首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pathogenesis of rheumatoid arthritis is mainly driven by NF-κB-mediated production of cytokines, such as TNF-α. We report herein that the orally available imidazoline-based NF-κB inhibitor, TCH-013, was found to significantly reduce TNF-α signaling and attenuate collagen antibody induced arthritis in BALB/c mice.  相似文献   

2.
The pathologic processes of rheumatoid arthritis are mediated by a number of cytokines, chemokines, and matrix metalloproteinases, the expressions of which are controlled by NF-κB. This study was performed to explore the effects of a benzothiazole analog, SPA0537, on the control of the NF-κB activation pathway. We also investigated whether SPA0537 had any anti-inflammatory effects in human rheumatoid fibroblast-like synoviocytes (FLS). SPA0537 inhibited the nuclear translocation and the DNA binding of NF-κB subunits, which correlated with the inhibitory effects on IKK phosphorylation and IκBα degradation in TNF-α-stimulated rheumatoid FLS. These events further suppressed chemokine production, matrix metalloproteinase secretion, and TNF-α-induced cell proliferation. In addition, SPA0537 inhibited the osteoclast differentiation induced by macrophage colony-stimulating factor (MCSF) and receptor activator of the NF-κB ligand (RANKL) in bone marrow macrophages. These findings suggest that SPA0537 exerts anti-inflammatory effects in rheumatoid FLS through the inhibition of the NF-κB pathway. Therefore, it may have therapeutic value for the treatment of rheumatoid arthritis.  相似文献   

3.
Subtilase cytotoxin (SubAB) that selectively cleaves BiP/GRP78 triggers the unfolded protein response (UPR) and protects mice from endotoxic lethality and collagen arthritis. We found that pretreatment of cells with SubAB suppressed tumor necrosis alpha (TNF-α)-induced activation of NF-κB and NF-κB-dependent chemokine expression. To elucidate underlying mechanisms, the involvement of C/EBP and Akt, putative regulators of NF-κB, was investigated. Among members of the C/EBP family, SubAB preferentially induced C/EBPβ. Overexpression of C/EBPβ suppressed TNF-α-induced NF-κB activation, and knockdown of C/EBPβ attenuated the suppressive effect of SubAB on NF-κB. We identified that the ATF6 branch of the UPR plays a crucial role in the induction of C/EBPβ. In addition to this effect, SubAB depressed basal and TNF-α-induced phosphorylation of Akt via the UPR. It was mediated by the induction of ATF6 and consequent activation of mTOR that dephosphorylated Akt. Inhibition of Akt attenuated activation of NF-κB by TNF-α, suggesting that the mTOR-Akt pathway is another target for SubAB-initiated, UPR-mediated NF-κB suppression. These results elucidated that SubAB blunts activation of NF-κB through ATF6-dependent mechanisms, i.e., preferential induction of C/EBPβ and mTOR-dependent dephosphorylation of Akt.  相似文献   

4.
Osteogenesis associated with persistent inflammation or infection exists in a broad range of conditions including rheumatoid arthritis and traumatic bone fracture. The poor outcomes of these conditions will benefit from more effective treatments. Here we investigated the molecular mechanisms and tested NEMO-binding domain peptide as a new approach of circumventing TNF-α inhibition of osteoblast differentiation. Our results showed: TNF-α markedly decreased BMP-2-induced alkaline phosphatase activity in the multipotent myoblast C2C12 cells in a dose dependent manner; stepwise experiments demonstrated that BMP-2-induced Smad1 activity was abrogated by addition of exogenous TNF-α or overexpression of NF-κB, and it was significantly elevated by overexpression of IκBα, an inhibitor of NF-κB; Western blotting showed that TNF-α markedly decreased the amount of phospho-Smad1 in BMP-2-activated C2C12 cells, but it did not alter Smad1 mRNA abundance as measured by real-time PCR; addition of a functional cell-permeable NEMO-binding domain (NBD) peptide antagonized NF-κB activity and ameliorated TNF-α inhibition of osteoblast differentiation. Taken together, our study reveals for the first time that NF-κB activation inhibits osteoblast differentiation by attenuating Smad1 activity and application of NBD peptide ameliorates this inhibitory effect. This could lead to new therapeutic drugs that circumvent the inflammatory inhibition of osteogenesis for treatment of traumatic open fractures with infection, rheumatoid arthritis and other bone loss disorders.  相似文献   

