首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于F3种子的胚乳性状QTL区间定位   总被引:1,自引:0,他引:1  
温永仙  吴为人 《遗传学报》2007,34(5):429-436
文章提出了包括胚乳效应和母体效应的胚乳性状QTL定位的统计方法,该方法的实验设计是分子标记基因型信息来自F2母体植株和F3种子胚(或植株),胚乳性状表型值来自F3单粒种子胚乳,称之为两步等级设计。同时,用计算机全面模拟以验证该模型的可行性,模拟结果表明,只要群体足够大,该模型能较有效地进行胚乳性状QTL定位并精确地估计出胚乳QTL的各种遗传效应和母体效应。  相似文献   

2.
玉米籽粒性状的遗传效应分析   总被引:5,自引:0,他引:5  
李玉玲  张泽民  许自成  席章营 《遗传》2000,22(3):133-136
采用二倍体胚和三倍体胚乳种子遗传模型及其分析方法,以5个玉米自交系及其配制的F1,F2,BC1,BC2世代为材料,研究5个玉米种子性状的胚直接效应、胚乳直接效应、母体效应和细胞质效应。分析结果表明,除粒宽外,各性状的遗传同时由细胞质效应和胚、胚乳、母体基因效应所控制,百粒重主要受胚乳和母体效应的影响,粒长的遗传以母体效应为主,粒宽和粒厚以胚乳效应为主。各部位籽粒百粒重的胚乳直接加性效应与母体加性效应的协方差达到显著或极显著水平,其余性状的胚、胚乳直接效应与母体效应间的协方差均不显著,通过母体植株的遗传表现可以对这些性状进行有效的选择。S22 是改良百粒重的优良亲本。 Abstract:The embryo,endosperm and cytoplasm effects of seven seed traits were studied by genetic model for diploid embryo and triploid endosperm plant seeds using five inbreds and their F1, F2, BC1 and BC2 generations. The estimates of genetic variance components indicated that the inheritance of all other kernel traits was controlled by the four effects except kernel width. The 100?kernel weight was mainly controlled by endosperm and maternal effects , and kernel length was controlled by the maternal effects,while endosperm conrrolled kernel width and kernel thickness. Except the significant or highly significant covariances between the endosperm direct additive and maternal additive effects for 100-kernel weight,all other traits between the embryo or endosperm direct effect and the maternal were not significant. So,maize inbreds could be developed by direct selection based on maternal plants for these traits. S22 was the best inbred of the improvement for kernel weight in this study.  相似文献   

3.
提出了基于分子标记基因型信息来自BC_1F_1母体植株,胚乳性状表型值来自BC_1F_(1:2)单粒种子胚乳的试验设计的胚乳QTL定位的区间作图方法.同时,用计算机全面模拟以验证该模型的可行性,模拟结果表明,只要群体足够大,该模型能有效地进行胚乳性状QTL定位并能估计出胚乳QTL的各种遗传效应和母体效应.  相似文献   

4.
爆裂玉米胚乳数量性状的遗传研究   总被引:7,自引:1,他引:6  
采用三倍体胚乳种子遗传模型及其分析方法,研究了4个爆裂玉米膨爆特性的胚乳直接效应、母体效应和细胞质效应。结果表明,百粒重、膨化体积的遗传同时由3套遗传体系所控制,百粒重的细胞质、膨化体积的母体和细胞质遗传率较高。爆花率和膨化倍数受胚乳和母体2套遗传体系的影响,且遗传率相近。爆花率和膨化倍数的直接和母体杂种优势均为负值。要组配出优良爆裂玉米杂交种,必须首先选育出膨爆特性突出的自交系,同时还要注意不同自交系的恰当组配。在6个供试自交系中,必须首先选育出膨爆特性突出的自交系,同时还要注意不同自交系的恰当组配。在6个供试自交系中,P3,P4适宜用作母本,P5则适宜作父本。  相似文献   

