首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
An intracellular multiplication F (IcmF) family protein is a conserved component of a newly identified type VI secretion system (T6SS) encoded in many animal and plant-associated Proteobacteria. We have previously identified ImpLM, an IcmF family protein that is required for the secretion of the T6SS substrate hemolysin-coregulated protein (Hcp) from the plant-pathogenic bacterium Agrobacterium tumefaciens. In this study, we characterized the topology of ImpLM and the importance of its nucleotide-binding Walker A motif involved in Hcp secretion from A. tumefaciens. A combination of β-lactamase-green fluorescent protein fusion and biochemical fractionation analyses revealed that ImpLM is an integral polytopic inner membrane protein comprising three transmembrane domains bordered by an N-terminal domain facing the cytoplasm and a C-terminal domain exposed to the periplasm. impLM mutants with substitutions or deletions in the Walker A motif failed to complement the impLM deletion mutant for Hcp secretion, which provided evidence that ImpLM may bind and/or hydrolyze nucleoside triphosphates to mediate T6SS machine assembly and/or substrate secretion. Protein-protein interaction and protein stability analyses indicated that there is a physical interaction between ImpLM and another essential T6SS component, ImpKL. Topology and biochemical fractionation analyses suggested that ImpKL is an integral bitopic inner membrane protein with an N-terminal domain facing the cytoplasm and a C-terminal OmpA-like domain exposed to the periplasm. Further comprehensive yeast two-hybrid assays dissecting ImpLM-ImpKL interaction domains suggested that ImpLM interacts with ImpKL via the N-terminal cytoplasmic domains of the proteins. In conclusion, ImpLM interacts with ImpKL, and its Walker A motif is required for its function in mediation of Hcp secretion from A. tumefaciens.Many pathogenic gram-negative bacteria employ protein secretion systems formed by macromolecular complexes to deliver proteins or protein-DNA complexes across the bacterial membrane. In addition to the general secretory (Sec) pathway (18, 52) and twin-arginine translocation (Tat) pathway (7, 34), which transport proteins across the inner membrane into the periplasm, at least six distinct protein secretion systems occur in gram-negative bacteria (28, 46, 66). These systems are able to secrete proteins from the cytoplasm or periplasm to the external environment or the host cell and include the well-documented type I to type V secretion systems (T1SS to T5SS) (10, 15, 23, 26, 30) and a recently discovered type VI secretion system (T6SS) (4, 8, 22, 41, 48, 49). These systems use ATPase or a proton motive force to energize assembly of the protein secretion machinery and/or substrate translocation (2, 6, 41, 44, 60).Agrobacterium tumefaciens is a soilborne pathogenic gram-negative bacterium that causes crown gall disease in a wide range of plants. Using an archetypal T4SS (9), A. tumefaciens translocates oncogenic transferred DNA and effector proteins to the host and ultimately integrates transferred DNA into the host genome. Because of its unique interkingdom DNA transfer, this bacterium has been extensively studied and used to transform foreign DNA into plants and fungi (11, 24, 40, 67). In addition to the T4SS, A. tumefaciens encodes several other secretion systems, including the Sec pathway, the Tat pathway, T1SS, T5SS, and the recently identified T6SS (72). T6SS is highly conserved and widely distributed in animal- and plant-associated Proteobacteria and plays an important role in the virulence of several human and animal pathogens (14, 19, 41, 48, 56, 63, 74). However, T6SS seems to play only a minor role or even a negative role in infection or virulence of the plant-associated pathogens or symbionts studied to date (5, 37-39, 72).T6SS was initially designated IAHP (IcmF-associated homologous protein) clusters (13). Before T6SS was documented by Pukatzki et al. in Vibrio cholerae (48), mutations in this gene cluster in the plant symbiont Rhizobium leguminosarum (5) and the fish pathogen Edwardsiella tarda (51) caused defects in protein secretion. In V. cholerae, T6SS was responsible for the loss of cytotoxicity for amoebae and for secretion of two proteins lacking a signal peptide, hemolysin-coregulated protein (Hcp) and valine-glycine repeat protein (VgrG). Secretion of Hcp is the hallmark of T6SS. Interestingly, mutation of hcp blocks the secretion of VgrG proteins (VgrG-1, VgrG-2, and VgrG-3), and, conversely, vgrG-1 and vgrG-2 are both required for secretion of the Hcp and VgrG proteins from V. cholerae (47, 48). Similarly, a requirement of Hcp for VgrG secretion and a requirement of VgrG for Hcp secretion have also been shown for E. tarda (74). Because Hcp forms a hexameric ring (41) stacked in a tube-like structure in vitro (3, 35) and VgrG has a predicted trimeric phage tail spike-like structure similar to that of the T4 phage gp5-gp27 complex (47), Hcp and VgrG have been postulated to form an extracellular translocon. This model is further supported by two recent crystallography studies showing that Hcp, VgrG, and a T4 phage gp25-like protein resembled membrane penetration tails of bacteriophages (35, 45).Little is known about the topology and structure of T6SS machinery subunits and the distinction between genes encoding machinery subunits and genes encoding regulatory proteins. Posttranslational regulation via the phosphorylation of Fha1 by a serine-threonine kinase (PpkA) is required for Hcp secretion from Pseudomonas aeruginosa (42). Genetic evidence for P. aeruginosa suggested that the T6SS may utilize a ClpV-like AAA+ ATPase to provide the energy for machinery assembly or substrate translocation (41). A recent study of V. cholerae suggested that ClpV ATPase activity is responsible for remodeling the VipA/VipB tubules which are crucial for type VI substrate secretion (6). An outer membrane lipoprotein, SciN, is an essential T6SS component for mediating Hcp secretion from enteroaggregative Escherichia coli (1). A systematic study of the T6SS machinery in E. tarda revealed that 13 of 16 genes in the evp gene cluster are essential for secretion of T6S substrates (74), which suggests the core components of the T6SS. Interestingly, most of the core components conserved in T6SS are predicted soluble proteins without recognizable signal peptide and transmembrane (TM) domains.The intracellular multiplication F (IcmF) and H (IcmH) proteins are among the few core components with obvious TM domains (8). In Legionella pneumophila Dot/Icm T4SSb, IcmF and IcmH are both membrane localized and partially required for L. pneumophila replication in macrophages (58, 70, 75). IcmF and IcmH are thought to interact with each other in stabilizing the T4SS complex in L. pneumophila (58). In T6SS, IcmF is one of the essential components required for secretion of Hcp from several animal pathogens, including V. cholerae (48), Aeromonas hydrophila (63), E. tarda (74), and P. aeruginosa (41), as well as the plant pathogens A. tumefaciens (72) and Pectobacterium atrosepticum (39). In E. tarda, IcmF (EvpO) interacted with IcmH (EvpN), EvpL, and EvpA in a yeast two-hybrid assay, and its putative nucleotide-binding site (Walker A motif) was not essential for secretion of T6SS substrates (74).In this study, we characterized the topology and interactions of the IcmF and IcmH family proteins ImpLM and ImpKL, which are two essential components of the T6SS of A. tumefaciens. We adapted the nomenclature proposed by Cascales (8), using the annotated gene designation followed by the letter indicated by Shalom et al. (59). Our data indicate that ImpLM and ImpKL are both integral inner membrane proteins and interact with each other via their N-terminal domains residing in the cytoplasm. We also provide genetic evidence showing that ImpLM may function as a nucleoside triphosphate (NTP)-binding protein or nucleoside triphosphatase to mediate T6S machinery assembly and/or substrate secretion.  相似文献   