5.
目的:探讨热休克蛋白(Hsp)72对类风湿关节炎患者滑膜细胞IL-6、IL-8表达的影响,从NFκ-B信号通路活化的角度阐明其作用机制。方法:原代培养类风湿关节炎患者的滑膜细胞;采用酶联免疫吸附试验(ELISA)法检测细胞培养上清中IL-6和IL-8的含量;采用Western blot检测滑膜细胞NFκ-B和ΙκBα蛋白的表达变化;采用免疫荧光技术检测NFκ-B核移位的变化。结果:Hsp72抑制TNFα-所诱导的IL-6和IL-8的生成;Hsp72抑制TNFα-所诱导NFκ-B在核内的表达和移位;Hsp72抑制TNFα-所诱导ΙκBα蛋白降解。结论:Hsp72可能通过抑制滑膜细胞IL-6、IL-8表达及抑制NF-κB信号通路活化而对类风湿关节炎发挥抗炎作用。  相似文献   

6.
Collagenase-3 (matrix metalloproteinase, MMP-13) plays an important role in the degradation of cartilage in pathologic conditions. MMP-13 is elevated in joint tissues in both rheumatoid arthritis (RA) and osteoarthritis (OA). In addition, inflammation-stimulated synovial fibroblasts are able to release MMP-13 and other cytokines in these diseases. The peroxisome proliferator-activated receptor-γ (PPARγ) ligands are recently considered as new anti-inflammatory compounds and these ligands were reported to ameliorate inflammatory arthritis. The aim of this study is to evaluate the mechanisms how PPARγ ligands inhibit the inflammatory response in synovial fibroblasts. Two PPARγ ligands, cyclopentenone prostaglandin 15-deoxy-Δ(12,14) -prostaglandin-J2 (15d-PGJ2) and synthetic thiazolidinedione compound ciglitazone were examined in this study. Here we found that 15d-PGJ2 and ciglitazone markedly inhibited TNF-α-induced MMP-13 production in human synovial fibroblasts. In addition, activation of nuclear factor κB (NF-κB) is strongly associated with MMP-13 induction by TNF-α and the activation of NF-κB was determined by Western blot, reporter assay, and immunofluorescence. It was found that 15d-PGJ2 markedly attenuated the translocation of NF-κB by direct inhibition of the activation of IKK via a PPARγ-independent manner. Ciglitazone also inhibits TNF-α-induced MMP-13 expression by suppressing NF-κB activation mainly via the modulation of p38-MAPK. Collectively, our data demonstrate that 15d-PGJ2 and ciglitazone attenuated TNF-α-induced MMP-13 expression in synovial fibroblasts primarily through the modulation of NF-κB signaling pathways. These compounds may have therapeutic application in inflammatory arthritis.  相似文献   

7.
Yan D  Peng W  Zhao X  Han X  Liu Q  Li P  Du B  Zhu X 《Protein and peptide letters》2012,19(2):212-218
In an earlier study, we found PBP inhibited the progress of adjuvant-induced arthritis (AA). This study was aimed at evaluating the inhibitory effects of PBP in terms of NF-κB activation by using immunohistochemical and immunofluorescent technique in vitro and in vivo. IL-1β and TNF-α in serum were detected by method of ELISA. Immunofluorescent results showed that PBP inhibited NF-κB p65 translocation into nucleus. In vivo imaging showed that treatment with PBP decreased the enzyme labeling signal of NF-κB p65. Immunohistochemical staining revealed that PBP suppressed production of NF-κB p65 subunit in the joints and attenuated the productions of IL-1β and TNF-α in serum from AA. Moreover, NF-κB p65 nucleus translocation was prevented by simultaneous incubation with PBP and PGE2 was decreased by PBP through a feedback cycle. We report the first confirmation of the mimotope of PGE2 receptor EP4 modulatory action.  相似文献   

