首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
—Glucose is a major precursor of glutamate and related amino acids in the retina of adult rats. 14C from labelled glucose appears to gain access to a large glutamate pool, and the resulting specific activity of glutamate labelled from glucose is always higher than that of glutamine or the other amino acids. Radioactive acetate appeared to label a small glutamate pool. The specific activity of glutamine labelled from acetate relative to that of glutamate was always greater than 1.0. Other precursors of the small glutamate pool were found to include glutamate, aspartate, GABA, serine, leucine and sodium bicarbonate. The level of radioactivity present in retinae incubated with [U-14C]glucose or [1-14C]sodium acetate was reduced in the presence of 10?5m -ouabain. Under these conditions, the relative specific activity of glutamine labelled from [1-14C]sodium acetate was lowered, but it was raised when [U-14C]glucose was used as substrate. Ouabain also considerably reduced the synthesis of GABA from [1-14C]sodium acetate. In all cases ouabain caused a fall in the tissue levels of the amino acids. Aminooxyacetic acid (10?4m ) almost completely abolished the labelling of GABA from both [U-14C]glucose and [1-14C]sodium acetate, while the RSA of glutamine labelled from the latter substrate was significantly increased. Aminooxyacetic acid raised the tissue concentration of glutamate, but caused a fall in the tissue concentrations of glutamine, aspartate and GABA. The results suggest that there are separate compartments for the metabolism of glutamate in retina and that these can be modified in different ways by different drugs.  相似文献   

2.
Abstract– Various aspects of amino acid metabolism were studied in striatum of rats with unilateral, kainic acid-induced lesions. Tissue slices were prepared from the lesioned and the contralateral, unlesioned, striatum. The preparations were incubated with a mixture of d -[2-14C]glucose and [3H]acetate in a Krebs-Ringer bicarbonate medium to evaluate oxidative metabolism. Glutamate and aspartate levels were decreased in the slices prepared from the lesioned striata by 35-40% and that of GABA by 75% compared to the levels found in the slices from the contralateral striata; glutamine levels were not different in the two preparations. Glucose utilization was decreased 60% in the slices from the lesioned striatum; this was caused not only by decreased levels of glutamate, aspartate and GABA but also by a decreased rate of labelling of glutamate and aspartate. On the other hand, the metabolism of [3H]acetate was greatly increased. The specific activities of glutamate and aspartate were 4-5-fold higher in the slices from kainic acid-lesioned striata; those of glutamine and GABA were unchanged. Thus, there was a 6-7-fold increase in the ratio of 3H to 14C in the specific activities of glutamate, aspartate and GABA with no change in this ratio in glutamine. The labelling of glutamine relative to that of glutamate, especially from [3H]acetate, suggested that the compartmentation of the glutamate-glutamine system was greatly altered in the kainate-lesioned striatum which now more closely resembled a single compartment system. The activities of lactate dehydrogenase, glutamate dehydrogenase, GABA transaminase and ‘cytoplasmic’ aspartate aminotransferase were decreased in homogenates of lesioned striatum. Succinate dehydrogenase, glutaminase (phosphate-activated) and ‘mitochondrial’ aspartate aminotransferase activities were unchanged whilst that of glutamine synthetase was increased. The results are consistent with hypotheses concerning the assignment of labelled acetate metabolism to glial cells as well as the distribution of the above enzymes between glia, neurones and nerve endings.  相似文献   

