首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 950 毫秒
1.
DOXP-reductoisomerase (DXR) is a validated target for the development of antimalarial drugs to address the increase in resistant strains of Plasmodium falciparum. Series of aryl- and heteroarylcarbamoylphosphonic acids, their diethyl esters and disodium salts have been prepared as analogues of the potent DXR inhibitor fosmidomycin. The effects of the carboxamide N-substituents and the length of the methylene linker have been explored using in silico docking studies, saturation transfer difference NMR spectroscopy and enzyme inhibition assays using both EcDXR and PfDXR. These studies indicate an optimal linker length of two methylene units and have confirmed the importance of an additional binding pocket in the PfDXR active site. Insights into the constraints of the PfDXR binding site provide additional scope for the rational design of DXR inhibitors with increased ligand–receptor interactions.  相似文献   

2.
The apicomplexan parasite Toxoplasma gondii, the causative agent of toxoplasmosis, is an important human pathogen. 1-Deoxy-d-xylulose-5-phosphate reductoisomerase (DXR) in the non-mevalonate isoprene biosynthesis pathway is essential to the organism and therefore a target for developing anti-toxoplasmosis drugs. In order to find potent inhibitors, we expressed and purified recombinant T. gondii DXR (TgDXR). Biochemical properties of this enzyme were characterized and an enzyme activity/inhibition assay was developed. A collection of 11 compounds with a broad structural diversity were tested against TgDXR and several potent inhibitors were identified with Ki values as low as 48 nM. Analysis of the results as well as those of Escherichia coli and Plasmodium falciparum DXR enzymes revealed a different structure–activity relationship profile for the inhibition of TgDXR.  相似文献   

3.
This work is focused on the design of new antimicrobial drugs and on the development of lipophilic inhibitors of the DXR, the second enzyme of the MEP pathway for the biosynthesis of isoprene units in most bacteria, by replacing the phosphonate group of fosmidomycin derivatives by a tetrazoyl moiety capable of multiple hydrogen bonding. The N- and C-substituted tetrazole analogues of phosphonohydroxamate inhibitors were synthesized and tested on the DXR of Escherichia coli. This work points out the hypothesis that the phosphonate/phosphate recognition site might be too rigid to accommodate other functional groups.  相似文献   

4.
The aim of this study was to evaluate the mutagenicity (clastogenicity/aneugenicity) of a glycolic extract of Ziziphus joazeiro bark (GEZJ) by the micronucleus assay in mice bone marrow. Antimutagenic activity was also assessed using treatments associated with GEZJ and doxorubicin (DXR). Mice were evaluated 24–48 h after exposure to positive (N-nitroso-N-ethylurea, NEU - 50 mg.kg−1 and DXR - 5 mg.kg−1) and negative (150 mM NaCl) controls, as well as treatment with GEZJ (0.5–2 g.kg−1), GEZJ (2 g.kg−1) + NEU and GEZJ (2 g.kg−1) + DXR. There were no significant differences in the frequencies of micronucleated polychromatic erythrocytes in mice treated with GEJZ and GEJZ + DXR compared to the negative controls, indicating that GEZJ was not mutagenic. Analysis of the polychromatic:normochromatic erythrocyte ratio revealed significant differences in the responses to doses of 0.5 g.kg−1 and 1–2 g.kg−1 and the positive control (NEU). These results indicated no systemic toxicity and moderate toxicity at lower and higher doses of GEZJ. The lack of mutagenicity and systemic toxicity in the antimutagenic assays, especially for treatment with GEZJ + DXR, suggested that phytochemical compounds in Z. joazeiro bark attenuated DXR-induced mutagenicity and the moderate systemic toxicity of a high dose of Z. joazeiro bark (2 g.kg−1). Further studies on the genotoxicity of Z. joazeiro extracts are necessary to establish the possible health risk in humans and to determine the potential as a chemopreventive agent for therapeutic use.  相似文献   

