首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The lon gene of Escherichia coli encodes the ATP-dependent serine protease La and belongs to the family of sigma 32-dependent heat shock genes. In this paper, we report the cloning and characterization of the lon gene from the gram-positive bacterium Bacillus subtilis. The nucleotide sequence of the lon locus, which is localized upstream of the hemAXCDBL operon, was determined. The lon gene codes for an 87-kDa protein consisting of 774 amino acid residues. A comparison of the deduced amino acid sequence with previously described lon gene products from E. coli, Bacillus brevis, and Myxococcus xanthus revealed strong homologies among all known bacterial Lon proteins. Like the E. coli lon gene, the B. subtilis lon gene is induced by heat shock. Furthermore, the amount of lon-specific mRNA is increased after salt, ethanol, and oxidative stress as well as after treatment with puromycin. The potential promoter region does not show similarities to promoters recognized by sigma 32 of E. coli but contains sequences which resemble promoters recognized by the vegetative RNA polymerase E sigma A of B. subtilis. A second gene designated orfX is suggested to be transcribed together with lon and encodes a protein with 195 amino acid residues and a calculated molecular weight of 22,000.  相似文献   

2.
K Ito  S Udaka    H Yamagata 《Journal of bacteriology》1992,174(7):2281-2287
A gene of Bacillus brevis HPD31 analogous to the Escherichia coli lon gene has been cloned and characterized. The cloned gene (B. brevis lon gene) encodes a polypeptide of 779 amino acids with a molecular weight of 87,400 which resembles E. coli protease La, the lon gene product. Fifty-two percent of the amino acid residues of the two polypeptides were identical. The ATP-binding sequences found in E. coli protease La were highly conserved. The promoter of the B. brevis lon gene resembled that recognized by the major RNA polymerase of Bacillus subtilis and did not contain sequences homologous to the E. coli heat shock promoters. The B. brevis lon gene was inactivated by insertion of the neomycin resistance gene. A mutant B. brevis carrying the inactivated lon gene showed diminished ability for the degradation of abnormal polypeptides synthesized in the presence of puromycin.  相似文献   

3.
N Tojo  S Inouye    T Komano 《Journal of bacteriology》1993,175(8):2271-2277
The lon gene of Escherichia coli is known to encode protease La, an ATP-dependent protease associated with cellular protein degradation. A lon gene homolog from Myxococcus xanthus, a soil bacterium which differentiates to form fruiting bodies upon nutrient starvation, was cloned and characterized by use of the lon gene of E. coli as a probe. The nucleotide sequence of the M. xanthus lon gene was determined. It contains an open reading frame that encodes a 92-kDa protein consisting of 817 amino acid residues. The deduced amino acid sequence of the M. xanthus lon gene product showed 60 and 56% identity with those of the E. coli and Bacillus brevis lon gene products, respectively. Analysis of an M. xanthus strain carrying a lon-lacZ operon fusion suggested that the lon gene is similarly expressed during vegetative growth and development in M. xanthus. In contrast to that of E. coli, the M. xanthus lon gene was shown to be essential for cell growth, since a null mutant could not be isolated.  相似文献   

4.
The gene encoding Lon protease was isolated from an extreme thermophile, Thermus thermophilus HB8. Sequence analysis demonstrated that the T. thermophilus Lon protease gene (TT-lon) contains a protein-coding sequence consisting of 2385 bp which is approximately 56% homologous to the Escherichia coli counterpart. As expected, the G/C content of TT-lon was 68%, which is significantly higher than that of the E. coli lon gene (52% G/C). The amino acid sequence of T. thermophilus Lon protease (TT-Lon) predicted from the nucleotide sequence contained several unique sequences conserved in other Lon proteases: (a) a cysteine residue at the position just before the putative ATP-binding domain; (b) motif A and B sequences required for composition of the ATP-binding domain; and (c) a serine residue at the proteolytic active site. Expression of TT-lon under the control of the T7 promoter in E. coli produced an 89-kDa protein with a yield of approximately 5 mg.L-1. Recombinant TT-Lon (rTT-Lon) was purified to homogeneity by sequential column chromatography. The peptidase activity of rTT-Lon was activated by ATP and alpha-casein. rTT-Lon cleaved succinyl-phenylalanyl-leucyl-phenylalanyl-methoxynaphthylamide much more efficiently than succinyl-alanyl-alanyl-phenylalanyl-methoxynaphthylamide, whereas both peptides were cleaved with comparable efficiencies by E. coli Lon. These results suggest that there is a difference between TT-Lon and E. coli Lon in substrate specificity. rTT-Lon most effectively cleaved substrate peptides at 70 degrees C, which was significantly higher than the optimal temperature (37 degrees C) for E. coli Lon. Together, these results indicate that the TT-lon gene isolated from T. thermophilus HB8 actually encodes an ATP-dependent thermostable protease Lon.  相似文献   