5.
将三倍体胚乳性状的数量遗传模型和二倍体性状数量基因(QTL)图构建方法相结合,导出双侧标记基因型下有关胚乳性状QTL的遗传组成、平均数和遗传方差分量,据之提出以某一区间双侧标记基因型胚乳性状的平均值为依变数,以该区间内任一点假定存在的QTL的加性效应d、显性效应h1和/或h2的系数为自变数,进行有重复观察值的多元线性回归分析,根据多元线性回归的显著性测验该点是否存在QTL,并估计出QTL的遗传效应。给定区间内任一点,皆可以此进行分析,从而可在整条染色体上作图,并以之确定QTL的数目和最可能位置,同时,在检测某一区间时,利用多元线性回归方法将该区间外可能存在的QTL的干扰进行统计控制,以提高QTL检测的精度。此外,还讨论了如何将之推广应用于其他类型的DNA不对应资料以及具复杂遗传模型的胚乳性状资料。  相似文献   

6.
普通玉米籽粒性状的遗传效应分析   总被引:4,自引:1,他引:4  
采用二倍体种子遗传模型及其分析方法,研究了5个玉米籽粒性状的直接效应、母体效应和细胞质效应.分析结果表明,各性状的遗传同时受种子直接效应和母体效应的影响,细胞质基因对百粒重和粒宽具有极显著影响.除粒长、粒厚的直接显性效应与母体显性效应间的协方差外,直接效应与母体效应间的协方差均不显著.因此,通过母体植株的表现可对这些性状进行有效的选择.S_22和 87-1是改良粒重的优良亲本.选择粒较宽的自交系作母本有利于提高后代选系及F_1的百粒重.  相似文献   

7.
Wu R  Ma CX  Gallo-Meagher M  Littell RC  Casella G 《Genetics》2002,162(2):875-892
The endosperm, a result of double fertilization in flowering plants, is a triploid tissue whose genetic composition is more complex than diploid tissue. We present a new maximum-likelihood-based statistical method for mapping quantitative trait loci (QTL) underlying endosperm traits in an autogamous plant. Genetic mapping of quantitative endosperm traits is qualitatively different from traits for other plant organs because the endosperm displays complicated trisomic inheritance and represents a younger generation than its mother plant. Our endosperm mapping method is based on two different experimental designs: (1) a one-stage design in which marker information is derived from the maternal genome and (2) a two-stage hierarchical design in which marker information is derived from both the maternal and offspring genomes (embryos). Under the one-stage design, the position and additive effect of a putative QTL can be well estimated, but the estimates of the dominant and epistatic effects are upward biased and imprecise. The two-stage hierarchical design, which extracts more genetic information from the material, typically improves the accuracy and precision of the dominant and epistatic effects for an endosperm trait. We discuss the effects on the estimation of QTL parameters of different sampling strategies under the two-stage hierarchical design. Our method will be broadly useful in mapping endosperm traits for many agriculturally important crop plants and also make it possible to study the genetic significance of double fertilization in the evolution of higher plants.  相似文献   

8.
Kao CH 《Genetics》2004,167(4):1987-2002
Endosperm traits are trisomic inheritant and are of great economic importance because they are usually directly related to grain quality. Mapping for quantitative trait loci (QTL) underlying endosperm traits can provide an efficient way to genetically improve grain quality. As the traditional QTL mapping methods (diploid methods) are usually designed for traits under diploid control, they are not the ideal approaches to map endosperm traits because they ignore the triploid nature of endosperm. In this article, a statistical method considering the triploid nature of endosperm (triploid method) is developed on the basis of multiple-interval mapping (MIM) to map for the underlying QTL. The proposed triploid MIM method is derived to broadly use the marker information either from only the maternal plants or from both the maternal plants and their embryos in the backcross and F2 populations for mapping endosperm traits. Due to the use of multiple intervals simultaneously to take multiple QTL into account, the triploid MIM method can provide better detection power and estimation precision, and as shown in this article it is capable of analyzing and searching for epistatic QTL directly as compared to the traditional diploid methods and current triploid methods using only one (or two) interval(s). Several important issues in endosperm trait mapping, such as the relation and differences between the diploid and triploid methods, variance components of genetic variation, and the problems if effects are present and ignored, are also addressed. Simulations are performed to further explore these issues, to investigate the relative efficiency of different experimental designs, and to evaluate the performance of the proposed and current methods in mapping endosperm traits. The MIM-based triploid method can provide a powerful tool to estimate the genetic architecture of endosperm traits and to assist the marker-assisted selection for the improvement of grain quality in crop science. The triploid MIM FORTRAN program for mapping endosperm traits is available on the worldwide web (http://www.stat.sinica.edu.tw/chkao/).  相似文献   