8.
The acute-phase proinflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) demonstrate high-level expression and pleiotropic biological effects, and contribute to the progression and persistence of rheumatoid arthritis (RA). Acid hydrarthrosis is also an important pathological characteristic of RA, and the acid-sensing ion channel 1a (ASIC1a) plays a critical role in acidosis-induced chondrocyte cytotoxicity. However, the roles of IL-1β and TNF-α in acid-induced apoptosis of chondrocytes remain unclear. Rat adjuvant arthritis and primary articular chondrocytes were used as in vivo and in vitro model systems, respectively. ASIC1a expression in articular cartilage was increased and highly colocalized with nuclear factor (NF)-κB expression in vivo. IL-1β and TNF-α could upregulate ASIC1a expression. These cytokines activated mitogen-activated protein kinase and NF-κB pathways in chondrocytes, while the respective inhibitors of these signaling pathways could partially reverse the ASIC1a upregulation induced by IL-1β and TNF-α. Dual luciferase and gel-shift assays and chromatin immunoprecipitation-polymerase chain reaction demonstrated that IL-1β and TNF-α enhanced ASIC1a promoter activity in chondrocytes by increasing NF-κB DNA-binding activities, which was in turn prevented by the NF-κB inhibitor ammonium pyrrolidinedithiocarbamate. IL-1β and TNF-α also decreased cell viability but enhanced LDH release, intracellular Ca2+ concentration elevation, loss of mitochondrial membrane potential, cleaved PARP and cleaved caspase-3/9 expression, and apoptosis in acid-stimulated chondrocytes, which effects could be abrogated by the specific ASIC1a inhibitor psalmotoxin-1 (PcTX-1), ASIC1a-short hairpin RNA or calcium chelating agent BAPTA-AM. These results indicate that IL-1β and TNF-α can augment acidosis-induced cytotoxicity through NF-κB-dependent up-regulation of ASIC1a channel expression in primary articular chondrocytes.  相似文献   

9.
The microtubule cytoskeleton is known to play a role in cell structure and serve as a scaffold for a variety of active molecules in processes as diverse as motility and cell division. The literature on the role of microtubules in signal transduction, however, is marked by inconsistencies. We have investigated a well-studied signaling pathway, TNF-α-induced NF-κB activation, and found a connection between the stability of microtubules and the regulation of NF-κB signaling in C2C12 myotubes. When microtubules are stabilized by paclitaxel (taxol), there is a strong induction of NF-κB even in the absence of TNF-α . Although there was no additive effect of taxol and TNF-α on NF-κB activity suggesting a shared mechanism of activation, taxol strongly induced the NF-κB reporter in the presence of a TNF receptor (TNFR) blocking antibody while TNF-α did not. Both TNF-α and taxol induce the degradation of endogenous IκBα and either taxol or TNF-α induction of NF-κB activity was blocked by inhibitors of NF-κB acting at different sites in the signaling pathway. Both TNF-α and taxol strongly induce known NF-κB chemokine target genes. On the other hand, if microtubules are destabilized by colchicine, then the induction of NF-κB by TNF-α or taxol is greatly reduced. Taken together, we surmise that the activity of microtubules is at the level of the TNFR intracellular domain. This phenomenon may indicate a new level of signaling organization in cell biology, actively created by the state of the cytoskeleton, and has ramifications for therapies where microtubule regulating drugs are used.  相似文献   

10.
11.
Osteoclasts are responsible for bone resorption and play a pivotal role in the pathogenesis of osteolytic disorders. NF-κB is a set of nuclear factors that bind to consensus DNA sequences called κB sites, and is essential for osteoclast formation and survival. NF-κB signalling pathways are strictly regulated to maintain bone homeostasis by cytokines such as RANKL, TNF-α and IL-1, which differentially regulate classical and/or alternative NF-κB pathways in osteoclastic cells. These pathways are also modulated by NF-κB mediators, including TRAF6, aPKC, p62/SQSTM1 and deubiquitinating enzyme CYLD that are involved in the ubiquitin–proteasome system during RANK-mediated osteoclastogenesis. Abnormal activation of NF-κB signalling in osteoclasts has been associated with excessive osteoclastic activity, and frequently observed in osteolytic conditions, including periprosthetic osteolysis, arthritis, Paget's disease of bone, and periodontitis. NF-κB modulators such as parthenolide and NEMO-binding domain peptide demonstrate therapeutic effects on inflammation-induced bone destruction in mouse models. Unravelling the structure and function of NF-κB pathways in osteoclasts and other cell types will be important in developing new strategies for treatments of bone diseases.  相似文献   

