首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: We have previously shown that the basal acetylcholine release in the ventral striatum is under the enhancing influence of endogenous nitric oxide (NO) and that NO donors cause pronounced increases in the acetylcholine release rate. To investigate the role of cyclic GMP, glutamate, and GABA in the NO-induced acetylcholine release, we superfused the nucleus accumbens, (Nac) of the anesthetized rat with various compounds through a push-pull cannula and determined the neurotransmitter released in the perfusate. Superfusion of the Nac with the NO donors diethylamine/NO (DEANO; 100 µmol/L), S-nitroso-N-acetylpenicillamine (SNAP; 200 µmol/L), or 3-morpholinosydnonimine (SIN-1; 200 µmol/L) enhanced the acetylcholine release rate. The guanylyl cyclase inhibitor 1H-(1,2,4)-oxodiazolo(4,3-a)quinoxalin-1-one (ODQ; 10 µmol/L) abolished the effects of DEANO and SIN-1. 6-(Phenylamino)-5,8-quinolinedione (LY-83583; 100 µmol/L), which also inhibits cyclic GMP synthesis, inhibited the releasing effects of DEANO and of SNAP, whereas the effect of SIN-1 on acetylcholine release was not influenced. The DEANO-induced release of acetylcholine was also abolished in the presence of 20 µmol/L 6,6-dinitroquinoxaline-2,3-dione (DNQX) and 10 µmol/L (±)-2-amino-5-phosphonopentanoic acid (AP-5). Simultaneous superfusion with 50 µmol/L quinpirole and 10 µmol/L 7-bromo-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (SKF 83566) was ineffective. Superfusion with 500 µmol/L DEANO decreased the release of acetylcholine. The inhibitory effect of 500 µmol/L DEANO was reversed to an enhanced release on superfusion with 20 µmol/L bicuculline. Bicuculline also enhanced the basal release rate. These findings indicate that cyclic GMP mediates the NO-induced release of acetylcholine by enhancing the outflow of glutamate. Dopamine is not involved in this process. Only high concentrations of NO increase the output of GABA, which in turn decreases acetylcholine release. Our results suggest that cells that are able to release glutamate, such as glutamatergic neurons, are the main target of NO in the Nac.  相似文献   

2.
3.
The specific activities of Complexes I‐III, II‐III, and IV of the respiratory chain, and citrate synthase, were determined in mitochondrial sonicates of six control passage 5 fibroblast cultures, cultivated in growth medium containing fetal calf serum as the only source of ascorbate. The enzymes were also assayed in serially subcultured fibroblasts which were characterized as aged at passage 20 and beyond. Results indicated a significant loss of all enzyme activities in aged cells at passage 20, 25, and 30. Further studies involved maintenance of serially subcultured cells in serum free media to which increasing ascorbate concentrations (100, 200, and 300 µmol 1?1) were added. Results indicated that ascorbate at 100 µmol 1?1 was not sufficient to restore any of the enzyme activities in aged cells. An ascorbate concentration of 200 µmol 1?1 however, could totally restore Complex IV and citrate synthase activities, but had no effect on complexes I‐III and II‐III activities which required 300 µmol 1?1 ascorbate to be partially or totally restored respectively. In conclusion, this study demonstrates an age related drop in mitochondrial respiratory chain activity in cultured human fibroblasts. Enzyme activities could be completely or partially restored in the presence of double or triple normal human plasma ascorbate concentrations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
α-Lipoic acid (α-LA), an antioxidant used for diabetic polyneuropathy, was reported to induce AMP-activated protein kinase activation and reductions in insulin secretion in pancreatic beta-cells at high concentrations (≥ 500 µmol/l). This study investigated whether α-LA has a protective role under oxidative stress in beta-cells and its effect is dose-related. In INS-1 cells treated with α-LA (150-1200 µmol/l) for 24 h, α-LA itself (≥300 µmol/l) induced apoptotic death dose-dependently. However, pre-treatment with 150 and 300 µmol/l α-LA reduced the hydrogen peroxide-induced apoptosis in INS-1 cells and isolated islets. α-LA alleviated hydrogen peroxide-induced reactive oxygen species production, mitochondrial membrane depolarization and c-JNK activation in beta-cells. α-LA induced phosphoinositide 3-kinase-dependent Akt phosphorylation in INS-1 cells. While α-LA is harmful to beta-cells at high concentrations in vitro, it has potential cytoprotective effects on beta-cells under oxidative stress as in diabetes by its antioxidant properties and possibly by Akt phosphorylation at clinically relevant concentrations.  相似文献   