9.
Azuki bean breeders have long been interested in producing azuki bean [Vigna angularis (Willd.) Ohwi & Ohashi] varieties with bruchid resistance. A new bruchid (Callosobruchus spp.) resistance source was found in V. nepalensis Tateishi & Maxted, a species that is cross compatible with azuki bean. Quantitative trait loci (QTLs) analysis for resistance to C. chinensis (L.) and C. maculatus (F.) was conducted using F(2) (V. nepalensis x V. angularis) and BC(1)F(1) [(V. nepalensis x V. angularis) x V. angularis] populations derived from crosses between the bruchid resistant species V. nepalensis and bruchid susceptible species V. angularis. Resistance was measured using two traits, percentage of seeds damaged by bruchids and the time taken for adult bruchids to emerge from seeds. Based on the results from both populations seven QTLs were detected for bruchid resistance; five QTLs for resistance to C. chinensis and two QTLs for resistance to C. maculatus. The different locations found for some resistance QTL to the two bruchid species suggests different resistance mechanisms. QTLs on linkage group (LG) 1 and LG2 for bruchid resistance to C. chinensis co-localized with seed size QTLs suggesting that incremental increase in seed size accompanied susceptibility to C. chinensis. Based on linked markers the QTL on these two linkage groups appear to be the same as previously reported in other Asian Vigna. However, several other QTLs were newly detected including one on LG4 that appears unrelated to seed size. Transfer of these new sources of bruchid resistance from V. nepalensis to azuki bean will be aided by the progress being made in azuki genome mapping.  相似文献   

10.
玉米籽粒性状的遗传模型研究   总被引:7,自引:0,他引:7  
用10个遗传上和籽粒形态性状上具有差异的玉米自交系,依多种可能的交配方法获得亲本P1、P2、F1(P1× P2)、F2、B1(F1×P1)、B2(F1× P2)及其相应反交RF1、RF2、RB1、RB2共10个种子世代。种植2年。依广义遗传模型建立包括种子胚乳加性、胚乳显性、母体加性、母体显性和细胞质效应的遗传模型,运用种子数量性状的精细鉴别法[1]和混合模型分析法[2,3],对粒长、粒宽、粒长宽比、粒厚及百粒重作了性状表达遗传机制的鉴别与探讨。单个组合的遗传模型精细测验表明,5个籽粒性状的遗传主要受母体显性和胚乳基因型(包括加性和灵性)的控制,一个组合的粒宽、粒厚和百粒重上还检测到细胞质效应。对25对 F1正反交组合世代均值依MINQUE法分析的结果表明,5个籽粒性状的遗传方差中,母体遗传方差占60%以上,胚乳基因型方差低于40%,粒长和百粒重还有细胞质效应,约占10%~30%。可见,籽粒性状的遗传特点是受多套遗传系统控制,其中以母体基因型的作用最大。  相似文献   

