首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Identifying biological roles for mammalian glycans and the pathways by which they are synthesized has been greatly facilitated by investigations of glycosylation mutants of cultured cell lines and model organisms. Chinese hamster ovary (CHO) glycosylation mutants isolated on the basis of their lectin resistance have been particularly useful for glycosylation engineering of recombinant glycoproteins. To further enhance the application of these mutants, and to obtain insights into the effects of altering one specific glycosyltransferase or glycosylation activity on the overall expression of cellular glycans, an analysis of the N-glycans and major O-glycans of a panel of CHO mutants was performed using glycomic analyses anchored by matrix-assisted laser desorption ionization-time of flight/time of flight mass spectrometry. We report here the complement of the major N-glycans and O-glycans present in nine distinct CHO glycosylation mutants. Parent CHO cells grown in monolayer versus suspension culture had similar profiles of N- and O-GalNAc glycans, although the profiles of glycosylation mutants Lec1, Lec2, Lec3.2.8.1, Lec4, LEC10, LEC11, LEC12, Lec13, and LEC30 were consistent with available genetic and biochemical data. However, the complexity of the range of N-glycans observed was unexpected. Several of the complex N-glycan profiles contained structures of m/z ∼13,000 representing complex N-glycans with a total of 26 N-acetyllactosamine (Galβ1–4GlcNAc)n units. Importantly, the LEC11, LEC12, and LEC30 CHO mutants exhibited unique complements of fucosylated complex N-glycans terminating in Lewisx and sialyl-Lewisx determinants. This analysis reveals the larger-than-expected complexity of N-glycans in CHO cell mutants that may be used in a broad variety of functional glycomics studies and for making recombinant glycoproteins.  相似文献   

2.
Elucidating the mechanisms and factors regulating multimerization is biologically important in order to modulate the biological activities of functional proteins, especially adhesive proteins in the extracellular matrix (ECM). Vitronectin (VN) is a multifunctional glycoprotein present in plasma and ECM. Linkage of cellular adhesion and fibrinolysis by VN plays an essential role during tissue remodeling. Our previous study determined that the collagen-binding activity of VN was markedly enhanced with the decreased glycosylation during liver regeneration. This study demonstrated how alternations of glycans modulate the biological activity of VN. Human and rat VNs were used because of their similarities in structure and activities. The binding affinity of human VN to immobilized collagen was shown to be higher at pH 4.5 than at 7.5, at 37 degrees C than at 4 degrees C. Sedimentation velocity studies indicated that the greater the multimerization of human VN, the better it bound to collagen. The results indicate that the collagen binding of VN was modulated through its multimerization. Stepwise trimming of glycan with various exoglycosidases increased both the multimer size and the collagen binding of human VN, indicating that they are modulated by changes in glycosylation. The multimer sizes of VN purified from plasma of partially hepatectomized (PH) rats and sham-operated (SH) rats increased by about 45 and 31%, respectively, compared with those of nonoperated (NO) rats. In accordance with this, PH-VN exhibited remarkably enhanced collagen binding than SH-VN and NO-VN on surface plasmon resonance. In the PH rat sera, the multimer VN was increased in both amount and size compared with those in SH- and NO-sera. The results demonstrate that glycan alterations during tissue remodeling induce increased multimerization state to enhance the biological activity of VN.  相似文献   

3.
Modifications in cell surface glycosylation affecting cell adhesion are common characteristics of transformed cells. This study characterizes the N-glycosylation profile of E-cadherin in models of canine mammary gland adenoma and carcinoma evaluating the importance of these glycosylation modifications in the malignant phenotype.Our results show that the pattern of E-cadherin N-glycosylation in mammary carcinoma is characterized by highly branched N-glycans, increase in sialylation and an expression of few high mannose structures. Detailed mass spectrometry analysis demonstrated a new N-glycosylation site containing a potential complex type N-glycan in E-cadherin from a mammary carcinoma cell line.Our study demonstrates the importance of E-cadherin N-glycans in the process of tumor development and in the transformation to the malignant phenotype.  相似文献   