3.
—(1) The effects of aminooxyacetic acid, ouabain and Ca2+ on the compartmentation of amino acid metabolism have been studied in slices of brain incubated with sodium-[1-14C]acetate, l-[U-14C]glutamate and l-[U-14C]aspartate as tracer metabolites. (2) Aminooxyacetic acid (10-3 m) inhibited the labelling of aspartate from [14C]acetate and [14C]glutamate, as well as the incorporation of label from [14C]aspartate into glutamate and glutamine. It also inhibited the labelling of GABA from all three radioactive precursors, as would be anticipated if there was inhibition of several transaminases as well as glutamate decarboxylase. The RSA of glutamine labelled from [1-14C]acetate was increased. This finding indicated that the glutamate pool which is utilized for glutamine formation is associated with glutamate dehydrogenase, and this enzyme appears to be related to the ‘synthetic tricarboxylic acid cycle’. AOAA exerted its major inhibitory effects on the citric acid‘energy cycle’with which transaminases are associated. (3) Ouabain (10-5 m) inhibited the labelling of glutamine to a much greater extent than the labelling of glutamate from [1-14C]acetate. It also caused leakage of amino acids from the tissue into the medium. Its effect on the glutamate–glutamine system was interpreted to be a selective inhibition of the 'synthetic’citric acid cycle. (4) The omission of Ca2+ from the incubation medium was associated with formation of glutamine with RSA less than 1·0 when labelled from [U-14C]glutamate, [U-14C]aspartate and lower than normal when labelled from [1-14C]acetate.  相似文献   

4.
To obtain evidence of the site of conversion of [U-14C]glucose into glutamate and related amino acids of the brain, a mixture of [U-14C]glucose and [3H]glutamate was injected subcutaneously into rats. [3H]Glutamate gave rise to several 3H-labelled amino acids in rat liver and blood; only 3H-labelled glutamate, glutamine or γ-aminobutyrate were found in the brain. The specific radioactivity of [3H]glutamine in the brain was higher than that of [3H]glutamate indicating the entry of [3H]glutamate mainly in the ‘small glutamate compartment’. The 14C-labelling pattern of amino acids in the brain and liver after injection of [U-14C]glucose was similar to that previously reported (Gaitonde et al., 1965). The specific radioactivity of [14C]glutamine in the blood and liver after injection of both precursors was greater than that of glutamate between 10 and 60 min after the injection of the precursors. The extent of labelling of alanine and aspartate was greater than that of other amino acids in the blood after injection of [U-14C]glucose. There was no labelling of brain protein with [3H]glutamate during the 10 min period, but significant label was found at 30 and 60 min. The highest relative incorporation of [14C]glutamate and [14C]aspartate in rat brain protein was observed at 5 min after the injection of [U-14C]glucose. The results have been discussed in the context of transport of glutamine synthesized in the brain and the site of metabolism of [U-14C]glucose in the brain.  相似文献   

5.
Abstract— The combination of l -DOPA and pargyline caused a decrease in level of aspartate and an increase in that of glutamine in vivo in cerebral cortex, cerebellum, brain stem, hypothalamus, neostriatum and cervical cord of rat. There was also a decreased incorporation of radioactivity from [1-14C]acetate into amino acids in vivo , most notably in cerebellum and brain stem. The labelling of glutamine was especially affected. In addition, cortical slices were prepared from guinea pigs which had been pretreated with pargyline. These slices were incubated with and without 1 m m l -DOPA in media containing [1-14C]acetate. Pargyline alone caused a stimulation of the labelling of glutamate and aspartate but not glutamine and GABA; the levels of aspartate and GABA were greater than in control slices. The addition of l -DOPA to slices from pargylinized animals caused a severe decrease in glutamine labelling but not in that of glutamate or aspartate; the level of glutamine was increased while that of glutamate was decreased. The results are discussed in terms of the known biochemical and morphological compartmentation of amino acids in brain. It is suggested that catecholamines, in the process of functioning as transmitters, may also function as metabolic regulators of other transmitters, e.g. amino acids, as well as of the energy required for balanced neuronal function.  相似文献   