5.
6.
V A David  A H Deutch  A Sloma  D Pawlyk  A Ally  D R Durham 《Gene》1992,112(1):107-112
The gene (nprV), encoding the extracellular neutral protease, vibriolysin (NprV), of the Gram- marine microorganism, Vibrio proteolyticus, was isolated from a V. proteolyticus DNA library constructed in Escherichia coli. The recombinant E. coli produced a protease that co-migrated with purified neutral protease from V. proteolyticus on non-denaturing polyacrylamide gels, and that demonstrated enzymatic specificity towards the neutral protease substrate N-[3-(2-furyl)acryloyl]-L-alanylphenylalanine amide. The nucleotide (nt) sequence of the cloned nprV gene revealed an open reading frame encoding 609 amino acids (aa) including a putative signal peptide sequence followed by a long 'pro' sequence consisting of 172 aa. The N-terminal aa sequence of NprV purified from cultures of V. proteolyticus, identified the beginning of the mature protein within the aa sequence deduced from the nt sequence. Comparative analysis of mature NprV to the sequences of the neutral proteases from Bacillus thermoproteolyticus (thermolysin) and Bacillus stearothermophilus identified extensive regions of conserved aa homology, particularly with respect to active-site residues, zinc-binding residues, and calcium-binding sites. NprV was overproduced in Bacillus subtilis by placing the DNA encoding the 'pro' and mature enzyme downstream from a Bacillus promoter and signal sequence.  相似文献   

7.
Protease II gene of Escherichia coli HB101 was cloned and expressed in E. coli JM83. The transformant harboring a hybrid plasmid, pPROII-12, with a 2.4 kbp fragment showed 90-fold higher enzyme activity than the host. The whole nucleotide sequence of the inserted fragment of plasmid pPROII-12 was clarified by the dideoxy chain-terminating method. The sequence that encoded the mature enzyme protein was found to start at an ATG codon, as judged by comparison with amino terminal protein sequencing. The molecular weight of the enzyme was estimated to be 81,858 from the nucleotide sequence. The reactive serine residue of protease II was identified as Ser-532 with tritium DFP. The sequence around the serine residue is coincident with the common sequence of Gly-X-Ser-X-Gly, which has been found in the active site of serine proteases. Except for this region, protease II showed no significant sequence homology with E. coli serine proteases, protease IV and protease La (lon gene), or other known families of serine proteases. However, 25.3% homology was observed between protease II and prolyl endopeptidase from porcine brain. Although the substrate specificities of these two enzymes are quite different, it seems possible to classify protease II as a member of the prolyl endopeptidase family from the structural point of view.  相似文献   

8.
S M Deane  F T Robb  S M Robb  D R Woods 《Gene》1989,76(2):281-288
The nucleotide sequence of the Vibrio alginolyticus alkaline serine exoprotease A (ProA) gene cloned in Escherichia coli was determined. The exoprotease A gene (proA) consisted of 1602 bp which encoded a protein of 534 amino acids (aa) with an Mr of 55,900. The region upstream from the gene was characterized by a putative promoter consensus region (-10 -35), a ribosome-binding site and ATG start codon. The proA gene encodes a typical 21-aa N-terminal signal sequence which, when fused to alkaline phosphatase by means of transposon TnphoA, was able to mediate transport of the alkaline phosphatase to the periplasm in E. coli. Deletions of up to 106 aa from the C terminus of ProA did not result in the loss of extracellular protease activity. Additional V. alginolyticus genes were not involved in the secretion into the medium of the cloned ProA in E. coli. The amino acid sequence of ProA showed low overall homology to a Serratia marcescens serine exoprotease but significant homology was detected with other subtilisin family exoproteases. The fungal proteinase K, another sodium dodecyl sulfate-resistant protease, had 44% aa homology with ProA.  相似文献   

9.
10.
11.
The CapR protein is an ATP hydrolysis-dependent protease as well as a DNA-stimulated ATPase and a nucleic acid-binding protein. The sequences of the 5' end of the capR (lon) gene DNA and N-terminal end of the CapR protein were determined. The sequence of DNA that specifies the N-terminal portion of the CapR protein was identified by comparing the amino acid sequence of the CapR protein with the sequence predicted from the DNA. The DNA and protein sequences established that the mature protein is not processed from a precursor form. No sequence corresponding to an SOS box was found in the 5' sequence of DNA. There were sequences that corresponded to a putative -35 and -10 region for RNA polymerase binding. The capR (lon) gene was recently identified as one of 17 heat shock genes in Escherichia coli that are positively regulated by the product of the htpR gene. A comparison of the 5' DNA region of the capR gene with that of several other heat shock genes revealed possible consensus sequences.  相似文献   