2.
3.
Legionella pneumophila is a ubiquitous inhabitant of environmental water reservoirs. The bacteria infect a wide variety of protozoa and, after accidental inhalation, human alveolar macrophages, which can lead to severe pneumonia. The capability to thrive in phagocytic hosts is dependent on the Dot/Icm type IV secretion system (T4SS), which translocates multiple effector proteins into the host cell. In this study, we determined the draft genome sequence of L. pneumophila strain 130b (Wadsworth). We found that the 130b genome encodes a unique set of T4SSs, namely, the Dot/Icm T4SS, a Trb-1-like T4SS, and two Lvh T4SS gene clusters. Sequence analysis substantiated that a core set of 107 Dot/Icm T4SS effectors was conserved among the sequenced L. pneumophila strains Philadelphia-1, Lens, Paris, Corby, Alcoy, and 130b. We also identified new effector candidates and validated the translocation of 10 novel Dot/Icm T4SS effectors that are not present in L. pneumophila strain Philadelphia-1. We examined the prevalence of the new effector genes among 87 environmental and clinical L. pneumophila isolates. Five of the new effectors were identified in 34 to 62% of the isolates, while less than 15% of the strains tested positive for the other five genes. Collectively, our data show that the core set of conserved Dot/Icm T4SS effector proteins is supplemented by a variable repertoire of accessory effectors that may partly account for differences in the virulences and prevalences of particular L. pneumophila strains.Many bacterial pathogens use specialized protein secretion systems to deliver into host cells virulence effector proteins that interfere with the antimicrobial responses of the host and facilitate the survival of the pathogen (5, 10, 22, 76). The components of these secretion systems are highly conserved. Comparative bioinformatic analysis of pathogen genomes revealed an ever-increasing number of proteins that are likely to be translocated virulence effectors. Only a few effectors have been characterized, and their biochemical functions are unknown, yet the identification of translocated effector proteins and their mechanism of action is fundamental to understanding the pathogenesis of many bacterial infections.Legionella pneumophila is the etiological agent of Legionnaires’ disease, which is an acute form of pneumonia (34, 66). L. pneumophila serogroup 1 accounts for more than 90% of all cases worldwide. Although L. pneumophila is an environmental organism, its ability to survive and replicate in amoebae, such as Acanthamoeba castellanii, has equipped the organism with the capacity to replicate in human cells (45, 58, 68, 80). Following the inhalation of aerosols containing L. pneumophila into the human lung, the bacteria promote their uptake by alveolar macrophages and epithelial cells (21, 44, 71), where they replicate within an intracellular vacuole that avoids fusion with the endocytic pathway (46, 47). L. pneumophila evades endosome fusion by establishing a replicative vacuole that shares many characteristics with the endoplasmic reticulum (ER) (48, 53, 89). The formation of the unique Legionella-containing vacuole (LCV) requires the Dot (defective in organelle trafficking)/Icm (intracellular multiplication) type IV secretion system (T4SS) (85, 91).Type IV secretion systems are versatile multiprotein complexes that can transport DNA and proteins to recipient bacteria or host cells (19, 36). Based on structural and organizational similarity, three main T4SS classes have been distinguished: T4SSA, T4SSB, and genomic island-associated T4SS (GI-T4SS) (3, 51). The genetic organization and components of T4SSA have high similarity to the classical VirB4/VirD4 transfer DNA (T-DNA) transfer system of Agrobacterium tumefaciens (3). In the sequenced L. pneumophila strains, three distinct T4SSAs with different prevalences among strains have been described: Lvh, Trb-1, and Trb-2 (37, 83, 86). The Lvh (Legionella vir homologues) T4SSA is not required for intracellular bacterial replication in macrophages and amoebae but seems to contribute to infection at lower temperatures and inclusion in Acanthamoeba castellanii cysts (6, 78, 86).The Dot/Icm T4SSB secretes and translocates multiple bacterial effector proteins into the vacuolar membrane and cytosol of the host cell (31, 70). The functions of the great majority of these proteins are unknown. Several effectors have similarity to eukaryotic proteins or carry eukaryotic motifs (7, 16, 25). They are predicted to allow L. pneumophila to manipulate host cell processes by functional mimicry (31, 70). Many of the effectors have paralogues or belong to related protein families that are likely to have overlapping functions.Comparative analysis of the recent L. pneumophila genome sequences has revealed their diversity and plasticity (16, 18, 88). This plasticity enables the bacterium to acquire new genetic factors, including new effector proteins that enhance bacterial replication and survival in eukaryotic cells. This has resulted in a diverse species in which 7 to 11% of the genes in each L. pneumophila isolate are strain specific (38). Some of the diversity occurs among genes encoding Dot/Icm effectors, including those within the same family. For example some ankyrin repeat and F-box effector genes are highly conserved, while others vary considerably between L. pneumophila isolates (16, 41, 62, 73, 75). Even though it is not experimentally proven, the subsequent selection of Dot/Icm effectors among different L. pneumophila isolates might reflect their usefulness in host-pathogen interactions, whereby different effector repertoires are maintained during adaptation to different environmental niches or hosts. This may then translate into differences in virulence during opportunistic infection.In this study, we sequenced the genome of L. pneumophila serogroup 1 strain 130b (ATCC BAA-74, also known as Wadsworth or AA100) (29, 30) and analyzed the sequence for T4SSs and novel Dot/Icm effectors. This analysis established that the strain encodes a unique combination of T4SSs and a set of Dot/Icm effectors that had not been described previously but that are present in a range of clinical and environmental L. pneumophila isolates. The new effectors represent the latest members of an ever-growing list of T4SS substrates and presumably reflect the great capacity of L. pneumophila for adaptation to a variety of hosts.  相似文献   

4.