5.
李嵘  王喆之 《植物研究》2007,27(1):59-67
采用生物信息学的方法和工具对已在GenBank上注册的拟南芥、玉米、岩蔷薇、水稻、黄花蒿、亚麻等植物的萜类合成酶1-脱氧-D-木酮糖-5-磷酸还原异构酶的核酸及氨基酸序列进行分析,并对其组成成分、转运肽、跨膜拓朴结构域、疏水性/亲水性、蛋白质二级及三级结构、分子系统进化关系等进行预测和推断。结果表明:该类酶基因的全长包括5′、3′非翻译区和一个开放阅读框,无跨膜结构域,是一个具转运肽的亲水性蛋白,包括两个功能DXR结合motif及两个功能NADPH结合motif,α-螺旋和不规则卷曲是蛋白质二级结构最大量的结构元件,β-转角和β-折叠散布于整个蛋白质中,蛋白质的功能域在空间结构上折叠成“V”形,“V”形的两臂由N-端与C-端构成,“V”形的底部,是N 端臂与C-端臂的结合域。  相似文献   

6.
Doxorubicin-overproducing strains of Streptomyces peucetius ATCC 29050 can be obtained through manipulation of the genes in the region of the doxorubicin (DXR) gene cluster that contains dpsH, the dpsG polyketide synthase gene, the putative dnrU ketoreductase gene, dnrV, and the doxA cytochrome P-450 gene. These five genes were characterized by sequence analysis, and the effects of replacing dnrU, dnrV, doxA, or dpsH with mutant alleles and of doxA overexpression on the production of the principal anthracycline metabolites of S. peucetius were studied. The exact roles of dpsH and dnrV could not be established, although dnrV is implicated in the enzymatic reactions catalyzed by DoxA, but dnrU appears to encode a ketoreductase specific for the C-13 carbonyl of daunorubicin (DNR) and DXR or their biosynthetic precursors. The highest DXR titers were obtained in a dnrX dnrU (N. Lomovskaya, Y. Doi-Katayama, S. Filippini, C. Nastro, L. Fonstein, M. Gallo, A. L. Colombo, and C. R. Hutchinson, J. Bacteriol. 180:2379–2386, 1998) double mutant and a dnrX dnrU dnrH (C. Scotti and C. R. Hutchinson, J. Bacteriol. 178:7316–7321, 1996) triple mutant. Overexpression of doxA in a doxA::aphII mutant resulted in the accumulation of DXR precursors instead of in a notable increase in DXR production. In contrast, overexpression of dnrV and doxA jointly in the dnrX dnrU double mutant or the dnrX dnrU dnrH triple mutant increased the DXR titer 36 to 86%.  相似文献   

7.
To develop more effective inhibitors than fosmidomycin, a natural compound which inhibits the deoxyxylulose 5-phosphate reductoisomerase (DXR), the second enzyme of the MEP pathway, we designed molecules possessing on the one hand a catechol that is able to chelate the magnesium dication and on the other hand a group able to occupy the NADPH recognition site. Catechol–rhodanine derivatives (16) were synthesized and their potential inhibition was tested on the DXR of Escherichia coli. For the inhibitors 1 and 2, the presence of detergent in the enzymatic assays led to a dramatic decrease of the inhibition suggesting, that these compounds are rather promiscuous inhibitors. The compounds 4 and 5 kept their inhibition capacity in the presence of Triton X100 and could be considered as specific inhibitors of DXR. Compound 4 showed antimicrobial activity against Escherichia coli. The only partial protection of NADPH against the inhibition suggested that the catechol–rhodanine derivatives did not settle in the coenzyme binding site. This paper points out the necessity to include a detergent in the DXR enzymatic assays to avoid false positive when putative hydrophobic inhibitors are tested and especially when the IC50, are in the micromolar range.  相似文献   

8.
The consumption of organic tomatoes (ORTs) reduces the risk of harmful effects to humans and the environment caused by exposure to toxic agrochemicals. In this study, we used the somatic mutation and recombination test (SMART) of wing spots in Drosophila melanogaster to evaluate the genotoxicity of ORT and the effect of cotreatment with ORT on the genotoxicity of Doxorubicin® (DXR, a cancer chemotherapeutic agent) that is mediated by free radical formation. Standard (ST) cross larvae were treated chronically with solutions containing 25%, 50% or 100% of an aqueous extract of ORT, in the absence and presence of DXR (0.125 mg/mL), and the number of mutant spots on the wings of emergent flies was counted. ORT alone was not genotoxic but enhanced the toxicity of DXR when administered concomitantly with DXR. The ORT-enhanced frequency of spots induced by DXR may have resulted from the interaction of ORT with the enzymatic systems that catalyze the metabolic detoxification of this drug.  相似文献   

