首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A cysteine metalloproteinase that degrades 125I-insulin B chain at neutral pH values was isolated from C3H mouse liver. The enzyme was partially purified from the 100,000g supernatant fraction by ammonium sulfate precipitation, DEAE-cellulose chromatography, and fast protein liquid chromatography. The molecular weight of the proteinase was estimated to be 190,000 by gel filtration on Sephadex G-200. Degradation of 125I-insulin B chain by the proteinase was inhibited by p-hydroxymercuribenzoate (PHMB) and iodoacetate (cysteine proteinase inhibitors) and by ethylenediaminetetraacetic acid (EDTA) and 1,10-phenanthroline (metalloproteinase inhibitors). The proteinase also degraded 125I-glucagon but did not hydrolyze 125I-insulin, leucine-2-naphthylamide, or several large proteins. Equivalent levels of EDTA- and PHMB-inhibitable 125I-insulin B chain-degrading activity were observed in the 100,000g supernatant fractions of brain, liver, lung, kidney, heart, and spleen from four mouse strains (C3H/HeN, CBA/J, ICR, and C57BL/6). High levels of 125I-insulin B chain-degrading activity were found in the particulate fraction of kidneys and lungs from these four mouse strains; these activities were inhibited by EDTA but not by PHMB. The activity of the soluble liver cysteine metalloproteinase was not altered in C3H mice treated ip with metal chelators, bacterial endotoxin, phenobarbital, dexamethasone, or insulin. Starvation for 24 or 48 hr and alloxan-induced diabetes diminished total activity of this enzyme in liver by about 50 and 30%, respectively. This soluble polypeptide-degrading enzyme appears to be ubiquitous in mice and to be regulated by nutritional conditions.  相似文献   

2.
To identify proteinases involved in programmed cell death of the silk glands of Bombyx mori, we measured enzyme activities in silk gland homogenates. Several peptidyl-4-methylcoumaryl-7-amides (MCAs) and bovine hemoglobin were used as substrates in the presence and absence of proteinase inhibitors. The hydrolysis of t-butyloxycarbonyl-Phe-Ser-Arg-MCA (Boc-FSR-MCA), benzyloxy-carbonyl-Phe-Arg-MCA (Z-FR-MCA), and Z-Arg-Arg-MCA (Z-RR-MCA) was optimal at pH 5.5, 5.0, and 5.5, respectively. It was stimulated by the sulfhydryl compounds or EDTA and inhibited by both cysteine proteinase inhibitors and a cathepsin B-specific inhibitor, l-3-trans-(propyl-carbamoyl)oxirane-2-carbonyl)-L-isoleucyl-L-prolin (CA-074). The hemoglobin hydrolysis at the optimum pH 3.5 was inactivated by cysteine proteinase inhibitors, but stimulated slightly by pepstatin. The cleavage of Arg-MCA (R-MCA) and Leu-MCA (L-MCA) at optimum pH of 7.0 was strongly inhibited by an aminopeptidase inhibitor, puromycin, and by sulfhydryl compounds. The Boc-FSR-MCA, Z-FR-MCA, Z-RR-MCA, and hemoglobin hydrolyzing activities increased in the silk glands dramatically after cocoon formation, while the R-MCA and L-MCA cleaving activities declined. The results strongly suggest the involvement of cathepsin B- and cathepsin L-like proteinases in the histolysis of the silk gland during metamorphosis.  相似文献   

3.
Silkworm moth (bombyx) egg cysteine proteinase with maximal activity at pH 3.0 was purified by chromatography and isoelectrofocusing. On SDS-electrophoresis in polyacrylamide gel the purified enzyme showed a single band of molecular mass 50 kD. Isoelectrofocusing revealed that the bombyx egg cysteine proteinase exists in two forms with pI values of 5.95 and 6.43, respectively. The enzyme activity was sensitive to inhibition by iodoacetamide and p-chloromercuribenzoate but resistant to EDTA, pepstatin, and phenylmethylsulfonyl fluoride. The cysteine proteinase hydrolyzes storage proteins of bombyx eggs but it was inactive with respect to N-benzoyl-D,L-arginine-p-nitroanilide (BAPNA). It is a cathepsin L-like enzyme.  相似文献   

