced acid from sucrose. The levels of DNA-DNA relatedness between the isolate and other related strains were less than 17%. The name Chryseobacterium proteolyticum is proposed for the new species; strain 9670 is the type strain (=FERM P-17664).  相似文献   

13.
The mannitol uptake systems in marine Vibrio and Pseudomonas isolates from the kelp beds off the South African west coast were examined. The fermentative Vibrio isolate possessed a constitutive rapid mannitol uptake system and also a soluble mannitol-1-phosphate dehydrogenase, indicative of a mannitol phosphotransferase system. An inducible, relatively less active mannitol uptake system was detected in the oxidative Pseudomonas isolate, and this strain possessed a mannitol dehydrogenase. The maintenance of these systems during starvation survival was studied. The Vibrio isolate maintained its initial uptake system for approximately 5 weeks of starvation, after which time the uptake system was replaced by one with a higher affinity for mannitol. The mannitol transport system of the Pseudomonas isolate was depressed early in starvation (30 h) but could be readily induced by exogenous mannitol after 6 weeks of starvation. The relative proportions of mannitol which was incorporated and respired were determined in starved Vibrio and Pseudomonas strains.  相似文献   

14.
Acetic acid bacteria (AAB) are widespread microorganisms characterized by their ability to transform alcohols and sugar-alcohols into their corresponding organic acids. The suitability of matrix-assisted laser desorption-time of flight mass spectrometry (MALDI-TOF MS) for the identification of cultured AAB involved in the industrial production of vinegar was evaluated on 64 reference strains from the genera Acetobacter, Gluconacetobacter and Gluconobacter. Analysis of MS spectra obtained from single colonies of these strains confirmed their basic classification based on comparative 16S rRNA gene sequence analysis. MALDI-TOF analyses of isolates from vinegar cross-checked by comparative sequence analysis of 16S rRNA gene fragments allowed AAB to be identified, and it was possible to differentiate them from mixed cultures and non-AAB. The results showed that MALDI-TOF MS analysis was a rapid and reliable method for the clustering and identification of AAB species.  相似文献   

15.
The diversity population of microorganisms with the capability to use selenate as a terminal electron acceptor, reducing it to selenite and elemental selenium by the process known as dissimilatory selenate reduction, is largely unknown. The overall objective of this study was to gain an in-depth understanding of anaerobic biotransformation of selenium in the environment, particularly anaerobic respiration, and to characterize the microorganisms catalyzing this process. Here, we demonstrate the isolation and characterization of four novel anaerobic dissimilatory selenate-respiring bacteria enriched from a variety of sources, including sediments from three different water bodies in Chennai, India, and a tidal estuary in New Jersey. Strains S5 and S7 from India, strain KM from the Meadowlands, NJ, and strain pn1, categorized as a laboratory contaminant, were all phylogenetically distinct, belonging to various phyla in the bacterial domain. The 16S rRNA gene sequence shows that strain S5 constitutes a new genus belonging to Chrysiogenetes, while strain S7 belongs to the Deferribacteres, with greater than 98% 16S rRNA gene similarity to Geovibrio ferrireducens. Strain KM is related to Malonomonas rubra, Pelobacter acidigallici, and Desulfuromusa spp., with 96 to 97% 16S rRNA gene similarity. Strain pn1 is 99% similar to Pseudomonas stutzeri. Strains S5, S7, and KM are obligately anaerobic selenate-respiring microorganisms, while strain pn1 is facultatively anaerobic. Besides respiring selenate, all these strains also respire nitrate.  相似文献   

16.
The development of rhizobial inoculants with increased resistance to abiotic stress is critical to mitigating the challenges related to climate change. This study aims at developing a soybean stress-tolerant Bradyrhizobium inoculant to be used under the mixed stress conditions of acidity, high temperature, and drought. Six isolates of Bradyrhizobium with high symbiotic performance on soybean were tested to determine their growth or survival abilities under in vitro conditions. The representative stress-tolerant Bradyrhizobium isolates 184, 188, and 194 were selected to test their ability to promote soybean growth under stress conditions compared to the type strain Bradyrhizobium diazoefficiens USDA110. The plant experiment indicated that isolate 194 performed better in symbiosis with soybean than other Bradyrhizobium strains under stress conditions. Based on the stress tolerance index, soybeans inoculated with isolate 194 showed a high growth performance and significantly better nodulation competition ability than USDA110 under several stress conditions. Interestingly, supplementation of sucrose in the culture medium significantly enhances the survival of the isolate and leads to improved plant biomass under various stress conditions. Analysis of the intra-cellular sugars of isolate 194 supplemented with sucrose showed the accumulation of compatible solutes, such as trehalose and glycerol, that may act as osmoprotectants. This study indicates that inoculation of stress-tolerant Bradyrhizobium together with sucrose supplementation in a medium could enhance bacterial survival and symbiosis efficiency under stress conditions. Although it can be applied for inoculant production, this strategy requires validation of its performance in field conditions before adopting this technology.  相似文献   