4.
Select adhesion molecules connect pre- and postsynaptic membranes and organize developing synapses. The regulation of these trans-synaptic interactions is an important neurobiological question. We have previously shown that the synaptic cell adhesion molecules (SynCAMs) 1 and 2 engage in homo- and heterophilic interactions and bridge the synaptic cleft to induce presynaptic terminals. Here, we demonstrate that site-specific N-glycosylation impacts the structure and function of adhesive SynCAM interactions. Through crystallographic analysis of SynCAM 2, we identified within the adhesive interface of its Ig1 domain an N-glycan on residue Asn60. Structural modeling of the corresponding SynCAM 1 Ig1 domain indicates that its glycosylation sites Asn70/Asn104 flank the binding interface of this domain. Mass spectrometric and mutational studies confirm and characterize the modification of these three sites. These site-specific N-glycans affect SynCAM adhesion yet act in a differential manner. Although glycosylation of SynCAM 2 at Asn60 reduces adhesion, N-glycans at Asn70/Asn104 of SynCAM 1 increase its interactions. The modification of SynCAM 1 with sialic acids contributes to the glycan-dependent strengthening of its binding. Functionally, N-glycosylation promotes the trans-synaptic interactions of SynCAM 1 and is required for synapse induction. These results demonstrate that N-glycosylation of SynCAM proteins differentially affects their binding interface and implicate post-translational modification as a mechanism to regulate trans-synaptic adhesion.  相似文献   

5.
The functional units of cell adhesion are typically multiprotein complexes made up of three general classes of proteins; the adhesion receptors, the cell-extracellular matrix (ECM) proteins, and the cytoplasmic plaque/peripheral membrane proteins. The cell adhesion receptors are usually transmembrane glycoproteins (for example E-cadherin and integrin) that mediate binding at the extracellular surface and determine the specificity of cell-cell and cell-ECM recognition. E-cadherin-mediated cell-cell adhesion can be both temporally and spatially regulated during development, and represents a key step in the acquisition of the invasive phenotype for many tumors. On the other hand, integrin-mediated cell-ECM interactions play important roles in cytoskeleton organization and in the transduction of intracellular signals to regulate various processes such as proliferation, differentiation and cell migration. ECM proteins are typically large glycoproteins, including the collagens, fibronectins, laminins, and proteoglycans that assemble into fibrils or other complex macromolecular arrays. The most of these adhesive proteins are glycosylated. Here, we focus mainly on the modification of N-glycans of integrins and laminin-332, and a mutual regulation between cell adhesion and bisected N-glycan expression, to address the important roles of N-glycans in cell adhesion.  相似文献   

6.
Mannose in N-glycans is derived from glucose through phosphomannose isomerase (MPI, Fru-6-P ↔ Man-6-P) whose deficiency causes a congenital disorder of glycosylation (CDG)-Ib (MPI-CDG). Mannose supplements improve patients'' symptoms because exogenous mannose can also directly contribute to N-glycan synthesis through Man-6-P. However, the quantitative contributions of these and other potential pathways to glycosylation are still unknown. We developed a sensitive GC-MS-based method using [1,2-13C]glucose and [4-13C]mannose to measure their contribution to N-glycans synthesized under physiological conditions (5 mm glucose and 50 μm mannose). Mannose directly provides ∼10–45% of the mannose found in N-glycans, showing up to a 100-fold preference for mannose over exogenous glucose based on their exogenous concentrations. Normal human fibroblasts normally derive 25–30% of their mannose directly from exogenous mannose, whereas MPI-deficient CDG fibroblasts with reduced glucose flux secure 80% of their mannose directly. Thus, both MPI activity and exogenous mannose concentration determine the metabolic flux into the N-glycosylation pathway. Using various stable isotopes, we found that gluconeogenesis, glycogen, and mannose salvaged from glycoprotein degradation do not contribute mannose to N-glycans in fibroblasts under physiological conditions. This quantitative assessment of mannose contribution and its metabolic fate provides information that can help bolster therapeutic strategies for treating glycosylation disorders with exogenous mannose.  相似文献   

7.
Peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidases [PNGases (peptide N-glycosidases), N-glycanases, EC 3.5.1.52] are essential tools in the release of N-glycans from glycoproteins. We hereby report the discovery and characterization of a novel bacterial N-glycanase from Terriglobus roseus with an extremely low pH optimum of 2.6, and annotated it therefore as PNGase H+. The gene of PNGase H+ was cloned and the recombinant protein was successfully expressed in Escherichia coli. The recombinant PNGase H+ could liberate high mannose-, hybrid- and complex-type N-glycans including core α1,3-fucosylated oligosaccharides from both glycoproteins and glycopeptides. In addition, PNGase H+ exhibited better release efficiency over N-glycans without core α1,3-fucose compared with PNGase A. The facile expression, non-glycosylated nature, unusual pH optimum and broad substrate specificity of this novel type of N-glycanase makes recombinant PNGase H+ a versatile tool in N-glycan analysis.  相似文献   

