首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary : FT is a tool written in C++, which implements the Fourier analysis method to locate periodicities in aminoacid or DNA sequences. It is provided for free public use on a WWW server with a Java interface. Availability : The server address is http://o2.db. uoa.gr/FT Contact : shamodr@atlas.uoa.gr   相似文献   

2.
SHOT: a web server for the construction of genome phylogenies   总被引:23,自引:0,他引:23  
With the increasing availability of genome sequences, new methods are being proposed that exploit information from complete genomes to classify species in a phylogeny. Here we present SHOT, a web server for the classification of genomes on the basis of shared gene content or the conservation of gene order that reflects the dominant, phylogenetic signal in these genomic properties. In general, the genome trees are consistent with classical gene-based phylogenies, although some interesting exceptions indicate massive horizontal gene transfer. SHOT is a useful tool for analysing the tree of life from a genomic point of view. It is available at http://www.Bork.EMBL-Heidelberg.de/SHOT.  相似文献   

3.
4.
REGANOR     
With >1,000 prokaryotic genome sequencing projects ongoing or already finished, comprehensive comparative analysis of the gene content of these genomes has become viable. To allow for a meaningful comparative analysis, gene prediction of the various genomes should be as accurate as possible. It is clear that improving the state of genome annotation requires automated gene identification methods to cope with the influence of artifacts, such as genomic GC content. There is currently still room for improvement in the state of annotations. We present a web server and a database of high-quality gene predictions. The web server is a resource for gene identification in prokaryote genome sequences. It implements our previously described, accurate gene finding method REGANOR. We also provide novel gene predictions for 241 complete, or almost complete, prokaryotic genomes. We demonstrate how this resource can easily be utilised to identify promising candidates for currently missing genes from genome annotations with several examples. All data sets are available online. AVAILABILITY: The gene finding server is accessible via https://www.cebitec.uni-bielefeld.de/groups/brf/software/reganor/cgi-bin/reganor_upload.cgi. The server software is available with the GenDB genome annotation system (version 2.2.1 onwards) under the GNU general public license. The software can be downloaded from https://sourceforge.net/projects/gendb/. More information on installing GenDB and REGANOR and the system requirements can be found on the GenDB project page http://www.cebitec.uni-bielefeld.de/groups/brf/software/wiki/GenDBWiki/AdministratorDocumentation/GenDBInstallation  相似文献   

5.
We have previously developed a computational method for representing a genome as a barcode image, which makes various genomic features visually apparent. We have demonstrated that this visual capability has made some challenging genome analysis problems relatively easy to solve. We have applied this capability to a number of challenging problems, including (a) identification of horizontally transferred genes, (b) identification of genomic islands with special properties and (c) binning of metagenomic sequences, and achieved highly encouraging results. These application results inspired us to develop this barcode-based genome analysis server for public service, which supports the following capabilities: (a) calculation of the k-mer based barcode image for a provided DNA sequence; (b) detection of sequence fragments in a given genome with distinct barcodes from those of the majority of the genome, (c) clustering of provided DNA sequences into groups having similar barcodes; and (d) homology-based search using Blast against a genome database for any selected genomic regions deemed to have interesting barcodes. The barcode server provides a job management capability, allowing processing of a large number of analysis jobs for barcode-based comparative genome analyses. The barcode server is accessible at http://csbl1.bmb.uga.edu/Barcode.  相似文献   

6.
Cluster-Buster: Finding dense clusters of motifs in DNA sequences   总被引:15,自引:2,他引:13       下载免费PDF全文
Frith MC  Li MC  Weng Z 《Nucleic acids research》2003,31(13):3666-3668
  相似文献   

7.
The RCNPRED server implements a neural network-based method to predict the co-ordination numbers of residues starting from the protein sequence. Using evolutionary information as input, RCNPRED predicts the residue states of the proteins in the database with 69% accuracy and scores 12 percentage points higher than a simple statistical method. Moreover the server implements a neural network to predict the relative solvent accessibility of each residue. A protein sequence can be directly submitted to RCNPRED: residue co-ordination numbers and solvent accessibility for each chain are returned via e-mail. AVAILABILITY: Freely available to non-commercial users at http://prion.biocomp.unibo.it/rcnpred.html.  相似文献   