12.
13.
lon gene product of Escherichia coli is a heat-shock protein   总被引:30,自引:15,他引:15  
The product of the pleiotropic gene lon is a protein with protease activity and has been tentatively identified as protein H94.0 on the reference two-dimensional gel of Escherichia coli proteins. Purified Lon protease migrated with the prominent cellular protein H94.0 in E. coli K-12 strains. Peptide map patterns of Lon protease and H94.0 were identical. A mutant form of the protease had altered mobility during gel electrophoresis. An E. coli B/r strain that is known to be defective in Lon function contained no detectable H94.0 protein under normal growth conditions. Upon a shift to 42 degrees C, however, the Lon protease was induced to high levels in K-12 strains and a small amount of protein became detectable at the H94.0 location in strain B/r. Heat induction of Lon protease was dependent on the normal allele of the regulatory gene, htpR, establishing lon as a member of the high-temperature-production regulon of E. coli.  相似文献   

14.
15.
N Tojo  S Inouye    T Komano 《Journal of bacteriology》1993,175(14):4545-4549
Myxococcus xanthus contains two genes (lonV and lonD) homologous to the Escherichia coli lon gene for an ATP-dependent protease. We found that the lonD gene encodes a 90-kDa protein consisting of 827 amino acid residues. The lonD gene product shows 49, 48, and 52% sequence identity to the products of the M. xanthus lonV, E. coli lon, and Bacillus brevis lon genes, respectively. When a lonD-lacZ fusion was used, lonD was expressed during both vegetative growth and development. However, while lonD-disrupted strains were able to grow normally vegetatively, the development of M. xanthus was found to be arrested at an early stage in these strains. The mutant strains were able to form neither fruiting bodies nor myxospores.  相似文献   

16.
17.
A Fibrobacter succinogenes S85 gene that encodes endoglucanase hydrolysing CMC and xylan was cloned and expressed in Escherichia coli DH5 by using pUC19 vector. Recombinant plasmid DNA from a positive clone hydrolysing CMC and xylan was designated as pCMX1, harboring 2,043 bp insert. The entire nucleotide sequence was determined, and an open-reading frame (ORF) was deduced. The nucleotide sequence accession number of the cloned gene sequence in Genbank is U94826. The endoglucanase gene cloned in this study does not have amino sequence homology to the other endoglucanase genes from F. succinogenes S85, but does show sequence homology to family 5 (family A) of glycosyl hydrolases from several species. The ORF encodes a polypeptide of 654 amino acids with a measured molecular weight of 81.3 kDa on SDS-PAGE. Putative signal sequences, Shine-Dalgarno-type ribosomal binding site and promoter sequences (-10) related to the consensus promoter sequences were deduced. The recombinant endoglucanase by E. coli harboring pCMX1 was partially purified and characterized. N-terminal sequences of endoglucanase were Ala-Gln-Pro-Ala-Ala, matched with deduced amino sequences. The temperature range and pH for optimal activity of the purified enzyme were 55 approximately 65 degrees C and 5.5, respectively. The enzyme was most stable at pH 6 but unstable under pH 4 with a K(m) value of 0.49% CMC and a V(max) value of 152 U/mg.  相似文献   

18.
19.
20.
A bacteriophage T4 gene which functions to inhibit Escherichia coli Lon protease has been identified. This pin (proteolysis inhibition) gene was selected for its ability to support plaque formation by a lambda Ots vector at 40 degrees C. Southern blot experiments indicated that this T4 gene is included within the 4.9-kilobase XbaI fragment which contains gene 49. Subcloning experiments showed that T4 gene 49.1 (designated pinA) is responsible for the ability of the Ots vector to form plaques at 40 degrees C. Deficiencies in Lon protease activity are the only changes known in E. coli that permit lambda Ots phage to form plaques efficiently at 40 degrees C. lon+ lysogens of the lambda Ots vector containing pinA permitted a lambda Ots phage to form plaques efficiently at 40 degrees C. Furthermore, these lysogens, upon comparison with similar lysogens lacking any T4 DNA, showed reduced levels of degradation of puromycyl polypeptides and of canavanyl proteins. The lon+ lysogens that contained pinA exhibited other phenotypic characteristics common to lon strains, such as filamentation and production of mucoid colonies. Levels of degradation of canavanyl proteins were essentially the same, however, in null lon lysogens which either contained or lacked pinA. We infer from these data that the T4 pinA gene functions to block Lon protease activity; pinA does not, however, appear to block the activity of proteases other than Lon that are involved in the degradation of abnormal proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号