6.
(1) The metabolism of glucose and amino acids in vitro was compared in the rat cerebral cortex and the optic and vertical lobes of the octopus brain. (2) Specific activities and pool sizes of the five amino acids, glutamate, aspartate, glutamine, alanine and γ-aminobutyric acid (GABA), were determined in octopus and rat brain slices after 2 hr incubation with 10 mm -[U-14C]glucose, 10 mm -L-[U-14C]glutamate, and 10mm -L-[U-14C]glutamate with added 10 mM-glucose. Amino acid pool sizes were similar in rat and octopus brain, with the exception of alanine, which was higher in the octopus. Generally specific activities were from four- to 20-fold higher in rat brain. With [U-14C]glucose as substrate, specific activities of GABA and glutamate were highest in rat; those of alanine and glutamine highest in octopus brain. With L-[U-14C]glutamate the specific activities of GABA and aspartate were highest in rat, that of aspartate highest and GABA lowest in octopus. The addition of glucose to L-[U-14C]glutamate as substrate had little effect on the specific activities of any of the amino acids. (3) The uptake of some amino acids was determined by incubation with [U-14C]amino acids for 2 hr, and 14CO2 formation was also measured. The amount of label taken up by octopus was uniformly 20-25 per cent of that found for rat brain. The amount of 14CO2, however, differed according to the amino acid. Four times as much 14CO2 was generated from alanine by octopus optic lobe and twice as much by the vertical lobe than rat cortex, but from glutamate, only 24 per cent in the optic and 15 per cent in the vertical lobe. No 14CO2 was generated from [U-14C]GABA in the octopus, by contrast with the rat. (4) Activity of some of the enzymes involved in amino acid metabolism was determined in homogenates of rat cortex and octopus optic and vertical lobes, with and without activation by Triton X-100. Enzymic activities in the octopus, with the exception of alanine aminotransferase, were lower than in the rat, and glutamate decarboxylase could not be detected in octopus brain, in the absence of detergent.  相似文献   

7.
A subconvulsant dose of sodium fluoroacetate inhibited the metabolic utilization of intracerebrally-administered N-acetyl-l -[U-14C]asparticacid and the labelling of glutamine from this precursor in mouse brain, but not the labelling of glutamate or aspartate. A convulsant dose also inhibited the utilization of l -[U-14C]aspartic acid. When intraperitoneal injection of a convulsant dose of sodium fluoroacetate was followed by intracerebral injection of N-acetyl-l -[U-14C]asparticacid, the levels of N-acetylaspartate, aspartate and glutamate in brain were lowered, while the glutamine content was increased. The specific radioactivity of glutamine relative to that of glutamate was much lower when these compounds were labelled from l -[U-14C]aspartic acid than when N-acetyl-l -[U-14C]aspartic acid was used as the precursor. Intracerebral injection of tracer amounts of l -[U-14C]aspartic acid reduced the content of N-acetylaspartate in brain and raised the glutamine content. Sodium fluoroacetate had no additional effect on the relative specific radioactivity of glutamine or the content of N-acetylaspartate, aspartate, glutamate or glutamine when l -[U-14C]aspartic acid was the precursor. We consider the results to be consistent with a selective inhibition both by sodium fluoroacetate and by exogenous aspartic acid of the tricarboxylic acid cycle in brain associated with the biosynthesis of glutamine. We suggest that the activity of this pathway may regulate the metabolism of N-acetylaspartate and aspartate.  相似文献   