Vibrio parahaemolyticus harbors two type III secretion systems (T3SSs; T3SS1 and T3SS2), of which T3SS1 is involved in host cell cytotoxicity. T3SS1 expression is positively regulated by ExsA, and it is negatively regulated by ExsD. We compared the secretion profiles of a wild-type strain (NY-4) of V. parahaemolyticus with those of an ExsD deletion mutant (ΔexsD) and with a strain of NY-4 that overexpresses T3SS1 (NY-4:pexsA). From this comparison, we detected a previously uncharacterized protein, Vp1659, which shares some sequence homology with LcrV from Yersinia. We show that vp1659 expression is positively regulated by ExsA and is negatively regulated by ExsD. Vp1659 is specifically secreted by T3SS1 of V. parahaemolyticus, and Vp1659 is not required for the successful extracellular secretion of another T3SS1 protein, Vp1656. Mechanical fractionation showed that Vp1659 is translocated into HeLa cells in a T3SS1-dependent manner and that deletion of Vp1659 does not prevent VopS from being translocated into HeLa cells during infection. Deletion of vp1659 significantly reduces cytotoxicity when HeLa cells are infected by V. parahaemolyticus, while complementation of the Δvp1659 strain restores cytotoxicity. Differential staining showed that Vp1659 is required to induce membrane permeability in HeLa cells. We also show evidence that Vp1659 is required for actin rearrangement and the induction of autophagy. On the basis of these data, we conclude that Vp1659 is a T3SS1-associated protein that is a component of the secretion apparatus and that it is necessary for the efficient translocation of effector proteins into epithelial cells.As a marine pathogen, Vibrio parahaemolyticus is frequently isolated from seafood products such as oysters and shrimp (19, 45). The main symptoms of V. parahaemolyticus infection in humans include diarrhea, nausea, and vomiting. In addition to the gastrointestinal infection, necrotizing fasciitis and septic shock are reportedly associated with V. parahaemolyticus infection (37). V. parahaemolyticus can also cause wound infections after contact with contaminated water (6, 7, 16, 37).V. parahaemolyticus is able to adhere to and invade epithelial cells (1, 38, 43). Pili are involved in the adherence to the intestinal epithelium (32), but it is not clear what factors are required for V. parahaemolyticus to invade epithelial cells. Hemolysins are considered primary factors involved in the pathogenesis of V. parahaemolyticus. For example, a thermostable direct hemolysin (tdh) mutant strain loses the ability to cause fluid accumulation in the intestinal lumen (33), while deletion of a tdh-related gene (trh) results in the complete loss of hemolysis and the partial loss of fluid accumulation in a rabbit intestinal ligation model (42). Recent studies show that the disruption of epithelial tight junctions, which is a hallmark of bacterial dissemination into the circulatory system and subsequent septicemia, is independent of the thermostable direct hemolysin, suggesting that additional factors are required for the pathogenesis of V. parahaemolyticus (27).A broad range of Gram-negative bacteria employ type III secretion systems (T3SSs) to export virulence-related proteins into the extracellular milieu and/or to deliver these proteins directly into host cells (5, 12, 13). T3SSs are composed of three parts: a secretion apparatus, translocators, and effectors (17, 18). The secretion apparatus and translocators are encoded by ca. 25 genes that are conserved and usually located in a genomic island. Genes that encode effectors are less conserved and can be found distal from the T3SS islands. The secretion apparatus serves to secrete both effectors and translocators from bacterial cells, and translocators help the effectors cross into the eukaryotic cells, where they can disrupt normal host cell signal functions.Two distinct T3SSs (T3SS1 and T3SS2) were identified in the genome of V. parahaemolyticus (28). On the basis of the sequence similarity and gene organization, T3SS1 was classified as a member of the Ysc family of secretion systems, while T3SS2 was classified as a member of the Inv-Mxi-Spa family (40). Functional analysis shows that deletion of T3SS1 decreases cytotoxicity against HeLa cells, while deletion of T3SS2 diminishes intestinal fluid accumulation (35). Interestingly, in some strains, T3SS2 can be involved in the cytotoxic effect specifically against Caco-2 and HCT-8 cells (23). One study showed that T3SS1 of V. parahaemolyticus induces autophagy, but blocking autophagy does not completely mitigate cytotoxicity, indicating that other T3SS1-induced mechanisms contribute to cell death (3, 4). Recent work from our laboratory showed that V. parahaemolyticus induces cell rounding, pore formation, and membrane damage, consistent with the induction of an oncosis pathway (46). Importantly, treatment of infected cells with an osmoprotectant (polyethylene glycol 3350) significantly reduced cytotoxicity, indicating that oncosis is the primary mechanism by which T3SS1 of V. parahaemolyticus causes cell death for in vitro cultures (46). Nevertheless, it is unknown which effector protein(s) is involved in cell cytotoxicity. By comparing the secretion protein profiles of wild-type and T3SS1 mutant strains, four T3SS1 proteins have been identified (34). Among these, Vp1680 is translocated into host cells and is required for the induction of autophagy during infection of HeLa cells (3, 34). Recent studies showed that VopS is able to prevent the interaction of Rho GTPase with its downstream factors by a new modification mechanism, called AMPylation (44), and this prevents the assembly of actin fibers. Two proteins (VopT and VopL) have been identified as T3SS2 substrates (23, 26). VopT is a member of ADP-ribosyltransferase and is partially responsible for the cytotoxic effect specific to Caco-2 and HCT-8 cells (23). VopL induces the assembly of actin stress fibers (26) and is potentially responsible for the internalization of V. parahaemolyticus into Caco-2 cells (1). Many other potential effector proteins are encoded proximal to T3SS1 and T3SS2 apparatus genes, but these have not been functionally characterized. The function of structural genes has not been extensively studied for either T3SS1 or T3SS2 in V. parahaemolyticus.T3SSs are expressed after contact with host