5.
This paper describes a new technique for the determination of captopril in pharmaceutical formulations, implemented by employing multicommuted flow analysis. The analytical procedure was based on the reaction between hypochlorite and captopril. The remaining hypochlorite oxidized luminol that generated electromagnetic radiation detected using a homemade luminometer. To the best of our knowledge, this is the first time that this reaction has been exploited for the determination of captopril in pharmaceutical products, offering a clean analytical procedure with minimal reagent usage. The effectiveness of the proposed procedure was confirmed by analyzing a set of pharmaceutical formulations. Application of the paired t‐test showed that there was no significant difference between the data sets at a 95% confidence level. The useful features of the new analytical procedure included a linear response for captopril concentrations in the range 20.0–150.0 µmol/L (r = 0.997), a limit of detection (3σ) of 2.0 µmol/L, a sample throughput of 164 determinations per hour, reagent consumption of 9 µg luminol and 42 µg hypochlorite per determination and generation of 0.63 mL of waste. A relative standard deviation of 1% (n = 6) for a standard solution containing 80 µmol/L captopril was also obtained. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
The effects of salinity, light intensity and sediment on Gracilaria tenuistipitata C.F. Chang & B.M. Xia on growth, pigments, agar production, and net photosynthesis rate were examined in the laboratory under varying conditions of salinity (0, 25 and 33 psu), light intensity (150, 400, 700 and 1000 µmol photons m?2 s?1) and sediment (0, 0.67 and 2.28 mg L?1). These conditions simulated field conditions, to gain some understanding of the best conditions for cultivation of G. tenuistipitata. The highest growth rate was at 25 psu, 700 µmol photons m?2 s?1 with no sediments, that provided a 6.7% increase in weight gain. The highest agar production (24.8 ± 3.0 %DW) was at 25 psu, 150–400 µmol photons m?2 s?1 and no sediment. The highest pigment contents were phycoerythrin (0.8 ± 0.5 mg g?1FW) and phycocyanin (0.34 ± 0.05 mg g?1 FW) produced in low light conditions, at 150 µmol photons m?2 s?1. The highest photosynthesis rate was 161.3 ± 32.7 mg O2 g?1 DW h?1 in 25 psu, 400 µmol photons m?2 s?1 without sediment in the short period of cultivation, (3 days) and 60.3 ± 6.7 mg O2 g?1 DW h?1 in 25 psu, 700 µmol photons m?2 s?1 without sediment in the long period of cultivation (20 days). The results indicated that salinity was the most crucial factor affecting G. tenuistipitata growth and production. This would help to promote the cultivation of Gracilaria cultivation back into the lagoon using these now determined baseline conditions. Extrapolation of the results from the laboratory study to field conditions indicated that it was possible to obtain two crops of Gracilaria a year in the lagoon, with good yields of agar, from mid‐January to the end of April (dry season), and from mid‐July to the end of September (first rainy season) when provided sediment was restricted.  相似文献   

7.
8.
The aim of this study was to evaluate the antioxidant and anti-acetylcholinesterase properties and phytochemical constituents of the latex from Euphorbia dendroides L. (Euphorbiaceae) growing wild in Sicily. Phytochemical analysis revealed that into E. dendroides latex the triterpenoids were the most abundant among the identified compounds. Furthermore, a high content of polyphenols mainly as phenolic acids, was found. The antioxidant and free-radical scavenging properties, by several in vitro assays such as DPPH, TEAC and FRAP, have been evaluated. The results showed that E. dendroides latex has significant antioxidant activity, as measured by DPPH assay (2927.01?±?98.03 µmols of Trolox equivalent (TE)/100g FW). Reactivity towards ABTS radical cation and ferric-reducing antioxidant power (FRAP) values were 7580.95?±?97.65 µmols of TE/100g FW and 4383.13?±?95.30?μmol of TE/100g FW, respectively. The latex exhibited also significant inhibition of acetylcholinesterase activity with an IC50 value of 4.46 µg/mL (C.L.?=?2.002–9.947). Furthermore, Brine shrimp (Artemia salina) cytotoxicity bioassay showed that the larvae viability was significantly affected at higher concentrations than those capable to induce significant antioxidant and anti-acetylcholinesterase effects (LD50 25 µg/mL). The results suggest that polyphenols and terpenoids can contribute significantly to antioxidant and anti-acetylcholinesterase activities of E. dendroides latex.  相似文献   

