首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nonhuman primate models of atherosclerosis   总被引:2,自引:0,他引:2  
  相似文献   

2.
3.
Nonhuman primate models of menopause workshop   总被引:1,自引:0,他引:1  
The Nonhuman Primate Models of Menopause Workshop was held on the National Institutes of Health campus in January 2001. The purpose of this workshop, sponsored by the National Institute on Aging, was to review what is known about the female reproductive aging process in various species of monkeys (particularly rhesus, baboons, cynomolgus, and chimpanzees), including hormone profiles during the menopausal transition, occurrence of hot flashes, extent of age-related and menopause-associated changes in hormone levels on metabolism, bone loss, and impaired cardiovascular and cognitive function. Many aspects of the female reproductive aging process appear to be concordant between humans and these monkey species, but several important features may be species-specific. Those features that appear to parallel human menopause and aging include general similarity of hormone profiles across the menopausal transition, progression to cycle termination through irregular cycles, declining fertility with age, age-related gains in weight and percentage body fat content (with tendencies toward insulin resistance and glucose intolerance), increased low-density lipoprotein cholesterol and decreased high-density lipoprotein cholesterol, declines in serum dehydroepiandrosterone, similarities in temperature-regulation systems, protective responses to estrogen replacement following ovariectomy in terms of bone metabolism, lipid profiles, and cognitive changes. Important differences include relatively short postmenopausal life span, timing in menopause-related changes in hormone secretion, and seasonal menstrual cycles. In addition, the question of whether ovariectomy in young adults is an appropriate model for the consequences of natural or surgical menopause in middle-aged and older adults is unresolved, and the numbers of older female animals available for research on menopause are very limited. The use of animal models is seen by workshop participants to be crucial for a mechanistic understanding of the human menopausal process and its connections to postmenopausal health problems; however, extensive in-depth and broad-based research is required to determine if nonhuman primates are appropriate models of human menopause.  相似文献   

4.
5.
Nonhuman primate models of intrauterine cytomegalovirus infection   总被引:9,自引:0,他引:9  
Congenital human cytomegalovirus (HCMV) infection has long been recognized as a threat to the developing fetus, even though studies have shown that only a subset of congenital infections results in clinical signs of disease. Among the estimated 8000 children who develop sequelae from congenital CMV infection each year in the United States alone, most suffer permanent developmental defects within the central nervous system. Because there is currently no approved vaccine for HCMV, and anti-HCMV drugs are not administered to gravid women with congenital infection because of potential toxicity to the fetus, there is a clear clinical need for effective strategies that minimize infection in the mother, transplacental transmission of the virus, and/or fetal disease. Animal models provide a method to understand the mechanisms of HCMV persistence and pathogenesis, and allow for testing of novel strategies that limit prenatal infection and disease. The rhesus macaque model is especially well suited for these tasks because monkeys and humans share strong developmental, immunological, anatomical, and biochemical similarities due to their close phylogenetic relationship. This nonhuman primate model provides an invaluable system to accelerate the clinical development of promising new therapies for the treatment of human disease. This review addresses salient findings with the macaque model as they relate to HCMV infection and potential avenues of discovery, including studies of intrauterine CMV infection. The complexity of the natural history of HCMV is discussed, along with the ethical and logistical issues associated with studies during pregnancy, the recent contributions of animal research in this field of study, and future prospects for increasing our understanding of immunity against HCMV disease.  相似文献   

6.
7.
The recent success of "steroid-free" immunosuppressive protocols and improvements in islet preparation techniques have proven that pancreatic islet transplantation (PIT) is a valid therapeutic approach for patients with type 1 diabetes. However, there are major obstacles to overcome before PIT can become a routine therapeutic procedure, such as the need for chronic immunosuppression, the loss of functional islet mass after transplantation requiring multiple islet infusion to achieve euglycemia without exogenous administration of insulin, and the shortage of human tissue for transplantation. With reference to the first obstacle, stable islet allograft function without immunosuppressive therapy has been achieved after tolerance was induced in diabetic primates. With reference to the second obstacle, different strategies, including gene transfer of antiapoptotic genes, have been used to protect isolated islets before and after transplantation. With reference to the third obstacle, pigs are an attractive islet source because they breed rapidly, there is a long history of porcine insulin use in humans, and there is the potential for genetic engineering. To accomplish islet transplantation, experimental opportunities must be balanced by complementary characteristics of basic mouse and rat models and preclinical large animal models. Well-designed preclinical studies in primates can provide the quality of information required to translate islet transplant research safely into clinical transplantation.  相似文献   