11.
黑米中矿质元素铁、锌、锰、磷含量的遗传效应研究   总被引:25,自引:2,他引:23  
采用禾谷类作物种子胚乳数量性状模型,分析黑米稻品种双列杂交F1和F2种子的Fe、Zn、Mn、P含量的遗传效应。结果表明,4种矿质元素含量同时受制于种子直接遗传效应、母体效应和细胞质作用影响。其中,Fe、Zn、Mn含量的种子直接效应比母体效应和细胞质效应的作用更大;P含量则主要受种子直接加性、母体加性和显性效应共同作用。Fe、Zn、Mn含量的种子直接遗传率较高,在杂种早代分别结合农艺性状选择单株上各  相似文献   

12.
Advanced backcross QTL analysis in barley (Hordeum vulgare L.)   总被引:4,自引:0,他引:4  
This paper reports on the first advanced backcross-QTL (quantitative trait locus) project which utilizes spring barley as a model. A BC(2)F(2) population was derived from the initial cross Apex ( Hordeum vulgare ssp. vulgare, hereafter abbreviated with Hv) x ISR101-23 ( H. v. ssp. spontaneum, hereafter abbreviated with Hsp). Altogether 136 BC(2)F(2) individuals were genotyped with 45 SSR (simple sequence repeat) markers. Subsequently, field data for 136 BC(2)F(2) families were collected for 13 quantitative traits measured in a maximum of six environments. QTLs were detected by means of a two-factorial ANOVA with a significance level of P < 0.01 for a marker main effect and a marker x environment (M x E) interaction, respectively. Among 585 marker x trait combinations tested, 86 putative QTLs were identified. At 64 putative QTLs, the marker main effect and at 27 putative QTLs, the M x E interaction were significant. In five cases, both effects were significant. Among the putative QTLs, 29 (34%) favorable effects were identified from the exotic parent. At these marker loci the homozygous Hsp genotype was associated with an improvement of the trait compared to the homozygous Hv genotype. In one case, the Hsp allele was associated with a yield increase of 7.7% averaged across the six environments tested. A yield QTL in the same chromosomal region was already reported in earlier barley QTL studies.  相似文献   

13.
Li Y  Coelho CM  Liu T  Wu S  Wu J  Zeng Y  Li Y  Hunter B  Dante RA  Larkins BA  Wu R 《PloS one》2008,3(9):e3131
Proper development of a seed requires coordinated exchanges of signals among the three components that develop side by side in the seed. One of these is the maternal integument that encloses the other two zygotic components, i.e., the diploid embryo and its nurturing annex, the triploid endosperm. Although the formation of the embryo and endosperm contains the contributions of both maternal and paternal parents, maternally and paternally derived alleles may be expressed differently, leading to a so-called parent-of-origin or imprinting effect. Currently, the nature of how genes from the maternal and zygotic genomes interact to affect seed development remains largely unknown. Here, we present a novel statistical model for estimating the main and interaction effects of quantitative trait loci (QTLs) that are derived from different genomes and further testing the imprinting effects of these QTLs on seed development. The experimental design used is based on reciprocal backcrosses toward both parents, so that the inheritance of parent-specific alleles could be traced. The computing model and algorithm were implemented with the maximum likelihood approach. The new strategy presented was applied to study the mode of inheritance for QTLs that control endoreduplication traits in maize endosperm. Monte Carlo simulation studies were performed to investigate the statistical properties of the new model with the data simulated under different imprinting degrees. The false positive rate of imprinting QTL discovery by the model was examined by analyzing the simulated data that contain no imprinting QTL. The reciprocal design and a series of analytical and testing strategies proposed provide a standard procedure for genomic mapping of QTLs involved in the genetic control of complex seed development traits in flowering plants.  相似文献   

14.
The evolution of morphological modularity through the sequestration of pleiotropy to sets of functionally and developmentally related traits requires genetic variation in the relationships between traits. Genetic variation in relationships between traits can result from differential epistasis, where epistatic relationships for pairs of loci are different for different traits. This study maps relationship quantitative trait loci (QTLs), specifically QTLs that affect the relationship between individual mandibular traits and mandible length, across the genome in an F2 intercross of the LG/J and SM/J inbred mouse strains (N = 1045). We discovered 23 relationship QTLs scattered throughout the genome. All mandibular traits were involved in one or more relationship QTL. When multiple traits were affected at a relationship QTL, the traits tended to come from a developmentally restricted region of the mandible, either the muscular processes or the alveolus. About one-third of the relationship QTLs correspond to previously located trait QTLs affecting the same traits. These results comprise examples of genetic variation necessary for an evolutionary response to selection on the range of pleiotropic effects.  相似文献   

