首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetochore, which consists of DNA sequence elements and structural proteins, is essential for high-fidelity chromosome transmission during cell division. In budding yeast, Sgt1 and Hsp90 help assemble the core kinetochore complex CBF3 by activating the CBF3 components Skp1 and Ctf13. In this study, we show that Sgt1 forms homodimers by performing in vitro and in vivo immunoprecipitation and analytical ultracentrifugation analyses. Analyses of the dimerization of Sgt1 deletion proteins showed that the Skp1-binding domain (amino acids 1–211) contains the Sgt1 homodimerization domain. Also, the Sgt1 mutant proteins that were unable to dimerize also did not bind Skp1, suggesting that Sgt1 dimerization is important for Sgt1-Skp1 binding. Restoring dimerization activity of a dimerization-deficient sgt1 mutant (sgt1-L31P) by using the CENP-B (centromere protein-B) dimerization domain suppressed the temperature sensitivity, the benomyl sensitivity, and the chromosome missegregation phenotype of sgt1-L31P. These results strongly suggest that Sgt1 dimerization is required for kinetochore assembly.Spindle microtubules are coupled to the centromeric region of the chromosome by a structural protein complex called the kinetochore (1, 2). The kinetochore is thought to generate a signal that arrests cells during mitosis when it is not properly attached to microtubules, thereby preventing aberrant chromosome transmission to the daughter cells, which can lead to tumorigenesis (3, 4). The kinetochore of the budding yeast Saccharomyces cerevisiae has been characterized thoroughly, genetically and biochemically; thus, its molecular structure is the most well detailed to date. More than 70 different proteins comprise the budding yeast kinetochore, and several of those are conserved in mammals (2).The budding yeast centromere DNA is a 125-bp region that contains three conserved regions, CDEI, CDEII, and CDEIII (5, 6). CDEI is bound by Cbf1 (79). CDEIII (25 bp) is essential for centromere function (10) and is the site where CBF3 binds to centromeric DNA. CBF3 contains four proteins: Ndc10, Cep3, Ctf13 (1118), and Skp1 (17, 18), all of which are essential for viability. Mutations in any of the four CBF3 proteins abolish the ability of CDEIII to bind to CBF3 (19, 20). All of the described kinetochore proteins, except the CDEI-binding Cbf1, localize to kinetochores dependent on the CBF3 complex (2). Therefore, the CBF3 complex is the fundamental structure of the kinetochore, and the mechanism of CBF3 assembly is of major interest.We previously isolated SGT1, the skp1-4 kinetochore-defective mutant dosage suppressor (21). Sgt1 and Skp1 activate Ctf13; thus, they are required for assembly of the CBF3 complex (21). The molecular chaperone Hsp90 is also required for the formation of the Skp1-Ctf13 complex (22). Sgt1 has two highly conserved motifs that are required for protein-protein interaction, the tetratricopeptide repeat (TPR)2 (21) and the CS (CHORD protein- and Sgt1-specific) motif. We and others (2326) have found that both domains are important for the interaction with Hsp90. The Sgt1-Hsp90 interaction is required for the assembly of the core kinetochore complex; this interaction is an initial step in kinetochore assembly (24, 26, 27) that is conserved between yeast and humans (28, 29).In this study, we further characterized the molecular mechanism of this assembly process. We found that Sgt1 forms dimers in vivo, and our results strongly suggest that Sgt1 dimerization is required for kinetochore assembly in budding yeast.  相似文献   

2.
We previously reported the identification of TUSC1 (Tumor Suppressor Candidate 1), as a novel intronless gene isolated from a region of homozygous deletion at D9S126 on chromosome 9p in human lung cancer. In this study, we examine the differential expression of TUSC1 in human lung cancer cell lines by western blot and in a primary human lung cancer tissue microarray by immunohistochemical analysis. We also tested the functional activities and mechanisms of TUSC1 as a tumor suppressor gene through growth suppression in vitro and in vivo. The results showed no expression of TUSC1 in TUSC1 homozygously deleted cells and diminished expression in some tumor cell lines without TUSC1 deletion. Interestingly, the results from a primary human lung cancer tissue microarray suggested that higher expression of TUSC1 was correlated with increased survival times for lung cancer patients. Our data demonstrated that growth curves of tumor cell lines transfected with TUSC1 grew slower in vitro than those transfected with the empty vector. More importantly, xenograph tumors in nude mice grew significantly slower in vivo in cells stably transfected with TUSC1 than those transfected with empty vector. In addition, results from confocal microscopy and immunohistochemical analyses show distribution of TUSC1 in the cytoplasm and nucleus in tumor cell lines and in normal and tumor cells in the lung cancer tissue microarray. Taken together, our results support TUSC1 has tumor suppressor activity as a candidate tumor suppressor gene located on chromosome 9p.  相似文献   