8.
Classical swine fever virus (CSFV) outer surface E2 glycoprotein represents an important target to induce protective immunization during infection but the influence of N-glycosylation pattern in antigenicity is yet unclear. In the present work, the N-glycosylation of the E2-CSFV extracellular domain expressed in goat milk was determined. Enzymatic N-glycans releasing, 2-aminobenzamide (2AB) labeling, weak anion-exchange and normal-phase HPLC combined with exoglycosidase digestions and mass spectrometry of 2AB-labeled and unlabeled N-glycans showed a heterogenic population of oligomannoside, hybrid and complex-type structures. The detection of two Man8GlcNAc2 isomers indicates an alternative active pathway in addition to the classical endoplasmic reticulum processing. N-acetyl or N-glycolyl monosialylated species predominate over neutral complex-type N-glycans. Asn207 site-specific micro-heterogeneity of the E2 most relevant antigenic and virulence site was determined by HPLC-mass spectrometry of glycopeptides. The differences in N-glycosylation with respect to the native E2 may not disturb the main antigenic domains when expressed in goat milk.  相似文献   

9.

Background

Cell migration is an essential process in organ homeostasis, in inflammation, and also in metastasis, the main cause of death from cancer. The extracellular matrix (ECM) serves as the molecular scaffold for cell adhesion and migration; in the first phase of migration, adhesion of cells to the ECM is critical. Engagement of integrin receptors with ECM ligands gives rise to the formation of complex multiprotein structures which link the ECM to the cytoplasmic actin skeleton. Both ECM proteins and the adhesion receptors are glycoproteins, and it is well accepted that N-glycans modulate their conformation and activity, thereby affecting cell–ECM interactions. Likely targets for glycosylation are the integrins, whose ability to form functional dimers depends upon the presence of N-linked oligosaccharides. Cell migratory behavior may depend on the level of expression of adhesion proteins, and their N-glycosylation that affect receptor-ligand binding.

Scope of review

The mechanism underlying the effect of integrin glycosylation on migration is still unknown, but results gained from integrins with artificial or mutated N-glycosylation sites provide evidence that integrin function can be regulated by changes in glycosylation.

General significance

A better understanding of the molecular mechanism of cell migration processes could lead to novel diagnostic and therapeutic approaches and applications. For this, the proteins and oligosaccharides involved in these events need to be characterized.  相似文献   

10.
The neural cell adhesion molecule (NCAM) is the major substrate for the polysialyltransferases (polySTs), ST8SiaII/STX and ST8SiaIV/PST. The polysialylation of NCAM N-glycans decreases cell adhesion and alters signaling. Previous work demonstrated that the first fibronectin type III repeat (FN1) of NCAM is required for polyST recognition and the polysialylation of the N-glycans on the adjacent Ig5 domain. In this work, we highlight the importance of an FN1 acidic patch in polyST recognition and also reveal that the polySTs are required to interact with sequences in the Ig5 domain for polysialylation to occur. We find that features of the Ig5 domain of the olfactory cell adhesion molecule (OCAM) are responsible for its lack of polysialylation. Specifically, two basic OCAM Ig5 residues (Lys and Arg) found near asparagines equivalent to those carrying the polysialylated N-glycans in NCAM substantially decrease or eliminate polysialylation when used to replace the smaller and more neutral residues (Ser and Asn) in analogous positions in NCAM Ig5. This decrease in polysialylation does not reflect altered glycosylation but instead is correlated with a decrease in polyST-NCAM binding. In addition, inserting non-conserved OCAM sequences into NCAM Ig5, including an “extra” N-glycosylation site, decreases or completely blocks NCAM polysialylation. Taken together, these results indicate that the polySTs not only recognize an acidic patch in the FN1 domain of NCAM but also must contact sequences in the Ig5 domain for polysialylation of Ig5 N-glycans to occur.  相似文献   