8.
Abstract— Hemisections of toad brains, when incubated in a physiological medium containing no glutamine. released considerable amounts of this amino acid into the medium. When glutamine was included in the medium at a concentration of 0.2 mm the net efflux from the tissue was reduced but not totally prevented. Although there was no net uptake of glutamine, the tissue did accumulate [U-14C]glu-tamine and some of this labelled glutamine was rapidly metabolized to glutamate, GABA and aspartate. The precursor-product relationship for the metabolism of glutamine to glutamate differed from the classic single compartment model in that the specific radioactivity of glutamate rose very quickly to approx one-tenth that of glutamine, but increased slowly thereafter. These data suggest that the [14C]glutamine was taken up into two metabolically distinct compartments and/or that some of the [14C]glutamine was converted to [14C]glutamate during the uptake process. The uptake of [14C]glutamine was diminished when the tissue was incubated in a non-oxygenated medium or when Na+ was omitted (substituted with sucrose) and K+ was concomitantly elevated. However, on a relative basis, the incorporation of radioactivity into glutamate and GABA was increased by these incubation conditions. The metabolism of glutamine to aspartate was greatly depressed when the tissue was not oxygenated. The glutamate formed from [U-14C]glutamine taken up by the tissue was converted to GABA at a faster rate than was glutamate derived from [U-14C]glucose. [U-14C]gly-cerol or exogenous [U-14C]glutamate. This suggests that glutamine was metabolized to GABA selectively; i.e. on a relative basis, glutamine served as a better source of carbon for the synthesis of GABA than did glucose, glycerol or exogenous glutamate. When the brain hemisections were incubated in the normal physiological medium with or without glutamine. there was very little efflux of glutamate, GABA or aspartate from the tissue. However when NaCl was omitted from the medium (substituted with sucrose) and K+ was elevated to 29 miu. a marked efflux of these three amino acids into the medium did occur, and over a period of 160min, the content of each amino acid in the tissue was depleted considerably. When glutamine (0.2 mm ) was included in the Na+ deficient-high K.+ medium, the average amount of glutamate, GABA and aspartate in the tissue plus the medium was greater than when glutamine was not included in the medium. Such data indicate that CNS tissues can utilize glutamine for a net synthesis of glutamate, GABA and aspartate. The results of this study provide further evidence in support of the concept that the functional (transmitter) pools of glutamate and GABA are maintained and regulated in part via biosynthesis from glutamine. One specific mechanism instrumental in regulating the content of glutamate in nerve terminals may be a process of glutamine uptake coupled to deamidation.  相似文献   

9.
Abstract— Thiamine deficiency produced by administration of pyrithiamine to rats maintained on a thiamine-deficient diet resulted in a marked disturbance in amino acid and glucose levels of the brain. In the two pyrithiamine-treated groups of rats (Expt. A and Expt. B) there was a significant decrease in the levels of glutamate (23%, 9%) and aspartate (42%, 57%), and an increase in the levels of glycine (26%, 27%) in the brain, irrespective of whether the animals showed signs of paralysis (Expt. A) or not (Expt. B). as a result of thiamine deficiency. A significant decrease in the levels of γ-aminobutyrate (22%) and serine (28%) in the brain was also observed in those pyrithiamine-treated rats which showed signs of paralysis (Expt. A). Threonine content increased by 57% in Expt. A and 40% in Expt. B in the brain of pyrithiamine-treated rats, but these changes were not statistically significant. The utilization of [U-14C]glucose into amino acids decreased and accumulation of glucose and [U-14C]glucose increased significantly in the brain after injection of [U-14C]glucose to pyrithiamine-treated rats which showed abnormal neurological symptoms (Expt. A). The decrease in 14C-content of amino acids was due to decreased conversion of [U-14C]glucose into alanine, glutamate, glutamine, aspartate and γ-aminobutyrate. The flux of [14C]glutamate into glutamine and γ-aminobutyrate also decreased significantly only in the brain of animals paralysed on treatment with pyrithiamine. The decrease in the labelling of, amino acids was attributed to a decrease in the activities of pyruvate dehydrogenase and α-oxoglutarate dehydrogenase in the brain of pyrithiamine-treated rats. The measurement of specific radioactivity of glucose, glucose-6-phosphate and lactate also indicated a decrease in the activities of glycolytic enzymes in the brain of pyrithiamine-treated animals in Expt. A only. It was suggested that an alteration in the rate of oxidation in vivo of pyruvate in the brain of thiamine-deficient rats is controlled by the glycolytic enzymes, probably at the hexokinase level. The lack of neurotoxic effect and absence of significant decrease in the metabolism of [U-14C]glucose in the brain of pyrithiamine-treated animals in Expt. B were probably due to the fact that animals in Expt. B were older and weighed more than those in Expt. A, both at the start and the termination of the experiments.  相似文献   