8.
Moon S  Byun Y  Kim HJ  Jeong S  Han K 《Nucleic acids research》2004,32(16):4884-4892
Computational identification of ribosomal frameshift sites in genomic sequences is difficult due to their diverse nature, yet it provides useful information for understanding the underlying mechanisms and discovering new genes. We have developed an algorithm that searches entire genomic or mRNA sequences for frameshifting sites, and implements the algorithm as a web-based program called FSFinder (Frameshift Signal Finder). The current version of FSFinder is capable of finding -1 frameshift sites on heptamer sequences X XXY YYZ, and +1 frameshift sites for two genes: protein chain release factor B (prfB) and ornithine decarboxylase antizyme (oaz). We tested FSFinder on approximately 190 genomic and partial DNA sequences from a number of organisms and found that it predicted frameshift sites efficiently and with greater sensitivity and specificity than existing approaches. It has improved sensitivity because it considers many known components of a frameshifting cassette and searches these components on both + and - strands, and its specificity is increased because it focuses on overlapping regions of open reading frames and prioritizes candidate frameshift sites. FSFinder is useful for discovering unknown genes that utilize alternative decoding, as well as for analyzing frameshift sites. It is freely accessible at http://wilab.inha.ac.kr/FSFinder/.  相似文献   

9.
Identifying the epitope to which an antibody binds is central for many immunological applications such as drug design and vaccine development. The Pepitope server is a web-based tool that aims at predicting discontinuous epitopes based on a set of peptides that were affinity-selected against a monoclonal antibody of interest. The server implements three different algorithms for epitope mapping: PepSurf, Mapitope, and a combination of the two. The rationale behind these algorithms is that the set of peptides mimics the genuine epitope in terms of physicochemical properties and spatial organization. When the three-dimensional (3D) structure of the antigen is known, the information in these peptides can be used to computationally infer the corresponding epitope. A user-friendly web interface and a graphical tool that allows viewing the predicted epitopes were developed. Pepitope can also be applied for inferring other types of protein-protein interactions beyond the immunological context, and as a general tool for aligning linear sequences to a 3D structure. AVAILABILITY: http://pepitope.tau.ac.il/  相似文献   

10.
11.
The accelerating growth of the public microbial genomic data imposes substantial burden on the research community that uses such resources.Building databases for non-redundant reference sequences from massive microbial genomic data based on clustering analysis is essential.However,existing clustering algorithms perform poorly on long genomic sequences.In this article,we present Gclust,a parallel program for clustering complete or draft genomic sequences,where clustering is accelerated with a novel parallelization strategy and a fast sequence comparison algorithm using sparse suffix arrays(SSAs).Moreover,genome identity measures between two sequences are calculated based on their maximal exact matches(MEMs).In this paper,we demonstrate the high speed and clustering quality of Gclust by examining four genome sequence datasets.Gclust is freely available for non-commercial use at https://github.com/niu-lab/gclust.We also introduce a web server for clustering user-uploaded genomes at http://niulab.scgrid.cn/gclust.  相似文献   

12.
13.
MAVID is a multiple alignment program suitable for many large genomic regions. The MAVID web server allows biomedical researchers to quickly obtain multiple alignments for genomic sequences and to subsequently analyse the alignments for conserved regions. MAVID has been successfully used for the alignment of closely related species such as primates and also for the alignment of more distant organisms such as human and fugu. The server is fast, capable of aligning hundreds of kilobases in less than a minute. The multiple alignment is used to build a phylogenetic tree for the sequences, which is subsequently used as a basis for identifying conserved regions in the alignment. The server can be accessed at http://baboon.math.berkeley.edu/mavid/.  相似文献   

14.
Abstract

To facilitate mutagenesis study, it is necessary to be able to derive mutation targets and associated substitution rates in the sequence of interest regardless of the availability of corresponding structure. It is also important to obtain these data depending on the specific aims of the mutation process. The MBLOSUM server determines candidate positions for mutations and derives position-specific substitution rates given only a protein sequence. Different sets of complete genomes collected according to their phylogeny or specificity of environments along with compete set of non-redundant sequences can be used in calculations depending on the experimental task. MBLOSUM server is available at: http://apps.cbu.uib.no/mblosum  相似文献   