11.
GABAA receptors, the major mediators of fast inhibitory neuronal transmission, are heteropentameric glycoproteins assembled from a panel of subunits, usually including α and β subunits with or without a γ2 subunit. The α1β2γ2 receptor is the most abundant GABAA receptor in brain. Co-expression of γ2 with α1 and β2 subunits causes conformational changes, increases GABAA receptor channel conductance, and prolongs channel open times. We reported previously that glycosylation of the three β2 subunit glycosylation sites, N32, N104 and N173, was important for α1β2 receptor channel gating. Here, we examined the hypothesis that steric effects or conformational changes caused by γ2 subunit co-expression alter the glycosylation of partnering β2 subunits. We found that co-expression of γ2 subunits hindered processing of β2 subunit N104 N-glycans in HEK293T cells. This γ2 subunit-dependent effect was strong enough that a decrease of γ2 subunit expression in heterozygous GABRG2 knockout (γ2+/?) mice led to appreciable changes in the endoglycosidase H digestion pattern of neuronal β2 subunits. Interestingly, as measured by flow cytometry, γ2 subunit surface levels were decreased by mutating each of the β2 subunit glycosylation sites. The β2 subunit mutation N104Q also decreased GABA potency to evoke macroscopic currents and reduced conductance, mean open time and open probability of single channel currents. Collectively, our data suggested that γ2 subunits interacted with β2 subunit N-glycans and/or subdomains containing the glycosylation sites, and that γ2 subunit co-expression-dependent alterations in the processing of the β2 subunit N104 N-glycans were involved in altering the function of surface GABAA receptors.  相似文献   

12.
BackgroundMultiple myeloma is characterized by clonal proliferation of malignant plasma cells in the bone marrow that produce monoclonal immunoglobulins. N-glycosylation changes of these monoclonal immunoglobulins have been reported in multiple myeloma, but previous studies only detected limited serum N-glycan features.MethodsHere, a more detailed study of the human serum N-glycome of 91 multiple myeloma patients and 51 controls was performed. We additionally analyzed sequential samples from patients (n = 7) which were obtained at different time points during disease development as well as 16 paired blood serum and bone marrow plasma samples. N-glycans were enzymatically released and measured by mass spectrometry after linkage specific derivatization of sialic acids.ResultsA decrease in both α2,3- and α2,6-sialylation, galactosylation and an increase in fucosylation within complex-type N-glycans were found in multiple myeloma patients compared to controls, as well as a decrease in difucosylation of diantennary glycans. The observed glycosylation changes were present in all ISS stages, including the “low-risk” ISS I. In individual patients, difucosylation of diantennary glycans decreased with development of the disease. Protein N-glycosylation features from blood and bone marrow showed strong correlation. Moreover, associations of monoclonal immunoglobulin (M-protein) and albumin levels with glycan traits were discovered in multiple myeloma patients.Conclusions & general significanceIn conclusion, serum protein N-glycosylation analysis could successfully distinguish multiple myeloma from healthy controls. Further studies are needed to assess the potential roles of glycan trait changes and the associations of glycans with clinical parameters in multiple myeloma early detection and prognosis.  相似文献   

13.
BackgroundAlzheimer's disease (AD) is a major form of dementia. Many evidence-based clinical trials have been performed, but no effective treatment has yet been developed. This suggests that our understanding of AD patho-mechanisms is still insufficient. In particular, the pathological roles of posttranslational modifications including glycosylation have remained poorly understood, but recent advances in glycobiology technology have gradually revealed that sugar modifications of AD-related molecules are profoundly involved in the onset and progression of this disease.Scope of reviewWe summarize the roles of N-glycans in AD pathogenesis and progression, particularly focusing on key AD-related molecules, including amyloid precursor protein (APP), α-, β-, and γ-secretases, and tau.Major conclusionsBiochemical, genetic and pharmacological studies have gradually revealed how N-glycans regulate AD development and progression through functional modulation of the key glycoproteins. These findings suggest that further glycobiology approaches in AD research will reveal novel glycan-based drug targets and early biomarkers of AD. However, N-glycan structures of these molecules in physiological and disease conditions and their precise functions are still largely unclear. Deeper glycobiology studies will be needed to reveal how AD pathology is regulated by glycosylation.General significanceIt is now known that N-glycans play significant roles in AD development. However, specific pathological functions of particular glycan epitopes on each AD-related glycoprotein are still poorly understood. Future glycobiology studies with more sensitive glycoproteomic techniques and a wider variety of chemical glycosylation inhibitors could contribute to the development of novel glycan-based AD therapeutics. This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa.  相似文献   