9.
Maize microsomal benzoxazinone N-monooxygenase   总被引:3,自引:0,他引:3       下载免费PDF全文
The benzoxazinones occur in hydroxamic acid and lactam forms in maize (Zea mays L.) tissue. The hydroxamic acid forms which possess a N-hydroxyl group are found in the highest concentration while the lactam members which lack the N-hydroxyl group occur in lower concentrations. The hydroxamic acid 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) has as its lactam counterpart 2-hydroxy-1,4-benzoxazin-3-one (HBOA). An enzyme has been identified in maize microsomal preparations which catalyzes the N-hydroxylation of HBOA to form DIBOA. The enzyme is initially observed in seedlings 2 days after imbibition which coincides with the onset of hydroxamic acid accumulation. The enzyme requires NADPH and is inhibited by sulfhydryl reagents, NADP, cytochrome c, cations, carbon monoxide, and nitrogen gas. The effect of nitrogen can be reversed by exposing the enzyme to air, while the effect of carbon monoxide can be reversed by exposing the enzyme to 450 nanometer light during the incubation period. The apparent Km values for HBOA and NADPH are 13 and 5 micromolar, respectively. The pH optimum is 7.5 and the temperature optimum for the enzyme is 35°C. A 450 nanometer absorbance peak is observed when reduced microsomal preparations are exposed to carbon monoxide which in combination with other data presented supports the hypothesis that the enzyme is a cytochrome P-450 dependent N-monooxygenase.  相似文献   

10.
Role of hydroxamic acids in the resistance of cereals to aphids   总被引:1,自引:0,他引:1  
Hydroxamic acid concentration in Gramineae, both natural and incorporated, correlates with resistance to the aphid Metopolophium dirhodum. 2,4-Dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one, a hydroxamic acid isolated from corn extracts, is deleterious to aphids fed on artificial diets. It is proposed that hydroxamic acids act as naturally-occurring protective factors against M. dirhodum.  相似文献   

11.
Advances in cancer treatment utilizing multiple chemotherapies have dramatically increased cancer survivorship. Female cancer survivors treated with doxorubicin (DXR) chemotherapy often suffer from an acute impairment of ovarian function, which can persist as long-term, permanent ovarian insufficiency. Dexrazoxane (Dexra) pretreatment reduces DXR-induced insult in the heart, and protects in vitro cultured murine and non-human primate ovaries, demonstrating a drug-based shield to prevent DXR insult. The present study tested the ability of Dexra pretreatment to mitigate acute DXR chemotherapy ovarian toxicity in mice through the first 24 hours post-treatment, and improve subsequent long-term fertility throughout the reproductive lifespan. Adolescent CD-1 mice were treated with Dexra 1 hour prior to DXR treatment in a 1:1 mg or 10:1 mg Dexra:DXR ratio. During the acute injury period (2–24 hours post-injection), Dexra pretreatment at a 1:1 mg ratio decreased the extent of double strand DNA breaks, diminished γH2FAX activation, and reduced subsequent follicular cellular demise caused by DXR. In fertility and fecundity studies, dams pretreated with either Dexra:DXR dose ratio exhibited litter sizes larger than DXR-treated dams, and mice treated with a 1:1 mg Dexra:DXR ratio delivered pups with birth weights greater than DXR-treated females. While DXR significantly increased the “infertility index” (quantifying the percentage of dams failing to achieve pregnancy) through 6 gestations following treatment, Dexra pretreatment significantly reduced the infertility index following DXR treatment, improving fecundity. Low dose Dexra not only protected the ovaries, but also bestowed a considerable survival advantage following exposure to DXR chemotherapy. Mouse survivorship increased from 25% post-DXR treatment to over 80% with Dexra pretreatment. These data demonstrate that Dexra provides acute ovarian protection from DXR toxicity, improving reproductive health in a mouse model, suggesting this clinically available drug may provide ovarian protection for cancer patients.  相似文献   

12.
《Free radical research》2013,47(1-3):145-151
The effects of two sulfhydryl compounds, glutathione (GSH) and N-acetylcysteine (NAC), on the cardiotoxicity of doxorubicin (DXR) were tested on in vitro and in vivo models. DXR was administered to rats as 4 weekly i.v. doses of 3mg/kg. GSH (1.5 mmoles/kg), given i.v. 10 min before and 1 hr after DXR, was found to prevent the development of the delayed cardiotoxic effects of DXR, as assessed by electrocardiographic and mechanical parameters, as well as by histological examination of left ventricular preparations. In contrast, equimolar oral doses of NAC (1 hr before and 2hrs after DXR) were found to be ineffective. Both GSH and NAC prevented the negative inotropic effect produced by DXR on isolated rat atria. A good correlation exists between the cardioprotective effects of the two agents and their ability to enhance the non-protein sulfhydryl group content of the myocardium. Differences observed in vivo between GSH and NAC might be accounted for by pharmacokinetic factors.  相似文献   