4.
A cDNA clone designated OV7 encodes a polypeptide that corresponds to a highly antigenic Onchocerca volvulus protein. OV7 has significant amino acid sequence homology to the cystatin superfamily of cysteine proteinase inhibitors. In this report we establish that the OV7 recombinant protein is active as a cysteine proteinase inhibitor, and we have named it onchocystatin. It contains a cystatin-like domain that inhibits the activity of cysteine proteinases at physiological concentrations. Recombinant glutathione S-transferase-OV7 (GST-OV7, 1 microM) and maltose-binding protein-OV7 (MBP-OV7, 4 microM) fusion polypeptides inhibit 50% of the enzymatic activity of the bovine cysteine proteinase cathepsin B. Neither fusion polypeptide inhibits serine or metalloproteinases activity. The Ki for GST-OV7 fusion polypeptide is 170 nM for cathepsin B and 70 pM or 25 nM for cysteine proteinases purified from a protozoan parasite Entamoeba histolytica or the free living nematode Caenorhabditis elegans, respectively. The 5' end of the OV7 clone was isolated by polymerase chain reaction and sequenced, thus extending the previous cDNA clone to 736 base pairs. This represents the complete coding sequence of the mature onchocystatin (130 amino acids). A hydrophobic leader sequence of 32 amino acids was found, indicating a possible extracellular function of the onchocerca cysteine proteinase inhibitor.  相似文献   

5.
A predominant, heat-activated proteinase in muscle extract of arrowtooth flounder (Atheresthes stomias) was purified to 55-fold by heat treatment, followed by a series of chromatographic separations. The apparent molecular mass of the purified enzyme was 27 kDa by size exclusion chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The proteinase had high affinity and activity toward Z-Phe-Arg-NMec with K(m) and k(cat) values of 8.2 microM and 12.2/s, respectively. Activity was inhibited by sulfhydryl reagents and activated by reducing agents. The purified proteinase displayed optimal activity at pH 5.0-5.5 and 60 degrees C, respectively. Consistent with the properties of proteases from other species, the heat-activated proteinase in arrowtooth flounder can be identified as cathepsin L.  相似文献   

6.
Cysteine proteinase inhibitors isolated from rat and human epidermis were purified to homogeneity and had isoelectric points of pH 4.31 and pH 5.10, respectively, Both inhibitors caused noncompetitive inhibition to the same degree against papain (EC 3.4.22.2), but the activity of human inhibitor against rat liver cathepsins B (EC 3.4.22.1), H (EC 3.4.22.16), and L (EC 3.422.-) was more effective than that of rat inhibitor. Dependency on pH was observed with rat inhibitor for cathepsins B and H, and with human inhibitor for cathepsin L. The reaction of the inhibitors with papain and cathepsins H and L occurred immediately, while the inhibition reaction of cathepsin B increased progressively during a preincubation time up to 40 min. Incubation at pH 7.0 maximized the progressive inhibitory activity. These findings demonstrate that cysteine proteinase inhibitors from rat and human epidermis inhibited a variety of cysteine proteinases. However, the inhibitor and enzyme interaction depends upon the enzyme, inhibitor source, and experimental conditions such as pH and preincubation time.  相似文献   

7.
A cysteine proteinase from purulent sputum was partially purified by a method involving affinity chromatography on Sepharose-aminohexanoylphenylalanylglycinaldehyde semicarbazone. It was immunologically related to lysosomal cathepsin B from human liver and was similar in many, but not all, other aspects. It was catalytically active, as demonstrated by active-site-directed radioiodination, and hydrolysed three cathepsin B substrates, two with Km values similar to those of lysosomal cathepsin B. In addition, the rates of inactivation of the sputum and lysosomal forms of the enzyme by L-3-carboxy-2,3-transepoxypropionyl-leucylamido(4-guanidino) butane (Compound E-64) were very similar. However, the sputum enzyme differed from lysosomal cathepsin B in the following respects. Inhibition by chicken cystatin was much weaker for sputum cathepsin B than for the lysosomal enzyme. Sputum cathepsin B had greater stability at pH 7.5 and a higher apparent Mr, even after deglycosylation, than lysosomal cathepsin B. We conclude that the form of cathepsin B found in sputum is probably a truncated form of human procathepsin B, with some differences in properties that could be of physiological importance.  相似文献   

8.
9.
采用阴离子交换层析法,从棉铃虫Helicoverpa armigera卵母细胞中分离纯化到一种半胱氨酸蛋白酶,SDS-PAGE电泳显示为一条带,分子量约为29 kD,原位水解电泳表明其具有蛋白水解活性。对其进行了部分氨基酸序列测定,初步确定这种蛋白酶属于半胱氨酸蛋白酶类中的组织蛋白酶B类。  相似文献   