14.
Ovotransferrin (OT), a multifunctional glycoprotein with defensive and protective activities, accounts for approximately 13 % of chicken egg white proteins and is known as a major egg-associated allergen along with ovomucoid (OM). In contrast to the well-characterized N-glycans of OM, the N-glycan structure of OT has not been reported. Here, using HPLC equipped with a fluorescence detector and mass spectrometric analysis in combination with exoglycosidase digestion, we investigated the N-glycan type and branched pattern of OT, and compared them with those of OM. The HPLC peak area was used to calculate the relative quantity (%) of each glycan. Seventeen N-glycans, including 11 glycans (1 core structure and 10 complex-type oligosaccharides), that commonly exist in ovotransferrin and ovomucoid were identified. Six characteristic glycans (2 truncated structures, 1 complex-type, and 3 hybrid-type oligosaccharides) in OT and eight characteristic glycans in OM were classified. OT contains the following branched complex-type structures: mono-(13.2 %), bi-(23.9 %), tri-(9.0 %), tetra-(2.7 %), and penta-(2.8 %) antennary oligosaccharides. However, OM contained mostly tri-(33.5 %) and penta-(31.2 %) antennary oligosaccharides. The N-glycan–containing bisecting N-acetylglucosamine comprised 43.4 % and 79.8 % of the total glycans in OT and OM, respectively. Moreover, using circular dichroism analysis, we observed that the secondary structure of the deglycosylated OT is quite different from that of the intact protein. To our knowledge, this is the first study to analyze N-glycans in OT in comparison with those of OM.  相似文献   

15.
Fibronectin (FN) is a multifunctional glycoprotein present in the extracellular matrix (ECM) and plasma. We previously reported that the glycosylation and ligand-binding of vitronectin (VN) change markedly after partial hepatectomy (PH). Here we show the changes of FN during liver regeneration. The yields of purified sham-operated (SH-) and PH-FN were higher than that of non-operated (NO)-FN, while binding activities of FNs to ECM ligands were changed only slightly by hepatectomy. The carbohydrate concentration of PH-FN decreased to 66% of that of NO- and SH-FN. By using LC/MS(n), eight kinds of complex-type N-glycan structures were found to be present in all FNs, and bi- and trisialobiantennary glycans were the major structures. Fucosylation was markedly increased, while O-acetylation of sialic acid was found to be decreased in PH-FN. The alterations in glycosylation and biological activities of FN after PH are different from those of VN, suggesting that these glycoproteins play different biological functions in tissue remodeling.  相似文献   

16.
We have analyzed the structures of glycosphingolipids and intracellular free glycans in human cancers. In our previous study, trace amounts of free N-acetylneuraminic acid (Neu5Ac)-containing complex-type N-glycans with a single GlcNAc at each reducing terminus (Gn1 type) was found to accumulate intracellularly in colorectal cancers, but were undetectable in most normal colorectal epithelial cells. Here, we used cancer glycomic analyses to reveal that substantial amounts of free Neu5Ac-containing complex-type N-glycans, almost all of which were α2,6-Neu5Ac-linked, accumulated in the pancreatic cancer cells from three out of five patients, but were undetectable in normal pancreatic cells from all five cases. These molecular species were mostly composed of five kinds of glycans having a sequence Neu5Ac-Gal-GlcNAc-Man-Man-GlcNAc and one with the following sequence Neu5Ac-Gal-GlcNAc-Man-(Man-)Man-GlcNAc. The most abundant glycan was Neu5Acα2-6Galβ1-4GlcNAcβ1-2Manα1-3Manβ1-4GlcNAc, followed by Neu5Acα2-6Galβ1-4GlcNAcβ1-2Manα1-6Manβ1-4GlcNAc. This is the first study to show unequivocal evidence for the occurrence of free Neu5Ac-linked N-glycans in human cancer tissues. Our findings suggest that free Neu5Ac-linked glycans may serve as a useful tumor marker.  相似文献   

17.
Baculovirus expression vector system (BEVS) is widely known as a mass-production tool to produce functional recombinant glycoproteins except that it may not be always suitable for medical practice due to the differences in the structure of N-linked glycans between insects and mammalian. Currently, various approaches have been reported to alter N-linked glycan structures of glycoproteins derived from insects into terminally sialylated complex-type N-glycans. In the light of those studies, we also proposed in vitro maturation of N-glycan with mass-produced and purified glycosyltransferases by silkworm–BEVS. β-1,4-Galactosyltransferase 1 (β4GalT1) is known as one of type II transmembrane enzymes that transfer galactose in a β-1, 4 linkage to accepter sugars, and a key enzyme for further sialylation of N-glycans. In this study, we developed a large-scale production of recombinant human β4GalT1 (rhβ4GalT1) with N- or C-terminal tags in silkworm–BEVS. We demonstrated that rhβ4GalT1 is N-glycosylated and without mucin-type glycosylation. Interestingly, we found that purified rhβ4GalT1 from silkworm serum presented higher galactosyltransferase activity than that expressed from cultured mammalian cells. We also validated the UDP-galactose transferase activity of produced rhβ4GalT1 proteins by using protein subtracts from silkworm silk gland. Taken together, rhβ4GalT1 from silkworms can become a valuable tool for producing high-quality recombinant glycoproteins with mammalian-like N-glycans.  相似文献   