13.
14.
The Streptomyces peucetius dpsY and dnrX genes govern early and late steps in the biosynthesis of the clinically valuable antitumor drugs daunorubicin (DNR) and doxorubicin (DXR). Although their deduced products resemble those of genes thought to be involved in antibiotic production in several other bacteria, this information could not be used to identify the functions of dpsY and dnrX. Replacement of dpsY with a mutant form disrupted by insertion of the aphII neomycin-kanamycin resistance gene resulted in the accumulation of UWM5, the C-19 ethyl homolog of SEK43, a known shunt product of iterative polyketide synthases involved in the biosynthesis of aromatic polyketides. Hence, DpsY must act along with the other components of the DNR-DXR polyketide synthase to form 12-deoxyaklanonic acid, the earliest known intermediate of the DXR pathway. Mutation of dnrX in the same way resulted in a threefold increase in DXR production and the disappearance of two acid-sensitive, unknown compounds from culture extracts. These results suggest that dnrX, analogous to the role of the S. peucetius dnrH gene (C. Scotti and C. R. Hutchinson, J. Bacteriol. 178:7316–7321, 1996), may be involved in the metabolism of DNR and/or DXR to acid-sensitive compounds, possibly related to the baumycins found in many DNR-producing bacteria.  相似文献   

15.
The naturally occurring cyclic tetrapeptide, chlamydocin, originally isolated from fungus Diheterospora chlamydosphoria, consists of α-aminoisobutyric acid, l-phenylalanine, d-proline and an unusual amino acid (S)-2-amino-8-((S)-oxiran-2-yl)-8-oxooctanoic acid (Aoe) and inhibits the histone deacetylases (HDACs), a class of regulatory enzymes. The epoxyketone moiety of Aoe is the key functional group for inhibition. The cyclic tetrapeptide scaffold is supposed to play important role for effective binding to the surface of enzymes. In place of the epoxyketone group, hydroxamic acid and sulfhydryl group have been applied to design inhibitor ligands to zinc atom in catalytic site of HDACs. In the research for more potent HDAC inhibitors, we replaced the epoxyketone moiety of Aoe with different functional groups and synthesized a series of chlamydocin analogs as HDAC inhibitors. Among the functional groups, methoxymethylketone moiety showed as potent inhibition as the hydroxamic acid. On the contrary, we confirmed that borate, trifruoromethylketone, and 2-aminoanilide are almost inactive in HDAC inhibition.  相似文献   

16.
The methylerythritol phosphate (MEP) pathway of Plasmodium falciparum (P. falciparum) has become an attractive target for anti-malarial drug discovery. This study describes a kinetic model of this pathway, its use in validating 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) as drug target from the systemic perspective, and additional target identification, using metabolic control analysis and in silico inhibition studies. In addition to DXR, 1-deoxy-d-xylulose 5-phosphate synthase (DXS) can be targeted because it is the first enzyme of the pathway and has the highest flux control coefficient followed by that of DXR. In silico inhibition of both enzymes caused large decrement in the pathway flux. An added advantage of targeting DXS is its influence on vitamin B1 and B6 biosynthesis. Two more potential targets, 2-C-methyl-d-erythritol 2,4-cyclodiphosphate synthase and 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase, were also identified. Their inhibition caused large accumulation of their substrates causing instability of the system.  相似文献   

17.
Antibody-targeted liposomal anticancer drugs combine the specificity of antibodies with large payloads of entrapped drugs. We previously showed that liposomal doxorubicin (DXR) targeted via anti-CD19 monoclonal antibodies (mAb) or their Fab' fragments against the B-cell antigen CD19 led to improved therapeutic effects in murine B-cell lymphoma models relative to non-targeted liposomal DXR. We now are examining the use of anti-CD19 single chain fragments of the antibody variable region (scFv) as a targeting moiety, to test the hypothesis that scFv have advantages over full-sized mAb or Fab' fragments. We expressed two different anti-CD19 scFv constructs, HD37-C and HD37-CCH in E. coli, and purified the scFvs using two different methods. The HD37-CCH construct was selected for coupling studies due to its relative stability and activity in comparison to HD37-C. When coupled to liposomes, the HD37-CCH scFv showed increased binding in vitro to CD19-positive Raji cells, compared to non-targeted liposomes. Cytotoxicity data showed that HD37-CCH scFv-targeted liposomes loaded with DXR were more cytotoxic than non-targeted liposomal DXR. Our results suggest that anti-CD19 scFv constructs should be explored further for their potential in treating B-lymphoid leukemias and lymphomas.  相似文献   