15.
GenePublisher, a system for automatic analysis of data from DNA microarray experiments, has been implemented with a web interface at http://www.cbs.dtu.dk/services/GenePublisher. Raw data are uploaded to the server together with a specification of the data. The server performs normalization, statistical analysis and visualization of the data. The results are run against databases of signal transduction pathways, metabolic pathways and promoter sequences in order to extract more information. The results of the entire analysis are summarized in report form and returned to the user.  相似文献   

16.
MOTIVATION: Microsatellites, also known as simple sequence repeats, are the tandem repeats of nucleotide motifs of the size 1-6 bp found in every genome known so far. Their importance in genomes is well known. Microsatellites are associated with various disease genes, have been used as molecular markers in linkage analysis and DNA fingerprinting studies, and also seem to play an important role in the genome evolution. Therefore, it is of importance to study distribution, enrichment and polymorphism of microsatellites in the genomes of interest. For this, the prerequisite is the availability of a computational tool for extraction of microsatellites (perfect as well as imperfect) and their related information from whole genome sequences. Examination of available tools revealed certain lacunae in them and prompted us to develop a new tool. RESULTS: In order to efficiently screen genome sequences for microsatellites (perfect as well as imperfect), we developed a new tool called IMEx (Imperfect Microsatellite Extractor). IMEx uses simple string-matching algorithm with sliding window approach to screen DNA sequences for microsatellites and reports the motif, copy number, genomic location, nearby genes, mutational events and many other features useful for in-depth studies. IMEx is more sensitive, efficient and useful than the available widely used tools. IMEx is available in the form of a stand-alone program as well as in the form of a web-server. AVAILABILITY: A World Wide Web server and the stand-alone program are available for free access at http://203.197.254.154/IMEX/ or http://www.cdfd.org.in/imex.  相似文献   

17.
Zuker M 《Nucleic acids research》2003,31(13):3406-3415
The abbreviated name, 'mfold web server', describes a number of closely related software applications available on the World Wide Web (WWW) for the prediction of the secondary structure of single stranded nucleic acids. The objective of this web server is to provide easy access to RNA and DNA folding and hybridization software to the scientific community at large. By making use of universally available web GUIs (Graphical User Interfaces), the server circumvents the problem of portability of this software. Detailed output, in the form of structure plots with or without reliability information, single strand frequency plots and 'energy dot plots', are available for the folding of single sequences. A variety of 'bulk' servers give less information, but in a shorter time and for up to hundreds of sequences at once. The portal for the mfold web server is http://www.bioinfo.rpi.edu/applications/mfold. This URL will be referred to as 'MFOLDROOT'.  相似文献   

18.
Sequencing of microbial genomes is important because of microbial-carrying antibiotic and pathogenetic activities. However, even with the help of new assembling software, finishing a whole genome is a time-consuming task. In most bacteria, pathogenetic or antibiotic genes are carried in genomic islands. Therefore, a quick genomic island (GI) prediction method is useful for ongoing sequencing genomes. In this work, we built a Web server called GI-POP (http://gipop.life.nthu.edu.tw) which integrates a sequence assembling tool, a functional annotation pipeline, and a high-performance GI predicting module, in a support vector machine (SVM)-based method called genomic island genomic profile scanning (GI-GPS). The draft genomes of the ongoing genome projects in contigs or scaffolds can be submitted to our Web server, and it provides the functional annotation and highly probable GI-predicting results. GI-POP is a comprehensive annotation Web server designed for ongoing genome project analysis. Researchers can perform annotation and obtain pre-analytic information include possible GIs, coding/non-coding sequences and functional analysis from their draft genomes. This pre-analytic system can provide useful information for finishing a genome sequencing project.  相似文献   

19.
An Internet computing server has been developed to identify all the occurrences of the internal sequence repeats in a protein and DNA sequences. Further, an option is provided for the users to check the occurrence(s) of the resultant sequence repeats in the other sequence and structure (Protein Data Bank) databases. The databases deployed in the proposed computing engine are up-to-date and thus the users will get the latest information available in the respective databases. The server is freely accessible over the World Wide Web (WWW). AVAILABILITY: http://bioserver1.physics.iisc.ernet.in/fair/  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号