10.
The extracellular proteinase produced by a depressed strain of Serratia marcescens ATCC 25419 was purified and characterized. This produces more than 10-times the amount of extracellular proteinase produced by other strains of Serratia tested. The purified enzyme was prepared from the culture supernatant by (NH4)2SO4 fractionation and DEAE-cellulose chromatography. The purified enzyme has an so20,w of 3.95 and is a monomer of molecular weight 51,900. The proteinase has a broad pH optimum in the alkaline range with a maximum at pH 9.5. The enzyme will utilize a number of proteins as substrate. The products of digestion are primarily in the size range of tripeptides to hexapeptides. Peptides containing a sensitive bond and a minimum size of size amino acids are hydrolyzed. The proteinase is inhibited by chelating agents but unaffected by sulfhydryl or serine reagents and is devoid of esterase activity.  相似文献   

11.
Cathepsin M: a lysosomal proteinase with aldolase-inactivating activity   总被引:3,自引:0,他引:3  
A proteinase, designated cathepsin M, that catalyzes the limited modification and inactivation of fructose 1,6-bisphosphate aldolase (EC 4.1.2.13) and fructose 1,6-bisphosphatase (EC 3.1.3.11) has been partially purified from rabbit liver. On the basis of its molecular size (Mr = 30,000), activation by sulfhydryl compounds and inhibition by leupeptin it has been characterized as a B-type cathepsin, but other properties distinguish it from cathepsins B, L, and H. Approximately 50% of the total cathepsin M activity is associated with membranes prepared from disrupted lysosomes; this fraction of the activity is also expressed by intact lysosomes. In the membrane-bound form the enzyme is active at neutral pH, but the soluble enzyme and the activity eluted from the membranes are maximally active at pH 5.0. Fasting increases the activity of cathepsin M; the increase is almost entirely in the membrane-bound fraction.  相似文献   

12.
Cysteine proteinases are key virulence factors of Entamoeba histolytica that are released during the process of invasion. We used a chemical mutant of E. histolytica strain HM-1:IMSS, clone L6, which is deficient in virulence, phagocytosis, and cysteine proteinase activity to help define the mechanisms of cysteine proteinase release. All cysteine proteinase genes of wild type HM-1 were present in the L6 mutant genome, but three of the major expressed proteinases, ehcp1, ehcp2, and ehcp5 were both transcribed, translated, and released at lower levels in L6. We hypothesized that a central protein such as the calcium binding protein 1, EhCaBP1, which is required for both phagocytosis and exocytosis might be deficient in this mutant. We found that both mRNA and proteinase levels of EhCaBP1 were decreased in L6. These findings provide an important link between phagocytosis, passive release of multiple cysteine proteinases, and attenuated virulence of this E. histolytica mutant.  相似文献   

13.
In electrophoretic analyses, extracts of Xenopus laevis neurulae exhibited activities digesting yolk proteins maximally at pH4.8. These activities were completely inhibited by a mixture of pepstatin A and Z-Phe-Phe-CHN2, thus being identifiable as cathepsin D and cysteine proteinase. The electrophoretic profiles of yolk proteins cleaved by embryonic extracts changed at gastrula stages; the profile before stage 13 was the same as that given by cathepsin D treatment and the profile at stage 13 was a combination of the profile given by cathepsin D treatment and that given by cysteine proteinase treatment. Quantitative measurement of enzyme activities showed that the cathepsin D activity that was preserved from the beginning of development increased from stages 13 to 25 and decreased thereafter, whereas the cysteine proteinase activity appeared at stage 13, gradually increased until stage 35 and strongly increased thereafter. Immunoblot analyses showed that the 43 kDa form of cathepsin D was processed to its 36 kDa form, presumably by cysteine proteinase. This change can explain the increase of cathepsin D activity at stage 13 and thereafter. Immunofluorescent staining with the antibody against cysteine proteinase occurred in mesodermal and ectodermal cells other than neural ones at stages 13–24, and in the endodermal cells at stages 24–36. Faint staining in the neural ectoderm persisted from stages 18 to 36. Immunoelectron microscope observation showed that what stained was the superficial layer of yolk platelets. All these results indicate that cysteine proteinase plays a key role in the initiation of yolk digestion during embryonic development.  相似文献   