18.
Most bacteria use the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway for the synthesis of their essential isoprenoid precursors. The absence of the MEP pathway in humans makes it a promising new target for the development of much needed new and safe antimicrobial drugs. However, bacteria show a remarkable metabolic plasticity for isoprenoid production. For example, the NADPH-dependent production of MEP from 1-deoxy-d-xylulose 5-phosphate in the first committed step of the MEP pathway is catalyzed by 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR) in most bacteria, whereas an unrelated DXR-like (DRL) protein was recently found to catalyze the same reaction in some organisms, including the emerging human and animal pathogens Bartonella and Brucella. Here, we report the x-ray crystal structures of the Brucella abortus DRL enzyme in its apo form and in complex with the broad-spectrum antibiotic fosmidomycin solved to 1.5 and 1.8 Å resolution, respectively. DRL is a dimer, with each polypeptide folding into three distinct domains starting with the NADPH-binding domain, in resemblance to the structure of bacterial DXR enzymes. Other than that, DRL and DXR show a low structural relationship, with a different disposition of the domains and a topologically unrelated C-terminal domain. In particular, the active site of DRL presents a unique arrangement, suggesting that the design of drugs that would selectively inhibit DRL-harboring pathogens without affecting beneficial or innocuous bacteria harboring DXR should be feasible. As a proof of concept, we identified two strong DXR inhibitors that have virtually no effect on DRL activity.  相似文献   

19.
Effects of captopril on the development of rat doxorubicin nephropathy.   总被引:2,自引:0,他引:2  
The effects of a daily administration of an anti-converting enzyme inhibitor. Captopril (CPT) (100 mg/kg/orally), on the development of functional and morphological alterations induced in rats by a single injection (7.5 mg/kg/iv) of Doxorubicin (DXR) (Adriamycin*), were investigated. Twenty-four-hour protein excretion, urine output, food intake, water intake, and body weight gain were measured weekly for 30 days. Transmission and scanning electron microscopy observations were performed on kidney samples after 30 days. Four groups were studied. Group 1 were control rats. Group 2 were rats injected with DXR. Group 3 were rats injected with DXR and treated with CPT for 30 days. Group 4 were rats injected with DXR and treated with CPT for 15 days (CPT treatment started 15 days after DXR injection). Group 1 did not show significant functional or morphological changes. Group 2 showed severe proteinuria, significant increase in urinary volume within 2 weeks, significant body weight reduction and diffuse morphological changes. These changes mainly consisted of podocyte swelling, severe foot process fusion, and presence of casts within tubular lumen. Group 3, with respect to group 2, showed a significant reduction of the 24 h protein excretion and urine output. This group displayed morphological changes similar to those observed in group 2, but with a focal distribution. Group 4 showed functional and morphological changes comparable with those of group 2. It is concluded that CPT partially inhibits the development of the functional and morphological damage induced by DXR in the rat kidney. However, CPT did not influence the natural development of nephropathy when treatment started 15 days after DXR injection.  相似文献   

20.
The dxr gene encoding the 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) from the cyanobacterium Synechocystis sp. PCC6803 was expressed in Escherichia coli to produce both the native and N-terminal histidine-tagged forms of DXR. The enzymes were purified from the cell extracts using either anion exchange chromatography or metal affinity chromatography and gel filtration. The purified recombinant native and histidine-tagged enzymes each displayed a single band on sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) gels, corresponding to the calculated subunit molecular weights of 42,500 and 46,700, respectively. By native PAGE, both enzymes were dimers under reducing conditions. The kinetic properties for the enzymes were characterized and only minor variations were observed, demonstrating that the N-terminal histidine tag does not greatly affect the activity of the enzyme. Both enzymes had similar properties to previously characterized reductoisomerases from other sources. The Km's for the metal ions Mn2+, Mg2+, and Co2+ were determined for native DXR for the first time, with the Km for Mg2+ being approximately 200-fold higher than the Km's for Mn2+ and Co2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号