3.
4.
R. Francis  M. K. Barton  J. Kimble    T. Schedl 《Genetics》1995,139(2):579-606
We have characterized 31 mutations in the gld-1 (defective in germline development) gene of Caenorhabditis elegans. In gld-1(null) hermaphrodites, oogenesis is abolished and a germline tumor forms where oocyte development would normally occur. By contrast, gld-1(null) males are unaffected. The hermaphrodite germline tumor appears to derive from germ cells that enter the meiotic pathway normally but then exit pachytene and return to the mitotic cycle. Certain gld-1 partial loss-of-function mutations also abolish oogenesis, but germ cells arrest in pachytene rather than returning to mitosis. Our results indicate that gld-1 is a tumor suppressor gene required for oocyte development. The tumorous phenotype suggests that gld-1(+) may function to negatively regulate proliferation during meiotic prophase and/or act to direct progression through meiotic prophase. We also show that gld-1(+) has an additional nonessential role in germline sex determination: promotion of hermaphrodite spermatogenesis. This function of gld-1 is inferred from a haplo-insufficient phenotype and from the properties of gain-of-function gld-1 mutations that cause alterations in the sexual identity of germ cells.  相似文献   

5.
The HOXB1 gene plays a critical role as an oncogene in diverse tumors. However, the functional role of HOXB1 and the mechanism regulating HOXB1 expression in glioma are not fully understood. A preliminary bioinformatics analysis showed that HOXB1 is ectopically expressed in glioma, and that HOXB1 is a possible target of miR-3175. In this study, we investigated the function of HOXB1 and the relationship between HOXB1 and miR-3175 in glioma. We show that HOXB1 expression is significantly downregulated in glioma tissues and cell lines, and that its expression may be closely associated with the degree of malignancy. Reduced HOXB1 expression promoted the proliferation and invasion of glioma cells, and inhibited their apoptosis in vitro, and the downregulation of HOXB1 was also associated with worse survival in glioma patients. More importantly, HOXB1 was shown experimentally to be a direct target of miR-3175 in this study. The downregulated expression of miR-3175 inhibited cell proliferation and invasion, and promoted apoptosis in glioma. The oncogenicity induced by low HOXB1 expression was prevented by an miR-3175 inhibitor in glioma cells. Our results suggest that HOXB1 functions as a tumor suppressor, regulated by miR-3175 in glioma. These results clarify the pathogenesis of glioma and offer a potential target for its treatment.  相似文献   

6.
7.
Tian Yu  John Bachman  Zhi-Chun Lai 《Genetics》2013,195(3):1193-1196
The role of Large tumor suppressor LATS/Warts in human cancer is not clearly understood. Here we show that hLATS1/2 cancer mutations affect their expression and kinase activity. hLATS1/2 mutants exhibit a decreased activity in inhibiting YAP and tissue growth. Therefore, hLATS1/2 alleles from human cancer can be loss-of-function mutations.  相似文献   