14.
The partial purification of two intracellular proteinases from the protozoan parasite Entamoeba histolytica is reported. One of these enzymes is an acid proteinase exhibiting maximum activity at pH 3.5 (hemoglobin substrate), is little affected by a range of inhibitors or activators, and is presumed to be similar to cathepsin D. Also present is a neutral proteinase exhibiting optimum activity at pH 6.0 (azocasein) but only poorly hydrolyzing either hemoglobin or serum albumen. This latter enzyme displayed no metal ion requirement, but was markedly inhibited by thiol-blocking agents and activated by free sulhydryl-containing compounds.  相似文献   

15.
Cysteine proteinases and in particular cysteine proteinase 5 (EhCP5) of Entamoeba histolytica are considered important for ameba pathogenicity. To study EhCP5 in more detail a protocol was elaborated to produce considerable amounts of the enzyme in its active form. The protein was expressed in Escherichia coli as a histidine-tagged pro-enzyme and purified to homogeneity under denaturing conditions in the presence of guanidine-HCl using nickel affinity chromatography. Renaturation was performed by 100-fold dilution in a buffer containing reduced and oxidized thiols, which led to soluble but enzymatically inactive pro-enzyme. Further processing and activation was achieved in the presence of 10 mM DTT and 0.04% SDS at 37 degrees C. Recombinant enzyme (rEhCP5) was indistinguishable from native EhCP5 purified from E. histolytica lysates. Both runs in SDS-PAGE under reducing and nonreducing conditions at positions corresponding to 27 and 29 kDa, respectively, had the same pH optima and displayed similar specific activity against azocasein. Moreover, both enzymes were active against a broad spectrum of biological and synthetic substrates such as mucin, fibrinogen, collagen, human hemoglobin, bovine serum albumin, gelatin, human IgG, Z-Arg-Arg-pNA, and Z-Ala-Arg-Arg-pNA, but not against Z-Phe-Arg-pNA. The identity of rEhCP5 as a cysteine proteinase was confirmed by inhibition with specific cysteine proteinase inhibitors. In contrast, various compounds known to specifically inhibit aspartic, metallo, or serine proteinases had no effect on rEhCP5 activity.  相似文献   

16.
Lysates of Trypanosoma cruzi epimastigotes were able to hydrolyze casein (Km = 2.5 mg/ml) as well as bovine and human hemoglobins (Km = 12.2 mg/ml); there was optimum activity was around pH 7.0. The proteinase activity detected with these substrates was enhanced by sodium diaminotetraacetate (EDTA) and reducing agents (SO2?3, mercaptoethanol, cysteine) and was inhibited by sulfhydryl reagents, thus suggesting an SH-dependent enzyme. Purification (60×) of the proteinase was carried out as follows: (1) precipitation at ?20 C, pH 4.5, with 80% acetone, (2) gel filtration on Sephadex G-200, (3) affinity chromatography on Sepharose 4B covalently linked to p-aminophenyl mercuric acetate. Only a single component (with an estimated molecular weight of 60,000) was detected in purified preparations by polyacrylamide gel electrophoresis. However, in addition to the major component identified as a proteinase, crossed immunoelectrophoresis experiments indicated the presence of at least three other antigens that apparently were devoid of proteinase activity. Optimum pH activity of the purified preparations was around pH 6.0 for casein and pH 3.0 for hemoglobins, but these activities probably are due to the one enzyme since they were altered identically by the same agents.  相似文献   

17.
We have purified the human low molecular mass cysteine proteinase inhibitor in good yield from amniotic fluid, using ultrafiltration through 100-kDa and 1-kDa cut-off filters, chromatography on Ultrogel AcA 54, and affinity chromatography on alkylated papain-agarose. Approximately 1-4 mg/l of this inhibitor are present in amniotic fluid. The purified inhibitor had an apparent molecular mass of 10.5-12 kDa, as judged by its electrophoretic behavior. Amino acid analysis showed it to be rich in acidic and aliphatic residues and in cysteine. No carbohydrate side-chains could be demonstrated. The purified inhibitor inhibited papain, ficin, cathepsins B, C, and H, the cathepsin B-like enzyme from B16 melanoma cells, and a bovine chromaffin granule enkephalin-converting activity. No inhibition of Ca2-dependent neutral cysteine proteinase, serine- or metallo-proteinases was seen. Analysis of the purified inhibitor by isoelectric focusing revealed 7 major bands with pI values of 7.95, 7.0, 6.7, 6.55, 6.25, 5.5, and 5.2, all of which inhibited papain.  相似文献   