10.
METABOLISM OF HEXOSES IN RAT CEREBRAL CORTEX SLICES   总被引:3,自引:0,他引:3  
Abstract—
  • 1 The metabolism of two 14C-labelled hexoses and one hexose analogue, viz. mannose, fructose and glucosamine, has been compared with that of glucose for slices of rat cerebral cortex incubated in vitro.
  • 2 The metabolism of [U-14C]mannose was essentially identical to that of glucose; oxygen consumption and CO3 production were similar and maximal at a substrate concentration of 2·75 mM. Incorporation of label into lactate, aspartate, glutamate and GABA was similar for the two substrates at 5·5 mM substrate concentration.
  • 3 With [U-14C]fructose, maximal oxygen consumption and CO3 production were obtained at a substrate concentration of 11 mM. At 5·5 mM, incorporation into lactate was 5 per cent, into glutamate and GABA 30 per cent, into alanine 63 per cent and into aspartate 152 per cent of that from glucose. Increasing substrate concentration to 27·5 mm was without effect on incorporation into amino acids from glucose and raised incorporation from fructose into glutamate, GABA and alanine to a level similar to that found with glucose; at the higher substrate concentration aspartate incorporation from fructose was 200 per cent and lactate 42 per cent of that with glucose. Unlabelled fructose was without effect on incorporation of radioactivity from [3-14C]pyruvate into CO2 or amino acids; it increased incorporation into lactate by 36 per cent. Unlabelled glucose diminished incorporation into CO2 from [U-14C]fructose to 35 per cent; incorporation into lactate was stimulated 178 per cent at 5·5 mM fructose; at 27·5 mM it was diminished to 75 per cent.
  • 4 By comparison with [1-14C]glucose, incorporation of radioactivity from [1-14C]-glucosamine into lactate, CO2, alanine, GABA and glutamine was very low; incorporation into aspartate was similar to glucose. Thus the metabolism of glucosamine resembled that of fructose. Glucosamine-1-phosphate, glucosamine-6-phosphate, and an unidentified metabolite, all accumulated.
  相似文献   

11.
Metabolism of glutamine was determined under a variety of conditions to study compartmentation in cortical synaptosomes. The combined intracellular and extracellular amounts of [U-13C]GABA, [U-13C]glutamate and [U-13C]glutamine were the same in synaptosomes incubated with [U-13C]glutamine in the presence and absence of glucose. However, the concentration of these amino acids was decreased in the latter group, demonstrating the requirement for glucose to maintain the size of neurotransmitter pools. In hypoglycemic synaptosomes more [U-13C]glutamine was converted to [U-13C]aspartate, and less glutamate was re-synthesized from the tricarboxylic acid (TCA) cycle, suggesting use of the partial TCA cycle from -ketoglutarate to oxaloacetate for energy. Compartmentation was studied in synaptosomes incubated with glucose plus labeled and unlabeled glutamine and glutamate. Incubation with [U-13C]glutamine plus unlabeled glutamate gave rise to [U-13C]GABA but not labeled aspartate; however, incubation with [U-13C]glutamate plus unlabeled glutamine gave rise to [U-13C]aspartate, but not labeled GABA. Thus the endogenous glutamate formed via glutaminase in synaptic terminals is preferentially used for GABA synthesis, and is metabolized differently than glutamate taken up from the extracellular milieu.  相似文献   

12.
Abstract— In an effort to identify neurotransmitters in slices of guinea-pig cerebral cortex, a study was made of the release of endogenous amino acids which had become labelled via metabolism of d -[U-14C]glucose. While incorporation of 14C into endogenous glutamate, aspartate, GABA, alanine and threonine-serine-glutamine (unseparated) was large enough to permit measurement of their release, that into other amino acids was not. In parallel experiments, the release of exogeneous labelled glutamate, aspartate, GABA and α-aminoisobutyrate was examined. Electrical field stimulation evoked a transient increase in the release of all the adequately labelled endogenous amino acids and all the exogenous amino acids. The stimulated ‘increase’ in the release of each of the endogenous 14C-labelled transmitter candidates (glutamate, aspartate and GABA) was larger than that of any other amino acid (except that of exogenous GABA). When the experiments were performed without the glucose (5 mm ) usually present in the medium bathing the slices, larger amounts of each labelled amino acid were released from the slices than in the presence of glucose. Moreover, the pattern of selective release of the endogenous labelled transmitter candidates was much more pronounced in the absence of glucose. It is likely that in the absence of glucose, release from the tissue was larger because cells in the slice were relatively depolarized and uptake of amino acids into cells was impaired. Because previous evidence suggests that over 90% of glucose consumption occurs in the ‘large metabolic compartment’ which is thought to be composed of neuronal elements, neurons were probably the main site from which the larger release of endogenous 14C-labelled transmitter candidates was evoked. The exogenous amino acids were probably released from several cellular elements in the slices. It was concluded that the pattern of a selective release of the endogenous labelled transmitter candidates may have been indicative of a transmitter releasing mechanism in nerve terminals.  相似文献   