cells or when cells are grown under inducing conditions (17). Expression of T3SS1 in V. parahaemolyticus is induced when bacteria are grown in tissue culture medium (Dulbecco''s minimal essential medium [DMEM]), although the secretion of one substrate (Vp1656) was not detected under this condition, probably due to the low detection sensitivity (47). T3SS1 genes are not expressed when bacteria are grown in LB medium supplemented with 2.5% NaCl (LB-S). Disruption of the exsD gene or overexpression of exsA results in the constitutive expression of T3SS1 genes and the secretion of Vp1656 even when bacteria are grown in LB-S (47). For the present study, we took advantage of these regulatory mechanisms and compared the proteins secreted by the NY-4 (wild type), ΔexsD, ΔexsD::pexsD (exsD complement), and NY-4:pexsA strains. We identified two proteins (VopS and Vp1659) that are present in the supernatants of the ΔexsD and NY-4:pexsA strains but that are absent in the supernatants of the NY-4 and ΔexsD::pexsD strains. Herein we demonstrate that Vp1659 is secreted into the extracellular milieu and is translocated into HeLa cells by T3SS1. Functional analysis is consistent with the hypothesis that Vp1659 plays a role in actin rearrangement and induction of cytotoxicity and autophagy.  相似文献   

5.
6.
7.
8.
9.
Agrobacterium VirB2 pilin is required for assembly of the VirB/VirD4 type IV secretion system (T4SS). The propilin is processed by signal sequence cleavage and covalent linkage of the N and C termini, and the cyclized pilin integrates into the inner membrane (IM) as a pool for assembly of the secretion channel and T pilus. Here, by use of the substituted cysteine accessibility method (SCAM), we defined the VirB2 IM topology and then identified distinct contributions of the T4SS ATPase subunits to the pilin structural organization. Labeling patterns of Cys-substituted pilins exposed to the membrane-impermeative, thiol-reactive reagent 3-(N-maleimidopropionyl)biocytin (MPB) supported a topology model in which two hydrophobic stretches comprise transmembrane domains, an intervening hydrophilic loop (residues 90 to 94) is cytoplasmic, and the hydrophilic N and C termini joined at residues 48 and 121 form a periplasmic loop. Interestingly, the VirB4 ATPase, but not a Walker A nucleoside triphosphate (NTP) binding motif mutant, induced (i) MPB labeling of Cys94, a residue that in the absence of the ATPase is located in the cytoplasmic loop, and (ii) release of pilin from the IM upon osmotic shock. These findings, coupled with evidence for VirB2-VirB4 complex formation by coimmunoprecipitation, support a model in which VirB4 functions as a dislocation motor to extract pilins from the IM during T4SS biogenesis. The VirB11 ATPase functioned together with VirB4 to induce a structural change in the pilin that was detectable by MPB labeling, suggestive of a role for VirB11 as a modulator of VirB4 dislocase activity.The Agrobacterium tumefaciens VirB/VirD4 type IV secretion system (T4SS) delivers effector proteins and DNA to plant cells during infection (1, 14). The 11 VirB proteins and VirD4 substrate receptor mediate assembly of the envelope-spanning translocation channel, whereas the VirB proteins independently of VirD4 are required for polymerization of the extracellular T pilus (6, 32, 46). These T4SS subunits include the three ATPases VirD4, VirB4, and VirB11; a trans-envelope core complex comprised of VirB7, VirB9, and VirB10; subunits involved in assembly or spatial positioning of the core complex (VirB1, VirB6, and VirB8); and other structural components (VirB2 pilin, VirB3, and pilus-associated VirB5) (1, 14, 43, 48, 55, 70). The VirB/VirD4 subunits are conserved among many Gram-negative bacterial T4SSs, and recent structures of homologs of VirD4, VirB5, VirB8, VirB10, and VirB11 and a VirB7/VirB9/VirB10 machine subassembly are supplying exciting new information about T4SS machine architectures (11, 28, 29).The pilin subunit VirB2 is a component of both the secretion channel and T pilus (39, 47, 48). Its role in substrate transfer was established with a modified chromatin immunoprecipitation (ChIP) assay termed transfer DNA (T-DNA) immunoprecipitation (TrIP), wherein the pilin (but not the T pilus) was shown to form formaldehyde-cross-linkable contacts with the translocating T-DNA substrate (10). TrIP studies with virB mutant strains also supplied evidence that VirB2 occupies a distal portion of the translocation channel near or at the outer membrane (OM) (10). Complementary genetic studies identified mutations in several VirB subunits, including VirB6, VirB9, VirB10, and VirB11, that selectively block T pilus production without affecting substrate transfer (39, 40, 41, 62). These Tra+ Pil “uncoupling” mutations do not bypass the requirement for VirB2 production for substrate transfer, as the further deletion of virB2 from the Tra+ Pil mutant strains renders these strains transfer defective (39, 41, 62). Therefore, VirB2 pilin, but not an intact T pilus, is required for passage of substrates to target cells.The pathways culminating in the integration of VirB2 into the two terminal organelles, the secretion channel and T pilus, are fundamentally poorly understood. The early VirB protein-independent reactions involve insertion of the 12.3-kDa propilin into the inner membrane (IM); cleavage of a long, 47-residue signal sequence, presumably by LepB signal peptidase; and covalent joining of the N-terminal Gln48 and C-terminal Ser121 to form the mature, cyclic pilin (24). This unusual head-to-tail cyclization reaction was also shown for the VirB2 homolog, TrbC (24/51% sequence identity/similarity) of plasmid RP4 (24, 34, 44). Other VirB2 homologs, such as F plasmid TraA (19/47% identity/similarity) (67), remain linear although their N termini are modified by N acetylation (54).Prevailing models suggest that mature forms of conjugative pilins accumulate in the IM as pools for use in assembly of the channel/pilus upon receipt of an unknown morphogenetic signal(s). The IM-integrated VirB2, TraAF, and TrbCRP4 pilins likely adopt similar topologies, as deduced from similar predicted secondary structures and results of reporter fusion studies with periplasmically active alkaline phosphatase (PhoA) (5, 22, 56). Two hydrophobic domains are thought to orient across the IM so that a small, intervening