8.
MicroRNAs (miRNAs) are predicted to regulate approximately 30% of all human genes; however, only a few miRNAs have been assigned their targets and specific functions. Here we demonstrate that miR-24, a ubiquitously expressed miRNA, has an anti-proliferative effect independent of p53 function. Cell lines with differential p53 status were used as a model to study the effects of miR-24 on cell proliferation, cell cycle control, gene regulation and cellular transformation. Overexpression of miR-24 in six different cell lines, independent of p53 function, inhibited cell proliferation and resulted in G2/S cell cycle arrest. MiR-24 over expression in cells with wt-p53 upregulated TP53 and p21 protein; however, in p53-null cells miR-24 still induced cell cycle arrest without the involvement of p21. We show that miR-24 regulates p53-independent cellular proliferation by regulating an S-phase enzyme, dihydrofolate reductase (DHFR) a target of the chemotherapeutic drug methotrexate (MTX). Of interest, we found that a miR-24 target site polymorphism in DHFR 3′ UTR that results in loss of miR-24-function and high DHFR levels in the cell imparts a growth advantage to immortalized cells and induces neoplastic transformation. Of clinical significance, we found that miR-24 is deregulated in human colorectal cancer tumors and a subset of tumors has reduced levels of miR-24. A novel function for miR-24 as a p53-independent cell cycle inhibitory miRNA is proposed.  相似文献   

9.
A cDNA clone encoding a homolog of the yeast (Saccharomyces cerevisiae) gene Anti-oxidant 1 (ATX1) has been identified from Arabidopsis. This gene, referred to as Copper CHaperone (CCH), encodes a protein that is 36% identical to the amino acid sequence of ATX1 and has a 48-amino acid extension at the C-terminal end, which is absent from ATX1 homologs identified in animals. ATX1-deficient yeast (atx1) displayed a loss of high-affinity iron uptake. Expression of CCH in the atx1 strain restored high-affinity iron uptake, demonstrating that CCH is a functional homolog of ATX1. When overexpressed in yeast lacking the superoxide dismutase gene SOD1, both ATX1 and CCH protected the cell from the reactive oxygen toxicity that results from superoxide dismutase deficiency. CCH was unable to rescue the sod1 phenotype in the absence of copper, indicating that CCH function is copper dependent. In Arabidopsis CCH mRNA is present in the root, leaf, and inflorescence and is up-regulated 7-fold in leaves undergoing senescence. In plants treated with 800 nL/L ozone for 30 min, CCH mRNA levels increased by 30%. In excised leaves and whole plants treated with high levels of exogenous CuSO4, CCH mRNA levels decreased, indicating that CCH is regulated differently than characterized metallothionein proteins in Arabidopsis.  相似文献   