13.
Guinea pigs were unilaterally bulbectomised and the contents of aspartate, glutamate and GABA measured in slices of olfactory cortex taken from the lesioned and intact hemispheres. Two days after the operation there was a fall in the aspartate and glutamate levels, which persisted for over 120 days, whereas gamma-aminobutyric acid (GABA) showed a transient fall followed by a small rise. The fall in glutamate and aspartate was much greater in small, thin slices containing a high density of nerve terminals. The synthesis of 13C aminoacids from [13C]glucose during electrical stimulation was greater in the slices taken from the normal side than in those from the operated side. The GABA synthesis, however, was four times greater on the lesioned side. This time-course for the fall in acidic amino acids correlates with the fall in electrical responses, and this lends weight to the idea that aspartate and/or glutamate mediate synaptic transmission in the area.  相似文献   

14.
The distribution of [14C]-labelled material into subcellular fractions of 15-day-old rat brain was studied at 2 and 24 h following intraperitoneal and intracerebral injection of [2-14C]sodium acetate, [U-14C]glucose and [2-14C]mevalonic acid respectively. The total quantity of labelled isoprenoids in the brain was, except for glucose, greater when the precursor was administered intracerebrally. The intraperitoneal route was more advantageous in the case of [U-14C]glucose. The subcellular distribution of both labelled total isoprenoid material and sterol was distinct for each labelled precursor. Intracerebrally injected [U-14C]glucose at both time periods studied suggested no dominance of labelling in any fraction. After intraperitoneal injection of [U-14C]glucose the microsomes were more prominently labelled. Both methods of administration of sodium [2-14C]acetate resulted in heavy labelling of the myelin fraction after 24 h. The total labelled isoprenoids resided mainly in the microsomes 24 h after injection of [2-14C]mevalonic acid. Labelled sterol was found to be localized more in the myelin and microsomal fractions for all three precursors than was the labelled total isoprenoids. Depending on the type of experiment to be conducted, each of these precursors can give different results, which must be interpreted accordingly.  相似文献   

15.
—[2-14C]Glucose and [3H]acetate were injected simultaneously into 19-day-old rats suckling from mothers fed either a normal diet or a diet containing 4·5% lead acetate. Changes in the rate of conversion of both precursors into amino acids associated with the tricarboxylic acid cycle were observed. [I4C]Glucose. In the brain of young rats ingesting lead, the specific radioactivity of glutamate, aspartate, γ-aminobutyrate and glutamine were all significantly lowered relative to that of glucose. Glutamine labelling was the most affected. [3H]Acetate. In comparison with controls, the total amount of 3H in either water or acid-soluble constituents of the brain was the same, but the 3H content of the amino acids was significantly reduced in the lead-treated rats. In both groups, glutamine had the highest specific radioactivity but the time courses of the labelling of glutamine were different. In the control the peak incorporation was reached during the first 5 min, whereas in the experimental animals this occurred at about 10 min after the injection of the precursor, and the specific radioactivity even at that time was less than in controls. When compared with controls, the depression in the labelling of glutamine was accompanied at 5 min by an increase in the specific radioactivity of aspartate. In the lead-treated rats the labelling of GABA was also slowed and the time course seemed to follow that of glutamine rather than glutamate. In spite of the differences in the metabolism of [3H]acetate, metabolic compartmentation of glutamate, assessed by a glutamine : glutamate specific radioactivity ratio higher than 1, was evident even in the brain of the lead-treated animals, although the values of the ratio at 5 and 10 min were less than in controls. There was no evidence of a diminished supply of substrates to the brain in lead intoxication. The overall changes would be consistent with a retardation in the biochemical maturation of the brain in terms of development of glucose metabolism and metabolic compartmentation.  相似文献   