hydrophilic loop is cytoplasmic and the hydrophilic N and C termini are periplasmic. Detailed studies confirming this overall topology are lacking, and limited information exists regarding the nature of pilin interactions with other T4SS subunits (36, 51). Furthermore, little is known about the mechanism or energetic requirements for dislocation of membrane-integrated forms of conjugative pilins during machine morphogenesis.In A. tumefaciens, mutations in the Walker A nucleoside triphosphate (NTP) binding site motifs of the VirB4 and VirB11 ATPases render cells defective for substrate transfer and pilus production, indicating that NTP energy consumption by both ATPases is essential for assembly of the two terminal organelles (6, 7, 58, 62, 68). VirB4-like subunits are signatures of all T4SSs described to date, whereas VirB11-like proteins are common but not ubiquitous among the T4SSs (1). Some T4SSs, such as the conjugation machines encoded by Escherichia coli F-like plasmids, lack VirB11 homologs, and yet their conjugative pili extend and retract dynamically by a mechanism(s) dependent on VirB4 homologs (18, 65). On the basis of these observations, it is reasonable to propose that the VirB4-like subunits catalyze early reactions associated with assembly of conjugative pili.Here, we used the scanning cysteine accessibility method (SCAM) (9) to define the IM topology of cyclized VirB2. We then assayed for contributions of VirB subunits to the pilin structural organization. We present biochemical evidence for VirB4-mediated dislocation of VirB2 pilin from the membrane and also for a contribution by VirB11 in modulating pilin tertiary or quaternary structure. We discuss our findings in the context of recent advances in our understanding of T4SS machine assembly and architecture.  相似文献   

10.
Highly active antiretroviral therapy (HAART) can reduce human immunodeficiency virus type 1 (HIV-1) viremia to clinically undetectable levels. Despite this dramatic reduction, some virus is present in the blood. In addition, a long-lived latent reservoir for HIV-1 exists in resting memory CD4+ T cells. This reservoir is believed to be a source of the residual viremia and is the focus of eradication efforts. Here, we use two measures of population structure—analysis of molecular variance and the Slatkin-Maddison test—to demonstrate that the residual viremia is genetically distinct from proviruses in resting CD4+ T cells but that proviruses in resting and activated CD4+ T cells belong to a single population. Residual viremia is genetically distinct from proviruses in activated CD4+ T cells, monocytes, and unfractionated peripheral blood mononuclear cells. The finding that some of the residual viremia in patients on HAART stems from an unidentified cellular source other than CD4+ T cells has implications for eradication efforts.Successful treatment of human immunodeficiency virus type 1 (HIV-1) infection with highly active antiretroviral therapy (HAART) reduces free virus in the blood to levels undetectable by the most sensitive clinical assays (18, 36). However, HIV-1 persists as a latent provirus in resting, memory CD4+ T lymphocytes (6, 9, 12, 16, 48) and perhaps in other cell types (45, 52). The latent reservoir in resting CD4+ T cells represents a barrier to eradication because of its long half-life (15, 37, 40-42) and because specifically targeting and purging this reservoir is inherently difficult (8, 25, 27).In addition to the latent reservoir in resting CD4+ T cells, patients on HAART also have a low amount of free virus in the plasma, typically at levels below the limit of detection of current clinical assays (13, 19, 35, 37). Because free virus has a short half-life (20, 47), residual viremia is indicative of active virus production. The continued presence of free virus in the plasma of patients on HAART indicates either ongoing replication (10, 13, 17, 19), release of virus after reactivation of latently infected CD4+ T cells (22, 24, 31, 50), release from other cellular reservoirs (7, 45, 52), or some combination of these mechanisms. Finding the cellular source of residual viremia is important because it will identify the cells that are still capable of producing virus in patients on HAART, cells that must be targeted in any eradication effort.Detailed analysis of this residual viremia has been hindered by technical challenges involved in working with very low concentrations of virus (13, 19, 35). Recently, new insights into the nature of residual viremia have been obtained through intensive patient sampling and enhanced ultrasensitive sequencing methods (1). In a subset of patients, most of the residual viremia consisted of a small number of viral clones (1, 46) produced by a cell type severely underrepresented in the peripheral circulation (1). These unique viral clones, termed predominant plasma clones (PPCs), persist unchanged for extended periods of time (1). The persistence of PPCs indicates that in some patients there may be another major cellular source of residual viremia (1). However, PPCs were observed in a small group of patients who started HAART with very low CD4 counts, and it has been unclear whether the PPC phenomenon extends beyond this group of patients. More importantly, it has been unclear whether the residual viremia generally consists of distinct virus populations produced by different cell types.Since the HIV-1 infection in most patients is initially established by a single viral clone (23, 51), with subsequent diversification (29), the presence of genetically distinct populations of virus in a single individual can reflect entry of viruses into compartments where replication occurs with limited subsequent intercompartmental mixing (32). Sophisticated genetic tests can detect such population structure in a sample of viral sequences (4, 39, 49). Using two complementary tests of population structure (14, 43), we analyzed viral sequences from multiple sources within individual patients in order to determine whether a source other than circulating resting CD4+ T cells contributes to residual viremia and viral persistence. Our results have important clinical implications for understanding HIV-1 persistence and treatment failure and for improving eradication strategies, which are currently focusing only on the latent CD4+ T-cell reservoir.  相似文献   

11.