9.
. This study shows that it is possible to propagate Helleborus niger by means of in vitro cloning. Universal (U) medium has been used for the in vitro culture. This medium was created by Haensch as a universal medium to meet the average nutritional requirements of many different plants. Apical buds of H. niger seedlings were established on U-medium supplemented with 8.9 µmol/l 6-benzylaminopurine (BAP) and 2.7 µmol/l !-naphthaleneacetic acid. Propagation was carried out on U-medium supplemented with 2.2 µmol/l BAP and 2.9 µmol/l gibberellic acid. The highest rooting success rate of 96.7% was achieved by adding 4.9 µmol/l indole-3-butyric acid to the medium. Shooting and rooting were dependent on the seedling cloned. More than 80% of the in vitro plants survived and thrived in the greenhouse.  相似文献   

10.
African violet (Saintpaulia ionantha H. Wendl) is one of the most easily and commonly tissue-cultured ornamental plants. Despite this, there are limited reports on photosynthetic capacity and its impact on the plant quality during acclimatization. Various growth, photosynthetic and biochemical parameters and activities of antioxidant enzymes and dehydrins of micropropagated plants were assessed under three light intensities (35, 70, and 100 µmol m?2 s?1 photosynthetic photon flux density – PPFD). Fresh and dry plant biomass, plant height, and leaf area were optimal with high irradiance (70–100 µmol m?2 s?1 PPFD). Chlorophyll and carotenoid contents and net photosynthesis were optimal in plants grown under 70 µmol m?2 s?1 PPFD. Stomatal resistance, malondialdehyde content, and Fv/Fm values were highest at low light irradiance (35 µmol m?2 s?1 PPFD). The activities of three antioxidant enzymes, superoxide dismutase, catalase, and glutathione peroxidase, increased as light irradiance increased, signaling that high light irradiance was an abiotic stress. The accumulation of 55, 33, and 25 kDa dehydrins was observed with all light treatments although the expression levels were highest at 35 µmol m?2 s?1 PPFD. Irradiance at 70 µmol m?2 s?1 PPFD was suitable for the acclimatization of African violet plants. Both low and high irradiance levels (35 and 100 µmol m?2 s?1 PPFD) induced the accumulation of antioxidants and dehydrins in plants which reveals enhanced stress levels and measures to counter it.  相似文献   

11.
Abstract

Impact of root Cd concentration on production of cysteine, non-protein thiols (NP-SH), glutathione (GSH), reduced glutathione (GSSG), and phytochelatins (PCs) in Eichhornia crassipes exposed to different dilutions of brass and electroplating industry effluent (25%, 50%, and 75%), and synthetic metal solutions of Cd alone (1, 2.5, and 3.5?ppm) and with Cr (1?ppm Cd + 1?ppm Cr, 2.5?ppm Cd + 3?ppm Cr, and 3.5?ppm Cd + 4?ppm Cr) was assessed in a 45?days study. Different treatments were used to understand and compare differential antioxidant defense response of plant under practical drainage (effluent) and experimental synthetic solutions. The production of NP-SH and cysteine was maximum under 2.5?ppm Cd + 3?ppm Cr treatments i.e., 1.78?µmol/g fw and 288?nmol/g fw, respectively. The content of GSH declined whereas that of GSSG increased progressively with exposure duration in all treatments. HPLC chromatograms revealed that the concentrations of PC2, PC3, and PC4 (248, 250, and 288?nmol-SH equiv.g?1 fw, respectively) were maximum under 1?ppm Cd, 1?ppm Cd + 1?ppm Cr, and 2.5?ppm Cd + 3?ppm Cr treatments, respectively. PC2, PC3, and PC4 concentrations increased with Cd accumulation in the range 812–1354?µg/g dry wt, 1354–2032?µg/g dry wt and 2032–3200?µg/g dry wt, respectively. Thus, the study establishes a direct proportionality relationship between concentration/length of phytochelatins and root Cd concentrations, upto threshold limits, in E. crassipes.  相似文献   