18.
A low-Mr tight binding proteinase inhibitor was purified from bovine muscle by alkaline denaturation of cysteine proteinases, gel filtration on Sephadex G-75 and affinity chromatography on carboxymethyl-papain-Sepharose. Chromatofocusing separated three isoforms which are similar in their Mr of about 14 000, their stability with heating at 80 degrees C and their inhibitory activity towards cathepsin H, cathepsin B and papain. The equilibrium constants (Ki) were determined for these three cysteine proteinases but for cathepsin H, association (kass) and dissociation (kdiss) rate constants were also evaluated. Ki values of 56 nM and 8.4 nM were found for cathepsin B and cathepsin H, respectively. For papain, Ki was in the range of 0.1-1 nM. The kinetic features of enzyme-inhibitor binding suggest a possible role for this low-Mr protein inhibitor in controlling 'in vivo' cathepsin H proteolytic activity. With regard to cathepsin B, such a physiological role was less evident.  相似文献   

19.
Cysteine-proteinase activity was observed in homogenates of human-cadaver renal cortex. This activity co-purified with renin enzymic activity until separation by aminohexyl-Sepharose--pepstatin affinity chromatography. The cysteine proteinase was purified 1780-fold after the following successive chromatographic procedures: Sephadex G-75, DEAE-cellulose DE-52, and an organomercurial affinity resin. The proteinase activity was dependent upon activation by thiol-containing compounds such as dithiothreitol, as well as by EDTA, and was inhibited by the thiol-group-specific alkylating reagents iodoacetic acid and N-ethylmaleimide. DE-52 cellulose chromatography resolved the cysteine proteinase into two components. On the basis of molecular size (26 000 daltons), activity as a function of pH, stability as a function of pH, substrate specificity and thermal lability, the major component (95%) has been identified as cathepsin B. The DE-52 cellulose elution pattern of the minor component (5%) is suggestive of cathepsin H [Schwartz & Barrett (1980) Biochem. J. 191, 487-497] Enzymic activity was determined with synthetic substrates, in particular alpha-N-benzoyl-DL-arginine 2-naphthylamide (Bz-Arg-NNap), thus precluding the detection of cathepsin L [Kirschke, Langner, Wiederanders, Ansorge, Bohley & Broghammer (1976) Acta Biol. Med. Germ. 35, 285-299]. Inhibition by dimethyl sulphoxide was observed in the determination of Km = 7.0 +/- 0.4 mM for the substrate Bz-Arg-NNap, and care must therefore be taken in the preparation of substrate solutions.  相似文献   

20.
Cysteine proteases are important virulence factors of Entamoeba histolytica, the causative agent of amoebiasis. A novel cysteine protease from parasite extracts was purified 15-fold by a procedure including concanavalin A-Sepharose, hydroxylapatite and DEAE-Sepharose chromatography. The purification resulted in the obtainment of an homogeneous protein with a molecular mass of 66 kDa on native PAGE. In 10% SDS/PAGE, three bands of 60, 54 and 50 kDa were evident. Each of the three specific mouse antisera raised against these proteins showed cross-reactivity with the three bands obtained from the purified eluate. The N-terminal sequencing of the first 10 amino acids from the three proteins showed 100% identity. These results support the hypothesis of a common precursor for the 60, 54 and 50-kDa proteins. Protease activity of the purified enzyme was demonstrated by electrophoresis in a gelatine-acrylamide copolymerized gel. Its activity was quantified by cleaving a synthetic fluorogenic peptide substrate such as N-carbobenzyloxy-arginyl-arginyl-7-amido-4-methylcoumarin. The optimum pH for the protease activity was 6.5; however, enzymatic activity was observed between pH 5 and pH 7.5. Typical of cysteine proteases, the enzyme was inhibited by 4-[(2S, 3S)-carboxyoxiran-2-ylcarbonyl-L-leucylamido]butylg uanidine and iodoacetamide, and activated by free sulfhydryl groups. The cellular location of the enzyme was examined on trophozoites before and after contact with red blood cells using indirect immunofluorescence and cellular fractionation. The 60-kDa cysteine protease translocated to the amoebic surface upon the interaction of trophozoites with red blood cells. This result provided evidence for participation of the 60-kDa protease in erythrophagocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号