12.
本研究检测了绝经后骨质疏松症妇女的肿瘤坏死因子-α(TNF-α)和雌激素水平,并探讨了TNF-α对破骨前体细胞RAW264.7中破骨细胞标志物核因子κB受体激活因子(nuclear factor kappa-B, RANK)、组织蛋白酶K (Cathepsin K, CTSK)和凝血酶受体激活肽(thrombin receptor activating peptide, TRAP)以及核因子-κB (NF-κB)亚基(p65)和NF-κB抑制蛋白(IκBα)的影响。研究结果表明,绝经后骨质疏松症患者的TNF-α水平显著升高,而雌二醇水平显著降低。核因子κB受体激活因子配体(receptor activator for NF-κBligand, RANKL)处理1周后,破骨前体细胞RAW264.7中破骨细胞标志物RANK、CTSK和TRAP的mRNA和蛋白高度表达。与RANKL对照组相比,TNF-α处理可上调RANK、CTSK和TRAP m RNA的表达。但是,仅TNF-α不能诱导培养的RAW264.7细胞分化为破骨细胞成。TNF-α以剂量依赖性方式诱导NF-κB亚基p65和IκBα磷酸化,而NF-κB抑制剂处理则有效降低了RANK和TRAP的表达。本研究结论表明,绝经后骨质疏松症中TNF-α通过激活NF-κB来促进RANKL诱导的破骨细胞形成。  相似文献   

13.
The role of viral hemorrhagic septicemia virus (VHSV) NV gene in nuclear factor-κB (NF-κB) activation was investigated. Epithelioma papulosum cyprini (EPC) cells pre-treated with tumor necrosis factor (TNF)-α showed a strong resistance against VHSV infection, but cells treated with TNF-α after VHSV infection showed no resistance, suggesting that immediate early TNF-α-mediated responses inhibit VHSV replication. Activation of NF-κB is a key step in TNF-α-mediated immunomodulatory pathways. In this study, activation of NF-κB by TNF-α exposure was inhibited in EPC cells harboring NV gene expressing vectors, indicating that the NV gene of VHSV can suppress TNF-α-mediated NF-κB activation. Furthermore, the NV gene knock-out recombinant VHSV (rVHSV-ΔNV-EGFP) induced significantly higher NF-κB activity in EPC cells than wild-type VHSV, suggesting that VHSV adopted a strategy to suppress early activation of NF-κB in host cells through and NV gene.  相似文献   

14.
15.
Tumor necrosis factor (TNF)-α, a homotrimeric, pleiotropic cytokine, is secreted in response to inflammatory stimuli in diseases such as rheumatoid arthritis and inflammatory bowel disease. TNF-α mediates both apoptosis and inflammation, stimulating an inflammatory cascade through the non-canonical pathway of NF-κB activation, leading to increased nuclear RelB and p52. In contrast, the common food additive carrageenan (CGN) stimulates inflammation through both the canonical and non-canonical pathways of NF-κB activation and utilizes the adaptor molecule BCL10 (B-cell leukemia/lymphoma 10). In a series of experiments, colonic epithelial cells and mouse embryonic fibroblasts were treated with TNF-α and carrageenan in order to simulate the possible effects of exposure to dietary CGN in the setting of a TNF-α-mediated inflammatory disease process. A marked increase in secretion of IL-8 occurred, attributable to synergistic effects on phosphorylated NF-κB-inducing kinase (NIK) in the non-canonical pathway. TNF-α induced the ubiquitination of TRAF2 (TNF receptor-associated factor 2), which interacts with NIK, and CGN induced phosphorylation of BCL10, leading to increased NIK phosphorylation. These results suggest that TNF-α and CGN in combination act to increase NIK phosphorylation, thereby increasing activation of the non-canonical pathway of NF-κB activation. In contrast, the apoptotic effects of TNF-α, including activation of caspase-8 and PARP-1 (poly(ADP-ribose) polymerase 1) fragmentation, were markedly reduced in the presence of CGN, and CGN caused reduced expression of Fas. These findings demonstrate that exposure to CGN drives TNF-α-stimulated cells toward inflammation rather than toward apoptotic cell death and suggest that CGN exposure may compromise the effectiveness of anti-TNF-α therapy.  相似文献   

16.
In the present study, we investigated whether omentin affected the expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in tumor necrosis factor-α (TNF-α) induced human umbilical vein endothelial cells (HUVECs). Our data showed that omentin decreased TNF-α-induced expression of ICAM-1 and VCAM-1 in HUVECs. In addition, omentin inhibited TNF-α-induced adhesion of THP-1 cells to HUVECs. Further, we found that omentin inhibited TNF-α-activated signal pathway of nuclear factor-κB (NF-κB) by preventing NF-κB inhibitory protein (IκBα) degradation and NF-κB/DNA binding activity. Omentin pretreatment significantly inhibited TNF-α-induced ERK activity and ERK phosphorylation in HUVECs. Pretreatment with PD98059 suppressed TNF-α-induced NF-κB activity. Omentin, NF-kB inhibitor (BAY11-7082) and ERK inhibitor (PD98059) reduced the up-regulation of ICAM-1 and VCAM-1 induced by TNF-α. These results suggest that omentin may inhibit TNF-α-induced expression of adhesion molecules in endothelial cells via blocking ERK/NF-κB pathway.  相似文献   