12.
We aimed to evaluate the mutagenic effect of Anilofos, organophosphate pesticide, by using Ames/Salmonella/microsome test. Its cytotoxic and genotoxic effects were also determined by chromosome aberration (CA), sister chromatid exchange (SCE) and micronucleus (MN) test in human peripheral blood lymphocytes. In the Ames test, five different concentrations of Anilofos were examined on TA97, TA98, TA100 and TA102 strains in the absence and presence of S9 fraction. According to the results all concentrations of this pesticide have not shown any mutagenic activity on TA97, TA100 and TA102 strains in the absence and presence of S9 fraction. But, 10, 100 and 1000 µg/plate concentrations of Anilofos were determined to be mutagenic on TA98 strain without S9 fraction. Lymphocytes were treated with various concentrations (25, 50, 100 and 200 µg/ml) of Anilofos for 24 and 48 h. The results of the assays showed that Anilofos did not induce SCE frequency, replication index and MN formation at all concentrations for both treatment periods. Anilofos significantly increased CA frequency at 100 and 200 µg/ml concentrations at 24 h treatment periods and at 50, 100 and 200 µg/ml concentrations in 48 h treatment periods. Additionally, it was determined that this pesticide decreased mitotic index and nuclear division index significantly. It was concluded that Anilofos has genotoxic and cytotoxic effects in human peripheral lymphocytes.  相似文献   

13.
In vitro cultures of Leucojum aestivum are considered as an alternative for the production of galanthamine, which is used for the symptomatic treatment of Alzheimer’s disease. We studied the effects of auxins 2,4-dichlorophenoxyacetic acid (2,4-D), 4-amino-3,5,6-trichloropicolinic acid (picloram), 3,6-dichloro-o-anisic acid (dicamba) at concentrations of 25 and 50 µM on the induction of embryogenic callus and its capacity to induce somatic embryogenesis and alkaloid accumulation. The embryogenic response of the explants was from 30% for 25 µM of dicamba to 100% for picloram (for both 25 and 50 µM). 2,4-D (50 µM) stimulated greater callus proliferation and somatic embryo induction as compared to the other auxins. Polyethylene glycol (PEG) stimulated somatic embryo maturation. Callus grown on media containing 50 µM of auxins produced fewer phenolic compounds as compared with callus grown on media containing 25 µM of auxins. GC-MS analyses showed seven alkaloids in the in vivo bulbs and two to four in callus culture. Galanthamine was detected in callus cultivated with 2,4-D (25, 50 µM), picloram (25 µM), and dicamba (50 µM). Other alkaloids, trisphaeridine, tazettine, and 11-hydroxyvittatine were accumulated only in callus growing on medium with picloram (50 µM).  相似文献   

14.
Lung cancer is one of the major cause for high-death rate all over the world, due to increased metastasize and difficulties in diagnosis. Naringenin is naturally occurring flavonoid found in various fruits including tomatoes, citrus fruit and figs. Naringenin is known to have several therapeutic effects including anti-atherogenic, antimicrobial, anti-inflammatory, hepatoprotective, anticancer and anti-mutagenic. The present study was aimed to analyse the naringenin induced anti-proliferative and apoptosis effects in human lung cancer cells. Cells were treated with various concentrations of naringenin (10, 100 & 200 µmol/L) for 48 hours. Cisplatin (20 µg/mL) was used as positive control. Cell viability, apoptosis, migration and mRNA, and protein expression of caspase-3, matrixmetallo proteinases-2 (MMP-2) and MMP-9 were determined. The cell viability was 93.7 ± 7.5, 51.4 ± 4.4 and 32.1 ± 2.1 at 10, 100 and 200 µmol/L of naringenin respectively. Naringenin significantly increased apoptotic cells. The 100 and 200 µmol/L of naringenin significantly suppressed the larger wounds of cultured human cancer cells compared with the untreated lung cancer cells. Naringenin increased d the expression of caspase-3 and reduced the expression of MMP-2 and MMP-9. Taking all these data together, it is suggested that the naringenin was effective against human lung cancer proliferation, migration and metastasis.  相似文献   