16.
(1) The in vitro metabolism of [U-14C]glucose and [U-14C]glutamate was compared in snail, octopus and locust ganglia, and in rat cerebral cortex. (2) The metabolic patterns are quantitatively similar. The major labelled metabolites formed from glucose or glutamate by rat cortex and the invertebrate systems were CO2, aspartate, glutamate, glutamine and alanine. γ-Aminobutyric acid (GABA) was formed in substantial amounts only by locust and rat. (3) A much larger proportion of labelled glucose and glutamate was converted to alanine by the invertebrates compared with rat cortex, although 14CO2 production was lower. (4) The effect of glucose in reducing aspartate formation and stimulating glutamine formation from [U-14C]glutamate in mammalian cortex was observed in the locust but not in the molluscs. (5) Labelled citric acid cycle intermediates were formed in substantial quantities from glucose and glutamate only by snail and locust.  相似文献   

17.
1. The effect of triperidol on the metabolism of glucose, pyruvate, glutamate, aspartate and glycine was studied with rat brain-cortex slices, U-14C-labelled substrates and a quantitative radiochromatographic technique. 2. Triperidol at a concentration of 0·2mm decreased the oxygen uptake and the 14CO2 production by about 30% when glucose, pyruvate and glutamate were used as substrates, whereas no effects were observed with aspartate and glycine. 3. The drug did not alter qualitatively the metabolic pattern of the substrates. 4. Quantitatively, triperidol decreased the incorporation of 14C from [U-14C]glucose and [U14-C]-pyruvate into glutamate, glutamine and γ-aminobutyrate but not into lactate, alanine and aspartate. The overall utilization rates of glucose and pyruvate were decreased. The relative specific radioactivities of glutamate and aspartate were also decreased. 5. Triperidol increased the rate of disappearance of U-14C-labelled glutamate, aspartate and glycine from the incubation medium, and altered the distribution of their metabolites between medium and tissue. 6. No appreciable effect of triperidol on [1-14C]galactose disappearance was found.  相似文献   

18.
—The oxidation to CO2 and the incorporation of [U-14C]glucose and [U-14C]acetate into lipids by cortex slices from rat brain during the postnatal period were investigated. The oxidation of [U-14C]glucose was low in 2-day-old rat brain, and increased by about two-fold during the 2nd and 3rd postnatal weeks. The oxidation of [U-14C]acetate was increased markedly in the second postnatal week, but decreased to rates observed in 2-day-old rat brain at the time of weaning. Both labeled substrates were readily incorporated into non-saponifiable lipids and fatty acids by brain slices from 2-day-old rat. Their rates of incorporation and the days on which maximum rates occurred were different, however, maximum incorporation of [U-14C]glucose and [U-14]acetate into lipid fractions being observed on about the 7th and 12th postanatal days, respectively. The metabolic compartmentation in the utilization of these substrates for lipogenesis is suggested. The activities of glucose-6-phosphate dehydrogenase, cytosolic NADP-malate dehydrogenase, cytosolic NADP-isocitrate dehydrogenase, ATP-citrate lyase and acetyl CoA carboxylase were measured in rat brain during the postnatal period. All enzymes followed somewhat different courses of development; the activity of acetyl CoA carboxylase was, however, the lowest among other key enzymes in the biosynthetic pathway, and its developmental pattern paralleled closely the fatty acid synthesis from [U-14C]glucose. It is suggested that acetyl CoA carboxylase is a rate-limiting step in the synthesis de novo of fatty acids in developing rat brain.  相似文献   