10.
The perception and response of pollen tubes to the female guidance signals are crucial for directional pollen tube growth inside female tissues, which leads to successful reproduction. In pursuing the mechanisms underlying this biological process, we identified the Arabidopsis (Arabidopsis thaliana) abnormal pollen tube guidance1 (aptg1) mutant, whose pollen tubes showed compromised micropylar guidance. In addition to its male defect, the aptg1 mutant showed embryo lethality. APTG1 encodes a putative mannosyltransferase homolog to human PHOSPHATIDYLINOSITOL GLYCAN ANCHOR BIOSYNTHESIS B and yeast (Saccharomyces cerevisiae) GLYCOSYLPHOSPHATIDYLINOSITOL10 (GPI10), both of which are involved in the biosynthesis of GPI anchors. We found that APTG1 was expressed in most plant tissues, including mature pollen, pollen tubes, mature embryo sacs, and developing embryos. By fluorescence colabeling, we showed that APTG1 was localized in the endoplasmic reticulum, where GPI anchors are synthesized. Disruption of APTG1 affected the localization of COBRA-LIKE10, a GPI-anchored protein important for pollen tube growth and guidance. The results shown here demonstrate that APTG1 is involved in both vegetative and reproductive development in Arabidopsis, likely through processing and proper targeting of GPI-anchored proteins.Double fertilization is the biological basis for seed propagation and plant reproduction in angiosperms. Pollen tubes grow through maternal tissue to deliver the immobile sperm cells into the female gametophyte (embryo sac). During this process, pollen tube guidance into the micropyle is a critical step and is precisely regulated (Dresselhaus and Franklin-Tong, 2013). Female guidance signals are generated by both sporophytic and gametophytic tissues and operate at different stages during pollen tube growth. The sporophytic signal directs the growth of pollen tubes in the stigma, style, and transmitting tract. The signal that induces pollen tubes to turn to the funiculus and grow into the micropyle is termed gametophytic guidance (Shimizu and Okada, 2000; Higashiyama et al., 2003). Extensive cellular and genetic studies have demonstrated that female gametophytes play key roles in the micropylar guidance of pollen tubes (Kasahara et al., 2005; Márton et al., 2005; Chen et al., 2007; Alandete-Saez et al., 2008; Okuda et al., 2009; Kessler and Grossniklaus, 2011; Takeuchi and Higashiyama, 2011). The molecular natures of such guidance signals have been gradually revealed in recent years (i.e. small peptides secreted by the female gametophyte, egg apparatus, or synergid cells; Márton et al., 2005; Jones-Rhoades et al., 2007; Okuda et al., 2009).Pollen tubes need to perceive the female guidance signals at the cell surface to initiate intracellular responses for directional growth. However, the mechanisms of pollen tube perception are still obscure. A few male factors involved in signal perception during pollen tube growth into ovules have been identified. For example, the Arabidopsis (Arabidopsis thaliana) sperm cell-specific protein HAPLESS2/GENERATIVE CELL-SPECIFIC1 was necessary for pollen tubes to target the micropyle (von Besser et al., 2006). Arabidopsis CATION/PROTON EXCHANGER21 (CHX21) and CHX23 encode K+ transporters in growing pollen tubes. Pollen grains of the chx21 chx23 double mutant germinated and extended a normal tube in the transmitting tract, but their targeting of the funiculus failed (Lu et al., 2011). Arabidopsis POLLEN DEFECTIVE IN GUIDANCE1 (POD1) was expressed in pollen grains, pollen tubes, and synergid cells. The pod1 pollen tubes showed defective micropylar guidance (Li et al., 2011). The tip of the pollen tube has been hypothesized to be the site of cue perception for micropyle-directed growth. The Arabidopsis Rab GTPase RABA4D was localized at the tips of growing pollen tubes. Pollen tubes with defective RABA4D had severely reduced growth rates and ovule targeting (Szumlanski and Nielsen, 2009). Recently, two receptor-like kinases at the apical plasma membrane (PM) of growing pollen tubes, LOST IN POLLEN TUBE GUIDANCE1 (LIP1) and LIP2, were demonstrated to guide pollen tubes to the micropyle by perceiving the AtLURE1 signal from synergid cells (Liu et al., 2013).Glycosylphosphatidylinositol (GPI) anchoring provides a strategy for targeting proteins to the outer layer of the PMs in eukaryotic cells. GPI anchors are synthesized inside the endoplasmic reticulum (ER) and are attached to proteins by posttranslational modifications in the ER. After processing, GPI-anchored proteins (GPI-APs) are transported to the cell surface following an unknown trafficking route and anchored at the cell surface (Maeda and Kinoshita, 2011). GPI-APs play very important roles in plant reproductive development (Gillmor et al., 2005; Ching et al., 2006; DeBono et al., 2009). An Arabidopsis putative GPI-AP, LORELEI, functioned in pollen tube reception of female signals, double fertilization, and early seed development (Capron et al., 2008; Tsukamoto et al., 2010). Arabidopsis COBRA-LIKE10 (COBL10), a GPI-AP, regulates the polar deposition of wall components in pollen tubes growing inside female tissues and is critical for micropylar guidance (Li et al., 2013). The conserved backbone of GPI anchors in eukaryotes is ethanolamine phosphate-6-Man-α-1,2-Man-α-1,6-Man-α-1,4-glucosamine-α-1,6-myoinositol phospholipid. During the biosynthesis of GPI anchors, monosaccharides, fatty acids, and phosphoethanolamines are sequentially added onto phosphatidylinositol. This process involves at least 16 enzymes and cofactors in mammals, including PHOSPHATIDYLINOSITOL GLYCAN ANCHOR BIOSYNTHESIS (PIG) A, B, C, F, G, H, L, M, N, O, P, Q, V, W, X, and Y (Maeda and Kinoshita, 2011). The core structure of the GPI anchor contains three Man residues donated by the substrate dolichol-phosphate-Man. GPI mannosyltransferases were required for adding the three Man residues of the GPI anchor in the ER lumen (Maeda and Kinoshita, 2011). Arabidopsis PEANUT1 (PNT1) is a homolog of the mammalian GPI mannosyltransferase PIG-M, involved in the addition of the first Man during the biosynthesis of the GPI anchor. The pnt1 mutant showed the defect of pollen viability and embryo development (Gillmor et al., 2005). PIG-B of human and GPI10 of yeast (Saccharomyces cerevisiae) encode GLYCOSYLPHOSPHATIDYLINOSITOL MANNOSYLTRANSFERASE3, involved in the addition of the third Man during the biosynthesis of the GPI anchor (Takahashi et al., 1996; Sütterlin et al., 1998). Mutation of PIG-B and GPI10 resulted in the accumulation of the GPI intermediate Man2-glucosamine-(acyl) phosphatidylinositol and led to cell death in yeast.In this study, we identified the ER-localized ABNORMAL POLLEN TUBE GUIDANCE1 (APTG1), an Arabidopsis homolog of PIG-B and GPI10. Pollen tubes of the aptg1 mutant showed compromised directional growth to the micropyle and lost the apical PM localization of COBL10. Besides the male defect, the mutant showed embryo lethality. In addition, reducing the expression of APTG1 resulted in defective seedling growth, indicating that APTG1 plays important roles in both reproductive and vegetative development.  相似文献   