15.
Photoinhibition is a significant constraint for improvement of radiation-use efficiency and yield potential in cereal crops. In this work, attached fully expanded leaves of seedlings were used to assay the factors determining photoinhibition and for evaluation of tolerance to photoinhibition in wheat (Triticum aestivum L.). Our results showed that even 1 h under PPFD of 600 µmol(photon) m?2 s?1 could significantly reduce maximal quantum yield of PSII photochemistry (Fv/Fm) and performance index (PI) compared to low light [300 µmol(photon) m?2 s?1]. The decrease of Fv/Fm and PI was more noticeable with the increase of light intensity; irradiance higher than 800 µmol(photon) m?2 s?1 resulted in photoinhibition. Compared to 25°C, lower (20°C) or higher temperature (≥ 35°C) aggravated photoinhibition, while slightly high temperature (28°) alleviated photoinhibition. At 25°C, irradiance of 1,000 µmol(photon) m–2 s–1 for 1 h was enough to cause photoinhibition and a significant decrease of Fv/Fm, PI, trapped energy flux, electron transport flux, and density of reaction center as well as increase of dissipated energy flux per cross section were observed. In addition, seedlings at 21–32 days after planting showed a relatively stable phenotype, while the younger or older seedlings indicated an increased susceptibility to photoinhibition, especially in senescing leaves. Finally, six wheat varieties with relative tolerance to photoinhibition were identified from 22 Chinese winter wheat varieties by exposing attached leaves of the 25-d old seedlings for 1 h to 1,000 µmol(photon) m–2 s–1 at 25°C. Therefore, our work established a possible method for development of new wheat varieties with enhanced tolerance to photoinhibition.  相似文献   

16.
The growth (fresh weight), morphogenesis (leaves, roots and shoots) and essential oil composition of mint (Mentha sp. L.) and thyme (Thymus vulgaris L.) plants were determined after 8 weeks under 350, 1,500, 3,000, 10,000 and 30,000 µmol mol-1 CO2. Plants were grown in vitro on basal medium (BM) consisting of Murashige and Skoog salts and 0.8% agar that contained either 0 or 3% sucrose under a 16-h (day)/8-h (night) photoperiod at a light intensity of 180 µmol s-1 m-2 or in soil in a greenhouse under conditions of natural sunlight. Ultra-high CO2 levels (i.e. ́,000 µmol mol-1 CO2) substantially increased fresh weights, leaves, shoots and roots for all plants compared to plants grown under ambient air (350 µmol mol-1 CO2) both in vivo and in vitro. For both species, 10,000 µmol mol-1 CO2 was the optimum concentration to obtain the largest growth and morphogenesis responses under in vitro conditions, while the 3,000- to 10,000-µmol mol-1 CO2 range provided the largest yields for soil-grown plants. Essential oil composition (i.e. monoterpenes, piperitonone oxide and limonene from mint and aromatic phenol and thymol from thyme) from the shoot portion of plants grown at all CO2 levels was analyzed in CH2Cl2 extracts via gas chromatography. Higher levels of secondary compounds occurred in vitro when cultures were grown under ultra-high CO2 levels than in ambient air. The concentration of thymol, a major secondary compound in thyme plants grown on BM containing sucrose, was 317-fold higher at 10,000 µmol mol-1 CO2 than in plants grown under ambient air conditions with the same BM. The levels of secondary compound in in-vitro-grown plantlets exposed to ultra-high CO2 concentrations exceeded those occurring in plants grown in the greenhouse under the same CO2 levels. Substantially higher levels of secondary compound occurred in plants under ultra-high CO2 levels on BM containing sucrose than on BM lacking sucrose or in soil. Thymol levels in thyme plants grown on BM containing sucrose were 3.9-fold higher at 10,000 µmol mol-1 CO2 than in shoots grown on BM without sucrose under the same CO2 levels. High positive correlations occurred between thymol concentrations and CO2 levels, fresh weights, shoots, roots and leaves when thyme shoots were grown on BM with sucrose. High positive correlations for thyme shoots grown on BM without sucrose only occurred between thymol concentrations and CO2 levels, fresh weights, shoots and leaves. No positive correlations between thymol concentrations and CO2 levels or any growth or morphogenesis responses occurred for thyme shoots when grown in soil.  相似文献   

17.