15.
T Qi  B Jiang  Z Zhu  C Wei  Y Gao  S Zhu  H Xu  X Lou 《Heredity》2014,113(3):224-232
The crop seed is a complex organ that may be composed of the diploid embryo, the triploid endosperm and the diploid maternal tissues. According to the genetic features of seed characters, two genetic models for mapping quantitative trait loci (QTLs) of crop seed traits are proposed, with inclusion of maternal effects, embryo or endosperm effects of QTL, environmental effects and QTL-by-environment (QE) interactions. The mapping population can be generated either from double back-cross of immortalized F2 (IF2) to the two parents, from random-cross of IF2 or from selfing of IF2 population. Candidate marker intervals potentially harboring QTLs are first selected through one-dimensional scanning across the whole genome. The selected candidate marker intervals are then included in the model as cofactors to control background genetic effects on the putative QTL(s). Finally, a QTL full model is constructed and model selection is conducted to eliminate false positive QTLs. The genetic main effects of QTLs, QE interaction effects and the corresponding P-values are computed by Markov chain Monte Carlo algorithm for Gaussian mixed linear model via Gibbs sampling. Monte Carlo simulations were performed to investigate the reliability and efficiency of the proposed method. The simulation results showed that the proposed method had higher power to accurately detect simulated QTLs and properly estimated effect of these QTLs. To demonstrate the usefulness, the proposed method was used to identify the QTLs underlying fiber percentage in an upland cotton IF2 population. A computer software, QTLNetwork-Seed, was developed for QTL analysis of seed traits.  相似文献   

16.
What are the consequences of the natural variation in maternal body mass on offspring energetic performance? How are performance traits related to thermal physiology and energetics phenotypically integrated on offspring? To answer these questions, fifty breeding pairs of the common terrestrial isopod Porcellio laevis were set up in the lab. Physiological performance, thermal tolerance and thermal sensitivity were measured in F1 adults. Maternal effects were estimated as: the direct influence of maternal body mass and the variation associated with mothers. Phenotypic integration was evaluated using path analysis. Our results show that: (1) maternal body size affects positively offspring long-term metabolism, (2) maternal variation was significant in many of the physiological traits and (3) there is an intricate set of relationships among traits and importantly, that offspring exhibited compensational strategies among metabolism, thermal sensitivity and thermal tolerance traits. Even if we cannot clearly state whether these maternal influences were because of the genes or the environment that mothers provided and thus no predictions can be done regarding their evolutionary consequences, it seems clear that the role of maternal effects on physiology can no longer be ignored. In this sense, there's a lot to be gained by incorporating explicit experimental protocols to test for maternal effects.  相似文献   

17.
Approximately 170 BC2 plants from a cross between an elite processing inbred (recurrent parent) and the wild species Lycopersicon pimpinellifolium LA1589 (donor parent) were analyzed with segregating molecular markers covering the entire tomato genome. Marker data were used to identify QTLs controlling a battery of horticultural traits measured on BC2F1 and BC3 families derived from the BC2 individuals. Despite its overall inferior appearance, L. pimpinellifolium was shown to possess QTL alleles capable of enhancing most traits important in processing tomato production. QTL-NIL lines, containing specific QTLs modifying fruit size and shape, were subsequently constructed and shown to display the transgressive phenotypes predicted from the original BC2 QTL analysis. The potential of exploiting unadapted and wild germplasm via advanced backcross QTL analysis for the enhancement of elite crop varieties is discussed.  相似文献   