18.
There is a growing desire in the biological and clinical sciences to integrate and correlate multiple classes of biomolecules to unravel biology, define pathways, improve treatment, understand disease, and aid biomarker discovery. N-linked glycosylation is one of the most important and robust post-translational modifications on proteins and regulates critical cell functions such as signaling, adhesion, and enzymatic function. Analytical techniques to purify and analyze N-glycans have remained relatively static over the last decade. While accurate and effective, they commonly require significant expertise and resources. Though some high-throughput purification schemes have been developed, they have yet to find widespread adoption and often rely on the enrichment of glycopeptides. One promising method, developed by Thomas-Oates et al., filter aided N-glycan separation (FANGS), was qualitatively demonstrated on tissues. Herein, we adapted FANGS to plasma and coupled it to the individuality normalization when labeling with glycan hydrazide tags strategy in order to achieve accurate relative quantification by liquid chromatography mass spectrometry and enhanced electrospray ionization. Furthermore, we designed new functionality to the protocol by achieving tandem, shotgun proteomics and glycosylation site analysis on hen plasma. We showed that N-glycans purified on filter and derivatized by hydrophobic hydrazide tags were comparable in terms of abundance and class to those by solid phase extraction (SPE); the latter is considered a gold standard in the field. Importantly, the variability in the two protocols was not statistically different. Proteomic data that was collected in-line with glycomic data had the same depth compared to a standard trypsin digest. Peptide deamidation is minimized in the protocol, limiting non-specific deamidation detected at glycosylation motifs. This allowed for direct glycosylation site analysis, though the protocol can accommodate 18O site labeling as well. Overall, we demonstrated a new in-line high-throughput, unbiased, filter based protocol for quantitative glycomics and proteomics analysis.  相似文献   

19.
Nox1 is a membrane-integrated protein that belongs to the Nox family of superoxide-producing NADPH oxidases. Here we show that human Nox1 undergoes glycosylation at Asn-162 and Asn-236 in the second and third extracellular loops, respectively. Simultaneous threonine substitution for these residues completely abrogates the glycosylation, but does not prevent Nox1 from forming a heterodimer with p22phox, trafficking to the cell surface, or producing superoxide. In the absence of p22phox, Nox1 is transported to the plasma membrane mainly as a form with high mannose N-glycans, although their conversion into complex N-glycans is induced by expression of p22phox. These findings indicate that glycosylation and subsequent N-glycan maturation of Nox1 are both dispensable for its cell surface recruitment. Superoxide production by unglycosylated Nox1 is largely dependent on p22phox, which is abrogated by glutamine substitution for Pro-156 in p22phox, a mutation leading to a defective interaction with the Nox1-activating protein Noxo1. Thus p22phox directly contributes to Nox1 activation in a glycosylation-independent manner, besides its significant role in Nox1 glycan maturation.  相似文献   

20.
Changes in glycosylation are considered a hallmark of cancer, and one of the key targets of glycosylation modifications is E-cadherin. We and others have previously demonstrated that E-cadherin has a role in the regulation of bisecting GlcNAc N-glycans expression, remaining to be determined the E-cadherin-dependent signaling pathway involved in this N-glycans expression regulation. In this study, we analysed the impact of E-cadherin expression in the activation profile of receptor tyrosine kinases such as insulin receptor (IR) and IGF-I receptor (IGF-IR). We demonstrated that exogenous E-cadherin expression inhibits IR, IGF-IR and ERK 1/2 phosphorylation. Stimulation with insulin and IGF-I in MDA-MD-435 cancer cells overexpressing E-cadherin induces a decrease of bisecting GlcNAc N-glycans that was accompanied with alterations on E-cadherin cellular localization. Concomitantly, IR/IGF-IR signaling activation induced a mesenchymal-like phenotype of cancer cells together with an increased tumor cell invasion capability. Altogether, these results demonstrate an interplay between E-cadherin and IR/IGF-IR signaling as major networking players in the regulation of bisecting N-glycans expression, with important effects in the modulation of epithelial characteristics and tumor cell invasion. Here we provide new insights into the role that Insulin/IGF-I signaling play during cancer progression through glycosylation modifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号