Thalictrum foliolosum is an endemic herb known for its medicinal properties and used for various clinical applications including ophthalmic, skin disease and dyspepsia. Due to its medicinal properties, the plants are uprooted hence can be prone to extinction. In the present study, a reproducible in vitro propagation protocol has been developed using axillary shoot buds and nodal segments. Seedling derived axillary shoot buds were cultured in Murashige and Skoog’s (MS) medium supplemented with 2.24 µmol of 6-benzylaminopurine (BAP) and readily produced maximum shoot (7.2?±?0.40) with the highest percentage of response (91.42%). Also, nodal explants (field-grown plant) developed maximum shoots (3.2?±?0.48) on MS medium containing 4.49 µmol BAP with a combination of 0.54 µmol α-naphthaleneacetic acid (NAA). Best growth and foliage development was achieved at 2.24 µmol BAP with 0.54 µmol NAA in presence of 0.3% activated charcoal and 113.4 µmol ascorbic acid. Micropropagated shoots showed maximum percentage (63.30%) of rooting in half-strength MS medium containing 1.23 µmol indole-3-butyric acid (IBA) and acclimatized in soilrite and leaf manure (2:1) during 4 weeks. Monomorphic bands developed by random amplification of polymorphic DNA (RAPD) and simple sequence repeats (SSR) markers confirmed the genetic stability of in vitro established plants. Additionally, HPLC analysis showed higher benzylisoquinoline (BIQ) alkaloids content in in vitro established plant root extracts. The micropropagation protocol developed in this study provides an alternative strategy for germplasm conservation and protection which at the same time can also be exploits for the production of pharmacologically active compounds.

  相似文献   

18.
In roach Rutilus rutilus growth ceases below a temperature threshold of 12° C. This cessation of growth is accompanied by a reduction in feeding. Do roach decrease feeding in the cold because of reduced energy demand, caused by the decelerating effect of low temperature on metabolism and growth, or is feeding directly limited by low temperatures, leading to reduced growth rates? It was found that at low temperatures the intake and digestion of food may be limited by reduced activities of digestive enzymes. Trypsin, amylase and γ‐glutamyl transferase showed a negative compensation with respect to temperature, resulting in very low activities at acclimation temperatures of ≤12° C. Trypsin activity, falling from 400·5 ± 131·2 U g?1 fresh mass of the gut at 27° C to 12·5 U g?1 fresh mass at 4° C, displayed the strongest linear correlation with growth rates, suggesting that trypsin activities may set a limit to growth in the low temperature range. If protein digestion is limiting at low temperatures, this should be reflected in reduced concentrations of amino acid in the white muscle. The size of the total amino acid pool was not affected by temperature acclimation and ranged between 19·2 ± 6·2 and 25·2 ± 3·6 µmol g?1 fresh mass of the white muscle. A decrease, however, was found of several amino acids, mainly of threonine and glutamine, in the low temperature range. Low concentrations of the essential amino acid threonine (0·14 ± 0·03 µmol g?1 fresh mass at 12° C and 0·12 ± 0·05 µmol g?1 fresh mass at 4° C) were probably due to nutritional or digestional limitations and may therefore have resulted from reduced trypsin activity in the cold. The non‐essential amino acid glutamine, however, can be endogenously synthesized and its low level observed at 4° C (0·16 ± 0·09 µmol g?1 fresh mass) was not necessarily a result of low trypsin activities. It is more likely that low temperatures impair glutamine synthesis. The possibility that glutamine concentrations may be down regulated under conditions when anabolic processes are not advantageous is discussed.  相似文献   