18.
J. Xiao  J. Li  L. Yuan    S. D. Tanksley 《Genetics》1995,140(2):745-754
A set of 194 F(7) lines derived from a subspecific rice cross showing strong F(1) heterosis was backcrossed to the two parents. The materials (388 BC(1)F(7) lines, 194 F(8) lines, two parents, F(1)) were phenotyped for 12 quantitative traits. A total of 37 significant QTLs (LOD >/= 2.0) was detected through 141 RFLP markers in the BC(1)F(7) populations. Twenty-seven (73%) quantitative trait loci (QTLs) were detected in only one of the BC(1)F(7) populations. In 82% of these cases, the heterozygotes were superior to the respective homozygotes. The remaining 10 (27%) QTLs were detected in both BC(1)F(7) populations, and the heterozygote had a phenotype falling between those of the two homozygotes and in no instances were the heterozygotes found to be superior to both homozygotes. These results suggest that dominance complementation is the major genetic basis of heterosis in rice. This conclusion was strengthened by the finding that there was no correlation between most traits and overall genome heterozygosity and that there were some recombinant inbred lines in the F(8) population having phenotypic values superior to the F(1) for all of the traits evaluated--a result not expected if overdominance was a major contributor to heterosis. Digenic epistasis was not evident.  相似文献   

19.
The genetic basis of species differences provides insight into the mode and tempo of phenotypic divergence. We investigate the genetic basis of floral differences between two closely related plant taxa with highly divergent mating systems, Mimulus guttatus (large-flowered outcrosser) and M. nasutus (small-flowered selfer). We had previously constructed a framework genetic linkage map of the hybrid genome containing 174 markers spanning approximately 1800 cM on 14 linkage groups. In this study, we analyze the genetics of 16 floral, reproductive, and vegetative characters measured in a large segregating M. nasutus x M. guttatus F2 population (N = 526) and in replicates of the parental lines and F1 hybrids. Phenotypic analyses reveal strong genetic correlations among floral traits and epistatic breakdown of male and female fertility traits in the F2 hybrids. We use multitrait composite interval mapping to jointly locate and characterize quantitative trait loci (QTLs) underlying interspecific differences in seven floral traits. We identified 24 floral QTLs, most of which affected multiple traits. The large number of QTLs affecting each trait (mean = 13, range = 11-15) indicates a strikingly polygenic basis for floral divergence in this system. In general, QTL effects are small relative to both interspecific differences and environmental variation within genotypes, ruling out QTLs of major effect as contributors to floral divergence between M. guttatus and M. nasutus. QTLs show no pattern of directional dominance. Floral characters associated with pollinator attraction (corolla width) and self-pollen deposition (stigma-anther distance) share several pleiotropic or linked QTLs, but unshared QTLs may have allowed selfing to evolve independently from flower size. We discuss the polygenic nature of divergence between M. nasutus and M. guttatus in light of theoretical work on the evolution of selfing, genetics of adaptation, and maintenance of variation within populations.  相似文献   

20.
A large proportion of the nuclei in developing endosperm of Zea mays L. undergoes endoreduplication. Nuclear preparations of the entire endosperm from maize kernels of inbred lines, their reciprocal hybrids, and in some cases, F2 and F3 endosperm tissue were evaluated using flow cytometry. Data relative to DNA endoreduplication patterns, percentage of nuclei undergoing endoreduplication, and mean DNA content per nucleus were obtained. The patterns of endoreduplication and extent of DNA amplification differ among some inbreds. In all experiments, the endoreduplication patterns show that the F1 endosperm is more similar to the maternal parent than to the paternal parent. F2 endosperms reveal little difference in endoreduplication patterns among individuals within an F2 family and no more variation than the F1 endosperms. In contrast, F3 endosperms showed greater variation among their endoreduplication patterns. These results indicate a maternal effect on endoreduplication; that is, the genotype of the maternal parent's nuclear genome exerts control over the endoreduplication activities of endosperm tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号