Soil substrate membrane systems allow for microcultivation of fastidious soil bacteria as mixed microbial communities. We isolated established microcolonies from these membranes by using fluorescence viability staining and micromanipulation. This approach facilitated the recovery of diverse, novel isolates, including the recalcitrant bacterium Leifsonia xyli, a plant pathogen that has never been isolated outside the host.The majority of bacterial species have never been recovered in the laboratory (1, 14, 19, 24). In the last decade, novel cultivation approaches have successfully been used to recover “unculturables” from a diverse range of divisions (23, 25, 29). Most strategies have targeted marine environments (4, 23, 25, 32), but soil offers the potential for the investigation of vast numbers of undescribed species (20, 29). Rapid advances have been made toward culturing soil bacteria by reformulating and diluting traditional media, extending incubation times, and using alternative gelling agents (8, 21, 29).The soil substrate membrane system (SSMS) is a diffusion chamber approach that uses extracts from the soil of interest as the growth substrate, thereby mimicking the environment under investigation (12). The SSMS enriches for slow-growing oligophiles, a proportion of which are subsequently capable of growing on complex media (23, 25, 27, 30, 32). However, the SSMS results in mixed microbial communities, with the consequent difficulty in isolation of individual microcolonies for further characterization (10).Micromanipulation has been widely used for the isolation of specific cell morphotypes for downstream applications in molecular diagnostics or proteomics (5, 15). This simple technology offers the opportunity to select established microcolonies of a specific morphotype from the SSMS when combined with fluorescence visualization (3, 11). Here, we have combined the SSMS, fluorescence viability staining, and advanced micromanipulation for targeted isolation of viable, microcolony-forming soil bacteria.  相似文献   

12.
The facultative intracellular pathogen Salmonella enterica serovar Typhimurium relies on its Salmonella pathogenicity island 2 (SPI2) type III secretion system (T3SS) for intracellular replication and virulence. We report that the oxidoreductase thioredoxin 1 (TrxA) and SPI2 are coinduced for expression under in vitro conditions that mimic an intravacuolar environment, that TrxA is needed for proper SPI2 activity under these conditions, and that TrxA is indispensable for SPI2 activity in both phagocytic and epithelial cells. Infection experiments in mice demonstrated that SPI2 strongly contributed to virulence in a TrxA-proficient background whereas SPI2 did not affect virulence in a trxA mutant. Complementation analyses using wild-type trxA or a genetically engineered trxA coding for noncatalytic TrxA showed that the catalytic activity of TrxA is essential for SPI2 activity in phagocytic cells whereas a noncatalytic variant of TrxA partially sustained SPI2 activity in epithelial cells and virulence in mice. These results show that TrxA is needed for the intracellular induction of SPI2 and provide new insights into the functional integration between catalytic and noncatalytic activities of TrxA and a bacterial T3SS in different settings of intracellular infections.In Escherichia coli, thioredoxin 1 (TrxA, encoded by trxA) is an evolutionary conserved 11-kDa cytosolic highly potent reductase that supports the activities of various oxidoreductases and ribonucleotide reductases (1, 29) and interacts with a number of additional cytoplasmic proteins through the formation of temporary covalent intermolecular disulphide bonds (32). Consequently, as trxA mutants of E. coli (51), Helicobacter pylori (13), and Rhodobacter sphaeroides (34) show increased sensitivity to hydrogen peroxide, TrxA has been defined as a significant oxidoprotectant. In addition, TrxA possess a protein chaperone function that is disconnected from cysteine interactions (30, 32).Salmonella enterica serovar Typhimurium is closely related to E. coli. During divergent evolution, the Salmonella genome acquired a number of virulence-associated genes (20). Many of these genes are clustered on genetic regions termed Salmonella pathogenicity islands (or SPIs). Of these, SPI1 and SPI2 code for separate type III secretion systems (T3SSs). T3SSs are supramolecular virulence-associated machineries that, in several pathogenic gram-negative bacterial species, enable injection of effector proteins from the bacteria into host cells (22, 57). The effector proteins, in turn, manipulate intrinsic host cell functions to facilitate the infection.The SPI1 T3SS of S. serovar Typhimurium is activated for expression in the intestine in response to increased osmolarity and decreased oxygen tension (22, 57). SPI1 effector proteins are primarily secreted into cells that constitute the epithelial layer and interfere with host cell Cdc42 and Rac-1 signaling and actin polymerization. This enables the bacteria to orchestrate their own actin-dependent uptake into nonphagocytic cells (57). SPI1 effector proteins also induce inflammatory signaling and release of interleukin-1β from infected cells (25, 26).Subsequent systemic progression of S. serovar Typhimurium from the intestinal tissue relies heavily on an ability to survive and replicate in phagocytic cells (18, 46, 53, 54). S. serovar Typhimurium uses an additional set of effector proteins secreted by the SPI2 T3SS for replication inside host cells