8.
Insulin-dependent diabetes mellitus is an autoimmune disease that causes a progressive destruction of the pancreatic beta cells. As a result, the patient requires exogenous insulin to maintain normal blood glucose levels. Both the pancreas and the islets of Langerhans have been transplanted successfully in humans and in animal models, resulting in full normalization of glucose homeostasis. However, insulin independence, transient or persistent, was documented in only a small fraction of cases until recently. The chronic immunosuppression required to avoid immunological rejection appears to be toxic to the islets and adds the risk of lymphoproliferative disease reported earlier. For islet transplantation to become the method of choice, it is essential first to identify islet-friendly immunosuppressive regimens and/or to develop methods that induce donor-specific tolerance and improve islet isolation and transplantation protocols. Indeed, researchers have already successfully allografted islets in the presence of nonsteroidal immunosuppression in a process known as the Edmonton protocol. An alternative method, gene therapy, could replace these other methods and better meet the insulin requirement of an individual without requiring pancreatic or islet transplantation. This alternative, however, requires animal models to develop and test clinical protocols and to demonstrate the feasibility of preclinical trials. Nonhuman primates are ideally suited to achieve these goals. The efforts toward developing a nonhuman primate diabetic model with demonstrable insulin dependence are discussed and include pancreatic and islet transplant trials to reverse the diabetic state and achieve insulin independence. Also described are the various protocols that have been tested in primates to circumvent immunosuppression by using tolerance induction strategies in lieu of immunosuppression, thus exploring the field of donor-specific tolerance that extends beyond islet transplantation.  相似文献   

9.
Nonhuman primates, primarily rhesus macaques (Macaca mulatta), cynomolgus macaques (Macaca fascicularis), and baboons (Papio spp.), have been used extensively in research models of solid organ transplantation, mainly because the nonhuman primate (NHP) immune system closely resembles that of the human. Nonhuman primates are also frequently the model of choice for preclinical testing of new immunosuppressive strategies. But the management of post-transplant nonhuman primates is complex, because it often involves multiple immunosuppressive agents, many of which are new and have unknown effects. Additionally, the resulting immunosuppression carries a risk of infectious complications, which are challenging to diagnose. Last, because of the natural tendency of animals to hide signs of weakness, infectious complications may not be obvious until the animal becomes severely ill. For these reasons the diagnosis of infectious complications is difficult among post-transplant NHPs. Because most nonhuman primate studies in organ transplantation are quite small, there are only a few published reports concerning infections after transplantation in nonhuman primates. Based on our survey of these reports, the incidence of infection in NHP transplant models is 14%. The majority of reports suggest that many of these infections are due to reactivation of viruses endemic to the primate species, such as cytomegalovirus (CMV), polyomavirus, and Epstein-Barr virus (EBV)-related infections. In this review, we address the epidemiology, pathogenesis, role of prophylaxis, clinical presentation, and treatment of infectious complications after solid organ transplantation in nonhuman primates.  相似文献   

10.
The adenovirus type 5 (Ad5)-based vaccine developed by Merck failed to either prevent HIV-1 infection or suppress viral load in subsequently infected subjects in the STEP human Phase 2b efficacy trial. Analogous vaccines had previously also failed in the simian immunodeficiency virus (SIV) challenge-rhesus macaque model. In contrast, vaccine protection studies that used challenge with a chimeric simian-human immunodeficiency virus (SHIV89.6P) in macaques did not predict the human trial results. Ad5 vector-based vaccines did not protect macaques from infection after SHIV89.6P challenge but did cause a substantial reduction in viral load and a preservation of CD4+ T cell counts after infection, findings that were not reproduced in the human trials. Although the SIV challenge model is incompletely validated, we propose that its expanded use can help facilitate the prioritization of candidate HIV-1 vaccines, ensuring that resources are focused on the most promising candidates. Vaccine designers must now develop T cell vaccine strategies that reduce viral load after heterologous challenge.  相似文献   

11.
12.
Research into the pathogenesis of Parkinson's disease has been rapidly advanced by the development of animal models. Initial models were developed by using toxins that specifically targeted dopamine neurons, the most successful of which used 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a toxin that causes parkinsonism in man. More recently, the identification of alpha-synuclein mutations as a rare cause of Parkinson's disease has led to the development of alpha-synuclein transgenic mice and Drosophila. Here, I discuss the merits and limitations of these different animal models in our attempts to understand the physiology of Parkinson's disease and to develop new therapies.  相似文献   

13.
Animal models of Parkinson's disease   总被引:32,自引:0,他引:32  
Animal models are important tools in experimental medical science to better understand pathogenesis of human diseases. Once developed, these models can be exploited to test therapeutic approaches for treating functional disturbances observed in the disease of interest. On the basis of experimental and clinical findings, Parkinson's disease (PD) was the first neurological disease to be modeled and, subsequently, to be treated by neurotransmitter replacement therapy. Agents that selectively disrupt or destroy catecholaminergic systems, such as reserpine, methamphetamine, 6-hydroxydopamine and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine have been used to develop PD models. Recently, it has been found that agricultural chemicals, such as rotenone and paraquat, when administered systemically, can reproduce specific features of PD in rodents, apparently via oxidative damage. Transgenic animals that over-express alpha-synuclein are used to study the role of this protein in dopaminergic degeneration. This review critically discusses animal models of PD and compares them with characteristics of the human disease.  相似文献   