11.
We have identified LmaPA2G4, a homolog of the human proliferation-associated 2G4 protein (also termed Ebp1), in a phosphoproteomic screening. Multiple sequence alignment and cluster analysis revealed that LmaPA2G4 is a non-peptidase member of the M24 family of metallopeptidases. This pseudoenzyme is structurally related to methionine aminopeptidases. A null mutant system based on negative selection allowed us to demonstrate that LmaPA2G4 is an essential gene in Leishmania major. Over-expression of LmaPA2G4 did not alter cell morphology or the ability to differentiate into metacyclic and amastigote stages. Interestingly, the over-expression affected cell proliferation and virulence in mouse footpad analysis. LmaPA2G4 binds a synthetic double-stranded RNA polyriboinosinic polyribocytidylic acid [poly(I∶C)] as shown in an electrophoretic mobility shift assay (EMSA). Quantitative proteomics revealed that the over-expression of LmaPA2G4 led to accumulation of factors involved in translation initiation and elongation. Significantly, we found a strong reduction of de novo protein biosynthesis in transgenic parasites using a non-radioactive metabolic labeling assay. In conclusion, LmaPA2G4 is an essential gene and is potentially implicated in fundamental biological mechanisms, such as translation, making it an attractive target for therapeutic intervention.  相似文献   

12.
The Saccharomyces cerevisiae zinc finger protein Rim101p is activated by cleavage of its C-terminal region, which resembles PEST regions that confer susceptibility to proteolysis. Here we report that Rim20p, a member of the broadly conserved PalA/AIP1/Alix family, is required for Rim101p cleavage. Two-hybrid and coimmunoprecipitation assays indicate that Rim20p binds to Rim101p, and a two-hybrid assay shows that the Rim101p PEST-like region is sufficient for Rim20p binding. Rim101p-Rim20p interaction is conserved in Candida albicans, supporting the idea that interaction is functionally significant. Analysis of Rim20p mutant proteins indicates that some of its broadly conserved regions are required for processing of Rim101p and for stability of Rim20p itself but are not required for interaction with Rim101p. A recent genome-wide two-hybrid study (T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, and Y. Sakaki, Proc. Natl. Acad. Sci. USA 98:4569-4574, 2000) indicates that Rim20p interacts with Snf7p and that Snf7p interacts with Rim13p, a cysteine protease required for Rim101p proteolysis. We suggest that Rim20p may serve as part of a scaffold that places Rim101p and Rim13p in close proximity.  相似文献   

13.
During meiosis II in the yeast Saccharomyces cerevisiae, the cytoplasmic face of the spindle pole body changes from a site of microtubule initiation to a site of de novo membrane formation. These membranes are required to package the haploid meiotic products into spores. This functional change in the spindle pole body involves the expansion and modification of its cytoplasmic face, termed the outer plaque. We report here that SPO21 is required for this modification. The Spo21 protein localizes to the spindle pole in meiotic cells. In the absence of SPO21 the structure of the outer plaque is abnormal, and prospore membranes do not form. Further, decreased dosage of SPO21 leaves only two of the four spindle pole bodies competent to generate membranes. Mutation of CNM67, encoding a known component of the mitotic outer plaque, also results in a meiotic outer plaque defect but does not block membrane formation, suggesting that Spo21p may play a direct role in initiating membrane formation.  相似文献   