and for coping with phagocyte innate responses to the infection (10, 11, 54). The functions of SPI2 effectors include diversion of vesicular trafficking, induction of apoptotic responses, and manipulation of ubiquitination of host proteins (28, 40, 45, 53). Hence, SPI2 effector proteins create a vacuolar environment that sustains intracellular replication of S. serovar Typhimurium (28).In addition to pathogenicity islands, the in vivo fitness of Salmonella spp. relies on selected functions shared with other enterobacteria. Thus, many virulence genes are integrated into “housekeeping” gene regulatory networks, coded for by a core genome, which steer bacterial stress responses (12, 17, 27, 55). Selected anabolic pathways also contribute to virulence of S. serovar Typhimurium (18, 27), evidently by providing biochemical building blocks for bacterial replication (36).In S. serovar Typhimurium, TrxA is a housekeeping protein that strongly contributes to virulence in cell culture and mouse infection models (8). However, the mechanism by which TrxA activity adds to virulence has not been defined. Here we show that the contribution of TrxA to virulence of S. serovar Typhimurium associates with its functional integration with the SPI2 T3SS under conditions that prevail in the intracellular vacuolar compartment of the host cell. These findings ascribe a novel role to TrxA in bridging environmental adaptations with virulence gene expression and illuminate a new aspect of the interaction between evolutionary conserved and horizontally acquired gene functions in bacteria.  相似文献   

13.
14.
15.
In this report we provide evidence that the antimicrobial action of stannous salts and a gold drug, auranofin, against Treponema denticola is mediated through inhibition of the metabolism of selenium for synthesis of selenoproteins.The biological use of selenium as a catalyst, incorporated into proteins as selenocysteine, is broad. It plays an essential role in energy metabolism, redox balance, and reproduction in a variety of organisms, from bacterial pathogens to eukaryotic parasites to humans. The results of several epidemiological studies indicate that higher levels of selenium in the mammalian diet can have a negative effect on dental health (2, 17-19, 39). Although the impact of selenium is attributed to its influence on the physical properties of the enamel surface (10), the role of selenium in supporting the oral microbial community has not been studied.The oral cavity is a highly complex microbiome, with a large proportion of its residents uncharacterized due to their fastidious nature and resistance to traditional culture methods (11). Analysis of whole saliva indicates that bacterial metabolism influences the amino acid composition and indicates a role for amino acid fermentation (38). Curtis et al. demonstrated the occurrence of Stickland reactions in dental plaque (9). These reactions were first described in clostridia (35-37). They involve the coupled fermentation of amino acids in which one amino acid is oxidized (Stickland donor) and another (Stickland acceptor) is reduced (29). Treponema denticola, an established resident of the oral cavity, performs Stickland reactions via the selenoprotein glycine reductase (32). Glycine reductase is composed of a multiprotein complex that contains two separate selenoproteins, termed selenoprotein A and selenoprotein B (1, 7, 8, 15, 16). This complex of proteins converts glycine to acetyl phosphate by using inorganic phosphate and the reducing potential from thioredoxin. For the organisms that use this complex, this is a vital source of ATP. Thus far, the requirement for selenocysteine at the active site of this enzyme complex is universally conserved, even though all other selenoproteins that have been identified using computational techniques have a putative cysteine homologue (24).Treponema denticola is considered one of the primary pathogens responsible for periodontitis, a chronic inflammatory disease that is the major cause of adult tooth loss (11, 27, 33). It is the best-studied oral spirochete, commonly found with other spirochetes within the periodontal pocket. It expresses a variety of virulence factors and is capable of adhering to and penetrating endothelial cell monolayers (31). Its health impact may reach beyond the oral cavity. A recent study linked periodontitis with peripheral arterial disease and detected T. denticola, along with other periodontal pathogens, in atherosclerotic plaque (3). Sequence analysis indicates the presence of several selenoproteins in addition to glycine reductase within the genome of T. denticola (24). This organism exhibits a strict growth requirement for selenium (32).A significant literature exists that clearly demonstrates the antimicrobial activity of fluoride compounds against microorganisms associated with dental decay and periodontitis. Both sodium fluoride and stannous fluoride, as well as stannous ions alone, inhibit the growth of T. denticola (21). The inhibitory effect of stannous salts on T. denticola''s growth is unexplained. It should be noted that toothpastes containing stannous fluoride are more effective in reducing gingivitis and plaque (28, 30).Tin, as well as several other trace elements, modulates the effects of acute selenium toxicity (20). Conversely, selenium affects the activity of tin in animal models (4-6). In this study, we examine the possibility that stannous ions interfere with selenium metabolism in T. denticola.  相似文献   

16.
17.
18.
19.
20.