19.
The ketone bodies (KBs) D‐3‐hydroxybutyrate (D‐3HB) and acetoacetate (AcAc) play a role in starvation and have been associated with insulin resistance. The dose–response relationship between insulin and KBs was demonstrated to be shifted to the right in type 2 diabetes patients. However, KB levels have also been reported to be decreased in obesity. We investigated the metabolic adaptation to fasting with respect to glucose and KB metabolism in lean and obese men without type 2 diabetes using stable glucose and D‐3HB isotopes in a two‐step pancreatic clamp after 38 h of fasting. We found that D‐3HB fluxes in the basal state were higher in lean compared to obese men: 15.2 (10.7–27.1) vs. 7.0 (3.5–15.1) µmol/kg lean body mass (LBM)·min, respectively, P < 0.01. No differences were found in KB fluxes between lean and obese volunteers during the pancreatic clamp (step 1: 6.9 (1.8–12.0) vs. 7.4 (4.2–17.8) µmol/kg LBM·min, respectively; and step 2: 2.9 (0–7.2) vs. 3.4 (0.85–18.7) µmol/kg LBM·min, respectively), despite similar plasma insulin levels. Meanwhile, peripheral glucose uptake was higher in lean compared to obese men (step 1: 15.2 (12.3–25.6) vs. 14.7 (11.9–22.7) µmol/kg LBM·min, respectively, P ≤ 0.05; and step 2: 12.5 (7.0–17.3) vs. 10.8 (5.2–15.0) µmol/kg LBM·min, respectively, P ≤ 0.01). These data show that obese subjects who display insulin resistance on insulin‐mediated peripheral glucose uptake have the same sensitivity for the insulin‐mediated suppression of ketogenesis. This implies differential insulin sensitivity of intermediary metabolism in obesity.  相似文献   

20.
How are microphytobenthic biofilms adapted to the high incident irradiances and temperatures, low inorganic nutrient concentrations and high desiccation stresses on intertidal flats present in tropical environments? This study investigated biofilms subject to different environmental conditions in a range of tropical sites in Suva lagoon, Fiji. PAM fluorescence was used to measure photophysiological responses to the light climate. Biofilm colloidal carbohydrate, extracellular polymeric substances (EPS) and low molecular weight (MW) carbohydrate concentrations and diel carbohydrate production patterns were measured. Average biomass (Chl a) ranged from 15 to 36?mg?m?2, and was highest in seagrass bed sediments, but biomass was not correlated with water column or sediment porewater nutrient concentrations. Biofilm photophysiology differed significantly along a combined gradient of light and nutrient availability, with F v/F m, relative ETRmax and E k of biofilms highest in mangrove and intertidal main island sites and lowest in subtidal coral reef flats. Subtidal biofilms showed photoinhibition at irradiances > 1000?µmol?m?2. Significant correlations between Chl a and colloidal carbohydrate concentrations were present (except on intertidal sandflats), and tropical biofilms had higher ratios of colloidal carbohydrate and EPS to Chl a than temperate estuarine biofilms, probably due to a combination of high irradiance and low nutrient availability leading to the production of excess photoassimilates. The percentage of EPS present in the colloidal fraction was highest in coral sand biofilms (42%), which had the lowest nutrient concentrations, compared with other sites (25–32%). Intertidal biofilms predominantly consisted of large motile taxa and showed strong rhythms of vertical migration. During tidal emersion, high sediment temperatures (41?°C), irradiance (>2300?µmol?m?2?s?1) and salinity (49‰) stimulated downward migration. In silty sediments, migration resulted in a reduction in photosynthetic activity during the midday period but, in sands with high light penetration (to a depth of > 1700?µm), high production rates of EPS (18.2?µg carbo. µg Chl a?1 h?1) and low MW carbohydrate exudates (40.2?µg carbo. µg Chl a?1 h?1) occurred. Vertical migration, high E k and high rates of photoassimilate dumping are all adaptations to living in the tropical intertidal zone. Seagrass and reef flat biofilms consisted of a diverse non-migratory flora of motile and non-motile taxa that were not subject to such extreme temperature and irradiance conditions. Low values of photosynthetic parameters and high colloidal and EPS content indicated that these biofilms were nutrient-limited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号