17.
目的:研究肿瘤坏死因子-α(Tumor necrosis factor-α,TNF-α)刺激大鼠骨髓间充质干细胞(marrow-derived mesenchymalstem cells,MSCs)的作用机制。方法:采取大鼠骨髓,以密度梯度离心分离出单个核细胞(MNCs),于体外培养并由牛垂体提取物(PEX)诱导扩增传代培养出骨髓间充质干细胞(MSCs)。经形态学和流式细胞仪检测MSCs表面标志物鉴定后,用TNF-α刺激骨髓间充质干细胞(MSCs),通过酶联免疫吸附剂测定法(enzyme linked immunosorbent assay,ELISA)观察比较不同组别细胞的生长因子分泌和蛋白印迹法(western blot)来观察细胞中蛋白的变化。结果:①经形态学观察和流式细胞仪检测MSCs表面标志物鉴定,提示骨髓间充质干细胞的培养成功。②无TNF-α刺激组与TNF-α刺激组比较,TNF-α刺激组的生长因子分泌显著性增加,而通过磷酸化IκB的表达量显著性增加提示NF-κB被激活(P〈0.05);同时TNF-α刺激组与TNF-α+NF-κB抑制剂组比较,TNF-α+NF-κB抑制剂组的生长因子分泌显著降低,而通过磷酸化IκB的表达量显著减少提示NF-κB的活性被抑制(P〈0.05)。结论:NF-κB对TNF-α刺激下的骨髓间充质干细胞分泌生长因子有关键性作用。  相似文献   

18.
19.
Cucurbitacin B, a natural triterpenoid is well-known for its strong anticancer activity, and recent studies showed that the compound inhibits JAK/STAT3 pathway. In this study, we demonstrate for the first time that cucurbitacin B is also a potent inhibitor of NF-κB activation. Our results showed that cucurbitacin B inhibited TNF-α-induced expression of NF-κB reporter gene and NF-κB target genes in a dose-dependent manner, however, it did not prevent either stimuli-induced degradation of IκBα or nuclear translocation and DNA-binding activity of NF-κB. On the other hand, cucurbitacin B dose-dependently suppressed not only NF-κB activation induced by overexpression of RelA/p65 but also transactivation activity of RelA/p65 subunit of NF-κB. Consistently, treatment of HeLa cells with the compound significantly suppressed TNF-α-induced activation of Akt and phosphorylation of Ser536 in RelA/p65, which is required for transactivation activity. Consequently, cucurbitacin B inhibited TNF-α-induced expression of NF-κB-dependent anti-apoptotic proteins such as c-IAP1, c-IAP2, XIAP, TRAF1, and TRAF2 and sensitized TNF-α-induced cell death. Taken together, our results demonstrated that cucurbitacin B could be served as a valuable candidate for the intervention of NF-κB-dependent pathological condition such as cancer.  相似文献   

20.
杨桂  喻明霞  范维  徐婷  陈浩 《生物磁学》2013,(30):5860-5863
目的:研究乳腺癌中细胞核因子-κB(nuclear factor-kappa B,NF-κB)的表达及其与肿瘤坏死因子-α(tumor necrosis factorα,TNF-α)的相关性。方法:采用免疫组织化学的方法检测67例原发乳腺癌组织中NF-κB和TNF-α的表达,检测NF-κB在癌旁正常组织、乳腺增生和乳腺癌中的表达情况,并分析NF-κB的表达与乳腺癌临床病理特征的关系以及NF-κB与TNF-α的相关性。结果:1)NF-κB在癌旁正常组织、乳腺增生和乳腺癌中表达的阳性率分别为20%(3/15)、33.3%(5/15)、79.1%(53/67);2)NF-κB的表达与年龄、肿瘤大小、组织学类型均无相关性(P〉0.05),与淋巴转移的有无及组织学分期有显著相关性(P〈0.05);3)NF-κB的表达与TNF-α呈显著正相关(P〈0.05)。结论:乳腺癌中NF-κB的表达显著增加且与其淋巴转移的有无及肿瘤组织学分期有显著相关性,与TNF-α呈显著正相关,对乳腺癌良恶性判断、诊断、靶向治疗及预后提供重要参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号