14.
Animal models of Parkinson's disease (PD) have been widely used in the past four decades to investigate the pathogenesis and pathophysiology of this neurodegenerative disorder. These models have been classically based on the systemic or local (intracerebral) administration of neutoxins that are able to replicate most of the pathological and phenotypic features of PD in mammals (i.e. rodents or primates). In the last decade, the advent of the 'genetic era' of PD has provided a phenomenal enrichment of the research possibilities in this field, with the development of various mammalian (mice and, more recently, rats) and non-mammalian transgenic models that replicate most of the disease-causing mutations identified for monogenic forms of familial PD. Both toxic and transgenic classes of animal PD models have their own specificities and limitations, which must be carefully taken into consideration when choosing the model to be used. If a substantial and reproducible nigrostriatal lesion is required (e.g. for testing therapeutic interventions aimed at counteracting PD-related cell death), a classic toxic model such as one based on the administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine or 6-hydroxydopamine will adequately serve the purpose. On the other hand, if selected molecular mechanisms of PD pathogenesis must be investigated, transgenic models will offer invaluable insights. Therefore, until the 'perfect' model is developed, indications to use one model or another will depend on the specific objectives that are being pursued.  相似文献   

15.
Nonhuman primate Mhc-DRB sequences: a compilation   总被引:3,自引:3,他引:0  
  相似文献   

16.
The nonhuman primate is used extensively in biomedical research owing to its close similarities to human physiology and human disease pathophysiology. Recently, several groups have initiated efforts to genetically manipulate nonhuman primates to address complex questions concerning primate-specific development and physiological adaptation. Primates pose unique challenges to transgenesis and, although this field is still in its infancy, the potential for obtaining new insights into primate physiology and gene function is unprecedented. This review focuses on the methods and potential applications of genetically altered nonhuman primates in biomedical research.  相似文献   

17.
Nonhuman primates (NHPs) are imported to the United States for use in research, domestic breeding, and propagation of endangered populations in zoological gardens. During the past 60 years, individuals responsible for NHP importation programs have observed morbidity and mortality typically associated with infectious disease outbreaks. These outbreaks have included infectious agents such as tuberculosis, Herpesvirus sp., simian hemorrhagic fever, and filovirus infections such as the Ebola and Marburg viruses. Some outbreaks have affected both animal and human populations. These epizootics are attributable to a variety of factors, including increased population density, exposure of na?ve populations to new infectious agents, and stress. The practice of quarantining animals arriving in the United States was first applied by individual research programs to improve animal health and ensure the quality of animals entering research programs. The development of government regulations for nonhuman primate quarantine accompanied the recognition that imported NHPs could pose a risk to public health. This article briefly reviews the history of US NHP importation and the factors behind the development of NHP quarantine regulations. The focus is on regulations concerned with infectious disease, public health, and the health of domestic primate colonies. These regulations have had the dual benefit of protecting public health as well as reducing animal morbidity and mortality during importation and quarantine. We review current practices and facilities for nonhuman primate quarantine and identify challenges for the future.  相似文献   

18.
James E. Hixson 《Genetica》1987,73(1-2):85-90
Nonhuman primates are particularly useful as animal models for common human diseases in which both genetic and environmental factors play important roles. The recent development of DNA markers (restriction fragment length polymorphisms, RFLPs) greatly increases the power of linkage analysis to detect major genes that affect quantitative phenotypes, including those related to diseases. This paper summarizes a strategy for using RFLPs in linkage analysis of baboon pedigrees to identify genes that control lipoprotein phenotype, which in turn is predictive of susceptibility to atherosclerosis. This strategy also can be applied to other common human diseases for which nonhuman primate models exist.  相似文献   

19.
New animal models for Parkinson's disease   总被引:2,自引:0,他引:2  
Dawson TM 《Cell》2000,101(2):115-118
  相似文献   

20.
Parkinson's disease: mechanisms and models   总被引:54,自引:0,他引:54  
Dauer W  Przedborski S 《Neuron》2003,39(6):889-909
Parkinson's disease (PD) results primarily from the death of dopaminergic neurons in the substantia nigra. Current PD medications treat symptoms; none halt or retard dopaminergic neuron degeneration. The main obstacle to developing neuroprotective therapies is a limited understanding of the key molecular events that provoke neurodegeneration. The discovery of PD genes has led to the hypothesis that misfolding of proteins and dysfunction of the ubiquitin-proteasome pathway are pivotal to PD pathogenesis. Previously implicated culprits in PD neurodegeneration, mitochondrial dysfunction and oxidative stress, may also act in part by causing the accumulation of misfolded proteins, in addition to producing other deleterious events in dopaminergic neurons. Neurotoxin-based models (particularly MPTP) have been important in elucidating the molecular cascade of cell death in dopaminergic neurons. PD models based on the manipulation of PD genes should prove valuable in elucidating important aspects of the disease, such as selective vulnerability of substantia nigra dopaminergic neurons to the degenerative process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号