19.
1. The effect of fluoroacetate and fluorocitrate on the compartmentation of the glutamate-glutamine system was studied in brain slices with l-[U-(14)C]glutamate, l-[U-(14)C]aspartate, [1-(14)C]acetate and gamma-amino[1-(14)C]butyrate as precursors and in homogenates of brain tissue with [1-(14)C]acetate. The effect of fluoroacetate was also studied in vivo in mouse brain with [1-(14)C]acetate as precursor. 2. Fluoroacetate and fluorocitrate inhibit the labelling of glutamine from all precursors but affect the labelling of glutamate to a much lesser extent. This effect is not due to inhibition of glutamine synthetase. It is interpreted as being due to selective inhibition of the metabolism of a small pool of glutamate that preferentially labels glutamine.  相似文献   

20.
—The origin of the acetyl group in acetyl-CoA which is used for the synthesis of ACh in the brain and the relationship of the cholinergic nerve endings to the biochemically defined cerebral compartments of the Krebs cycle intermediates and amino acids were studied by comparing the transfer of radioactivity from intracisternally injected labelled precursors into the acetyl moiety of ACh, glutamate, glutamine, ‘citrate’(= citrate +cis-aconitate + isocitrate), and lipids in the brain of rats. The substrates used for injections were [1-14C]acetate, [2-14C]acetate, [4-14C]acetoacetate, [1-14C]butyrate, [1, 5-14C]citrate, [2-14C]glucose, [5-14C]glutamate, 3-hydroxy[3-14C]butyrate, [2-14C]lactate, [U-14C]leucine, [2-14C]pyruvate and [3H]acetylaspartate. The highest specific radioactivity of the acetyl group of ACh was observed 4 min after the injection of [2-14C]pyruvate. The contribution of pyruvate, lactate and glucose to the biosynthesis of ACh is considerably higher than the contribution of acetoacetate, 3-hydroxybutyrate and acetate; that of citrate and leucine is very low. No incorporation of label from [5-14C]glutamate into ACh was observed. Pyruvate appears to be the most important precursor of the acetyl group of ACh. The incorporation of label from [1, 5-14C]citrate into ACh was very low although citrate did enter the cells, was metabolized rapidly, did not interfere with the metabolism of ACh and the distribution of radioactivity from it in subcellular fractions of the brain was exactly the same as from [2-14C]pyruvate. It appears unlikely that citrate, glutamate or acetate act as transporters of intramitochondrially generated acetyl groups for the biosynthesis of ACh. Carnitine increased the incorporation of label from [1-14C]acetate into brain lipids and lowered its incorporation into ACh. Differences in the degree of labelling which various radioactive precursors produce in brain glutamine as compared to glutamate, previously described after intravenous, intra-arterial, or intraperitoneal administration, were confirmed using direct administration into the cerebrospinal fluid. Specific radioactivities of brain glutamine were higher than those of glutamate after injections of [1-14C]acetate, [2-14C]acetate, [1-14C]butyrate, [1,5-14C]citrate, [3H]acetylaspartate, [U-14C]leucine, and also after [2-14C]pyruvate and [4-14C]acetoacetate. The intracisternal route possibly favours the entry of substrates into the glutamine-synthesizing (‘small’) compartment. Increasing the amount of injected [2-14C]pyruvate lowered the glutamine/glutamate specific radioactivity ratio. The incorporation of 14C from [1-14C]acetate into brain lipids was several times higher than that from other compounds. By the extent of incorporation into brain lipids the substrates formed four groups: acetate > butyrate, acetoacetate, 3-hydroxybutyrate, citrate > pyruvate, lactate, acetylaspartate > glucose, glutamate. The ratios of specific radioactivity of ‘citrate’ over that of ACh and of glutamine over that of ACh were significantly higher after the administration of [1-14C]acetate than after [2-14C]pyruvate. The results indicate that the [1-14C]acetyl-CoA arising from [1-14C]acetate does not enter the same pool as the [1-14C]acetyl-CoA arising from [2-14C]pyruvate, and that the cholinergic nerve endings do not form a part of the acetate-utilizing and glutamine-synthesizing (‘small’) metabolic compartment in the brain. The distribution of radioactivity in subcellular fractions of the brain after the injection of [1-14C]acetate was different from that after [1, 5-14C]citrate. This suggests that [1-14C]acetate and [1, 5-14C]citrate are utilized in different subdivisions of the ‘;small’ compartment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号