17.
Photosynthesis rate, internal CO2 concentration, starch, sucrose, and metabolite levels were measured in leaves of sugar beet (Beta vulgaris L.) during a 14-h period of sinusoidal light, which simulated a natural light period. Photosynthesis rate closely followed increasing and decreasing light level. Chloroplast metabolite levels changed in a manner indicating differential activation of enzymes at different light levels. Starch levels declined during the first and last 2 hours of the photoperiod, but increased when photosynthesis rate was greater than 50% of maximal. Sucrose and sucrose phosphate synthase levels were constant during the photoperiod, which is consistent with a relatively steady rate of sucrose synthesis during the day as observed previously (BR Fondy et al. [1989] Plant Physiol 89: 396-402). When starch was being degraded, glucose 1-phosphate level was high and there was a large amount of glucose 6-phosphate above that in equilibrium with fructose 6-phosphate, while fructose 6-phosphate and triose-phosphate levels were very low. Likewise, the regulatory metabolite, fructose, 2,6-bisphosphate was high, indicating that little carbon could move to sucrose from starch by the triose-phosphate pathway. These data cast doubt upon the feasibility of significant carbon flow through the triose-phosphate pathway during starch degradation and support the need for an additional pathway for mobilizing starch carbon to sucrose.  相似文献   

18.
N-acetylneuraminic acid (NeuAc) has recently drawn much attention owing to its wide applications in many aspects. Besides extraction from natural materials, production of NeuAc was recently focused on enzymatic synthesis and whole-cell biocatalysis. In this study, we designed an artificial NeuAc biosynthetic pathway through intermediate N-acetylglucosamine 6-phosphate in Escherichia coli. In this pathway, N-acetylglucosamine 2-epimerase (slr1975) and glucosamine-6-phosphate acetyltransferase (GNA1) were heterologously introduced into E. coli from Synechocystis sp. PCC6803 and Saccharomyces cerevisiae EBY100, respectively. By derepressing the feedback inhibition of glucosamine-6-phosphate synthase, increasing the accumulation of N-acetylglucosamine and pyruvate, and blocking the catabolism of NeuAc, we were able to produce 1.62 g l?1 NeuAc in recombinant E. coli directly from glucose. The NeuAc yield reached 7.85 g l?1 in fed-batch fermentation. This process offered an efficient fermentative method to produce NeuAc in microorganisms using glucose as carbon source and can be optimized for further improvement.  相似文献   

19.
The pgmG gene of Sphingomonas paucimobilis ATCC 31461, the industrial gellan gum-producing strain, was cloned and sequenced. It encodes a 50,059-Da polypeptide that has phosphoglucomutase (PGM) and phosphomannomutase (PMM) activities and is 37 to 59% identical to other bifunctional proteins with PGM and PMM activities from gram-negative species, including Pseudomonas aeruginosa AlgC. Purified PgmG protein showed a marked preference for glucose-1-phosphate (G1P); the catalytic efficiency was about 50-fold higher for G1P than it was for mannose-1-phosphate (M1P). The estimated apparent Km values for G1P and M1P were high, 0.33 and 1.27 mM, respectively. The pgmG gene allowed the recovery of alginate biosynthetic ability in a P. aeruginosa mutant with a defective algC gene. This result indicates that PgmG protein can convert mannose-6-phosphate into M1P in the initial steps of alginate biosynthesis and, together with other results, suggests that PgmG may convert glucose-6-phosphate into G1P in the gellan pathway.  相似文献   

20.
The aim of this work was to isolate enzyme-producing microorganisms from the tract of the termite Reticulitermes santonensis. The microorganisms were extracted from the guts and anaerobic (CO2 or CO2/H2) and micro-aerobic atmospheres were used to stimulate growth. Three different strategies were tried out. First, the sample was spread on Petri dishes containing solid media with carboxymethylcellulose, microcrystalline cellulose or cellobiose. This technique allowed us to isolate two bacteria: Streptomyces sp. strain ABGxAviA1 and Pseudomonas sp. strain ABGxCellA. The second strategy consisted in inoculating a specific liquid medium containing carboxymethylcellulose, microcrystalline cellulose, or cellobiose. The samples were then spread on Petri dishes with the same specific medium containing carboxymethylcellulose, microcrystalline cellulose, or cellobiose. This led to the isolation of the mold Aspergillus sp. strain ABGxAviA2. Finally, the third strategy consisted in heating the first culture and spreading samples on agar plates containing rich medium. This led to the isolation of the bacterium Bacillus subtilis strain ABGx. All those steps were achieved in controlled atmospheres. The four enzyme-producing strains which were isolated were obtained by using a micro-aerobic atmosphere. Later, enzymatic assays were performed on the four strains. Streptomyces sp. strain ABGxAviA1 was found to produce only amylase, while Pseudomonas sp. strain ABGxCellA was found to produce β-glucosidase as well. Aspergillus sp. strain ABGxAviA2 showed β-glucosidase, amylase, cellulase, and xylanase activities. Finally, B. subtilis strain ABGx produced xylanase and amylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号