We previously reported that CD4C/human immunodeficiency virus (HIV)Nef transgenic (Tg) mice, expressing Nef in CD4+ T cells and cells of the macrophage/dendritic cell (DC) lineage, develop a severe AIDS-like disease, characterized by depletion of CD4+ T cells, as well as lung, heart, and kidney diseases. In order to determine the contribution of distinct populations of hematopoietic cells to the development of this AIDS-like disease, five additional Tg strains expressing Nef through restricted cell-specific regulatory elements were generated. These Tg strains express Nef in CD4+ T cells, DCs, and macrophages (CD4E/HIVNef); in CD4+ T cells and DCs (mCD4/HIVNef and CD4F/HIVNef); in macrophages and DCs (CD68/HIVNef); or mainly in DCs (CD11c/HIVNef). None of these Tg strains developed significant lung and kidney diseases, suggesting the existence of as-yet-unidentified Nef-expressing cell subset(s) that are responsible for inducing organ disease in CD4C/HIVNef Tg mice. Mice from all five strains developed persistent oral carriage of Candida albicans, suggesting an impaired immune function. Only strains expressing Nef in CD4+ T cells showed CD4+ T-cell depletion, activation, and apoptosis. These results demonstrate that expression of Nef in CD4+ T cells is the primary determinant of their depletion. Therefore, the pattern of Nef expression in specific cell population(s) largely determines the nature of the resulting pathological changes.The major cell targets and reservoirs for human immunodeficiency virus type 1 (HIV-1)/simian immunodeficiency virus (SIV) infection in vivo are CD4+ T lymphocytes and antigen-presenting cells (macrophages and dendritic cells [DC]) (21, 24, 51). The cell specificity of these viruses is largely dependent on the expression of CD4 and of its coreceptors, CCR5 and CXCR-4, at the cell surface (29, 66). Infection of these immune cells leads to the severe disease, AIDS, showing widespread manifestations, including progressive immunodeficiency, immune activation, CD4+ T-cell depletion, wasting, dementia, nephropathy, heart and lung diseases, and susceptibility to opportunistic pathogens, such as Candida albicans (1, 27, 31, 37, 41, 82, 93, 109). It is reasonable to assume that the various pathological changes in AIDS result from the expression of one or many HIV-1/SIV proteins in these immune target cells. However, assigning the contribution of each infected cell subset to each phenotype has been remarkably difficult, despite evidence that AIDS T-cell phenotypes can present very differently depending on the strains of infecting HIV-1 or SIV or on the cells targeted by the virus (4, 39, 49, 52, 72). For example, the T-cell-tropic X4 HIV strains have long been associated with late events and severe CD4+ T-cell depletion (22, 85, 96). However, there are a number of target cell subsets expressing CD4 and CXCR-4, and identifying which one is responsible for this enhanced virulence has not been achieved in vivo. Similarly, the replication of SIV in specific regions of the thymus (cortical versus medullary areas), has been associated with very different outcomes but, unfortunately, the critical target cells of the viruses were not identified either in these studies (60, 80). The task is even more complex, because HIV-1 or SIV can infect several cell subsets within a single cell population. In the thymus, double (CD4 CD8)-negative (DN) or triple (CD3 CD4 CD8)-negative (TN) T cells, as well as double-positive (CD4+ CD8+) (DP) T cells, are infectible by HIV-1 in vitro (9, 28, 74, 84, 98, 99, 110) and in SCID-hu mice (2, 5, 91, 94). In peripheral organs, gut memory CCR5+ CD4+ T cells are primarily infected with R5 SIV, SHIV, or HIV, while circulating CD4+ T cells can be infected by X4 viruses (13, 42, 49, 69, 70, 100, 101, 104). Moreover, some detrimental effects on CD4+ T cells have been postulated to originate from HIV-1/SIV gene expression in bystander cells, such as macrophages or DC, suggesting that other infected target cells may contribute to the loss of CD4+ T cells (6, 7, 32, 36, 64, 90).Similarly, the infected cell population(s) required and sufficient to induce the organ diseases associated with HIV-1/SIV expression (brain, heart, and kidney) have not yet all been identified. For lung or kidney disease, HIV-specific cytotoxic CD8+ T cells (1, 75) or infected podocytes (50, 95), respectively, have been implicated. Activated macrophages have been postulated to play an important role in heart disease (108) and in AIDS dementia (35), although other target cells could be infected by macrophage-tropic viruses and may contribute significantly to the decrease of central nervous system functions (11, 86, 97), as previously pointed out (25).Therefore, because of the widespread nature of HIV-1 infection and the difficulty in extrapolating tropism of HIV-1/SIV in vitro to their cell targeting in vivo (8, 10, 71), alternative approaches are needed to establish the contribution of individual infected cell populations to the multiorgan phenotypes observed in AIDS. To this end, we developed a transgenic (Tg) mouse model of AIDS using a nonreplicating HIV-1 genome expressed through the regulatory sequences of the human CD4 gene (CD4C), in the same murine cells as those targeted by HIV-1 in humans, namely, in immature and mature CD4+ T cells, as well as in cells of the macrophage/DC lineages (47, 48, 77; unpublished data). These CD4C/HIV Tg mice develop a multitude of pathologies closely mimicking those of AIDS patients. These include a gradual destruction of the immune system, characterized among other things by thymic and lymphoid organ atrophy, depletion of mature and immature CD4+ T lymphocytes, activation of CD4+ and CD8+ T cells, susceptibility to mucosal candidiasis, HIV-associated nephropathy, and pulmonary and cardiac complications (26, 43, 44, 57, 76, 77, 79, 106). We demonstrated that Nef is the major determinant of the HIV-1 pathogenicity in CD4C/HIV Tg mice (44). The similarities of the AIDS-like phenotypes of these Tg mice to those in human AIDS strongly suggest that such a Tg mouse approach can be used to investigate the contribution of distinct HIV-1-expressing cell populations to their development.In the present study, we constructed and characterized five additional mouse Tg strains expressing Nef, through distinct regulatory elements, in cell populations more restricted than in CD4C/HIV Tg mice. The aim of this effort was to assess whether, and to what extent, the targeting of Nef in distinct immune cell populations affects disease development and progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号