14.
15.
16.
17.
The glyoxalase pathway, which consists of the two enzymes, GLYOXALASE 1 (GLX 1) (E.C.: 4.4.1.5) and 2 (E.C.3.1.2.6), has a vital role in chemical detoxification. In Arabidopsis thaliana there are at least four different isoforms of glyoxalase 2, two of which, GLX2-1 and GLX2-4 have not been characterized in detail. Here, the functional role of Arabidopsis thaliana GLX2-1 is investigated. Glx2-1 loss-of-function mutants and plants that constitutively over-express GLX2-1 resemble wild-type plants under normal growth conditions. Insilico analysis of publicly available microarray datasets with ATTEDII, Mapman and Genevestigator indicate potential role(s) in stress response and acclimation. Results presented here demonstrate that GLX2-1 gene expression is up-regulated in wild type Arabidopsis thaliana by salt and anoxia stress, and by excess L-Threonine. Additionally, a mutation in GLX2-1 inhibits growth and survival during abiotic stresses. Metabolic profiling studies show alterations in the levels of sugars and amino acids during threonine stress in the plants. Elevated levels of polyamines, which are known stress markers, are also observed. Overall our results suggest that Arabidopsis thaliana GLX2-1 is not essential during normal plant life, but is required during specific stress conditions.  相似文献   

18.
Pregnancy-associated plasma protein-A (PAPPA) has been reported to regulate the activity of insulin-like growth factor (IGF) signal pathway through proteolytic degradation of IGF binding proteins (IGFBPs) thereby increasing the local concentration of free IGFs available to receptors. In this study we found that PAPPA is secreted from two out of seven lung cancer cell lines examined. None of immortalized normal bronchial epithelial cells (HBE) tested secrets PAPPA. There is no correlation between expression level and secretion of PAPPA in these cells. A cell line over-expressing PAPPA accompanied with secretion shows no notable changes in proliferation under cell culture conditions in vitro, but displays significantly augmentation of tumor growth in vivo in a xenograft model. In contrast, a cell line over-expressing PAPPA without secretion exhibits reduction of tumor growth both in vitro and in vivo. Down-regulation of PAPPA expression and secretion by RNAi knockdown decreases tumor growth after implanted in vivo. The tumor promoting activity of PAPPA appears to be mediated mainly through augmentation of the IGF signaling pathway as indicated by notable increases in downstream Akt kinase phosphorylation in tumor samples. Our results indicate that PAPPA secretion may play an important role in lung cancer growth and progression.  相似文献   

19.
RNA binding proteins assemble on mRNAs to control every single step of their life cycle, from nuclear splicing to cytoplasmic localization, stabilization or translation. Consistent with an essential role of RNA binding proteins in neuronal maturation and function, mutations in this class of proteins, in particular in members of the hnRNP family, have been associated with neurological diseases. To date, however, the physiological function of hnRNPs during in vivo neuronal development has remained poorly explored. Here, we have investigated the role of Drosophila Hrp48, a fly homologue of mammalian hnRNP A2/B1, during central nervous system development. Using a combination of mutant conditions, we showed that hrp48 is required for the formation, growth and guidance of axonal branches in Mushroom Body neurons. Furthermore, our results revealed that hrp48 inactivation induces an overextension of Mushroom Body dorsal axonal branches, with a significantly higher penetrance in females than in males. Finally, as demonstrated by immunolocalization studies, Hrp48 is confined to Mushroom Body neuron cell bodies, where it accumulates in the cytoplasm from larval stages to adulthood. Altogether, our data provide evidence for a crucial in vivo role of the hnRNP Hrp48 in multiple aspects of axon guidance and branching during nervous system development. They also indicate cryptic sex differences in the development of sexually non-dimorphic neuronal structures.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号