首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the in situ reconstitution of myosin filaments within the myosin-extracted myofibrils in cultured chick embryo skeletal muscle cells using the electron microscope and polarization microscope. Myosin was first extracted from the myofibrils in glycerinated muscle cells with a high-salt solution containing 0.6 M KCl. When rabbit skeletal muscle myosin was added to the myosin-extracted cells in the high-salt solution, thin filaments in the ghost myofibrils were bound with myosin to form arrowhead complexes. Subsequent dilution of KCl in the myosin solution to 0.1 M resulted in the formation of thick myosin filaments within the myofibrils, increasing the birefringence of the myofibrils. When Mg-ATP was added such myosin-reassembled myofibrils were induced either to form supercontraction bands or to restore the sarcomeric arrangement of thick and thin filaments. Under the polarization microscope, vibrational movement of the myofibrils was seen transiently upon addition of Mg-ATP, often resulting in a regular arrangement of myofibrils in register. These myofibrils, with reconstituted myosin filaments, structurally and functionally resembled the native myofibrils. The findings are discussed with special reference to the myofibril formation in developing muscle cells.  相似文献   

2.
Troponin C was removed almost completely from the porcine cardiac myofibrils by the same extraction procedure using CDTA as that previously reported for the rabbit skeletal myofibrils (Morimoto, S. & Ohtsuki, I. (1987) J. Biochem. 101, 291-301), and the effects of substitution of troponin C in cardiac myofibrils with rabbit skeletal troponin C or bovine brain calmodulin were examined. While the ATPase activity of intact cardiac myofibrils or cardiac troponin C-reconstituted cardiac myofibrils was activated at only a little higher concentration of Sr2+ than Ca2+, the skeletal troponin C-substituted cardiac myofibrils, as well as intact rabbit skeletal myofibrils, required more than 10 times higher concentration of Sr2+ than Ca2+ for activation of the myofibrillar ATPase activity. However, the concentrations of Ca2+ and Sr2+ required for the activation of the ATPase activity of the skeletal troponin C-substituted cardiac myofibrils were both about 5 times higher than those of intact skeletal myofibrils. The skeletal troponin C-substituted cardiac myofibrils, as well as intact skeletal myofibrils, also showed higher cooperativity in the Ca2+-activation of the ATPase activity than intact or cardiac troponin C-reconstituted cardiac myofibrils. The ATPase activity of calmodulin-substituted cardiac myofibrils was activated at a several times lower concentration of Ca2+ or Sr2+ than that of calmodulin-substituted skeletal myofibrils, while the ratios of the concentration of Sr2+ to Ca2+ required for activation were almost the same in both cases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The Ca(2+)-sensitive ATPase activity of rabbit skeletal myofibrils was desensitized by treatment with excess troponin T and was found to be activated irrespective of the Ca2+ concentrations. A SDS-gel electrophoretic study showed that both troponin C and troponin I were removed from the myofibrils on treatment with troponin T. The Ca(2+)- and Sr(2+)- sensitivities of the ATPase of troponin T-treated myofibrils reconstituted with troponin C. I were the same as in the intact myofibrils. The Ca(2+)-activated ATPase of rabbit skeletal myofibrils was also desensitized on treatment with chicken breast troponin T or its 26K fragment. The SDS-gel electrophoretic study revealed that troponin T, in addition to troponin C and troponin I, was also removed from the myofibrils and, instead, chicken breast troponin T or its 26K fragment was incorporated into the myofibrils. The Ca(2+)- sensitivity of myofibrils treated with chicken breast troponin T or its 26K fragment was then regained on reconstitution with troponin C.I. These findings indicate that the change in composition of myofibrils on treatment with troponin T or its 26K fragment is due to the selective replacement of the troponin C.I.T complex in the myofibrils as a whole with troponin T or its 26K fragment.  相似文献   

4.
Ca2+ binding to skeletal muscle troponin C in skeletal or cardiac myofibrils was measured by the centrifugation method using 45Ca. The specific Ca2+ binding to troponin C was obtained by subtracting the amount of Ca2+ bound to the CDTA-treated myofibrils (troponin C-depleted myofibrils) from that to the myofibrils reconstituted with troponin C. Results of Ca2+ binding measurement at various Ca2+ concentrations showed that skeletal troponin C had two classes of binding sites with different affinity for Ca2+. The Ca2+ binding of low-affinity sites in cardiac myofibrils was about eight times lower than that in skeletal myofibrils, while the high-affinity sites of troponin C in skeletal or cardiac myofibrils showed almost the same affinity for Ca2+. The Ca2+ sensitivity of the ATPase activity of skeletal troponin C-reconstituted cardiac myofibrils was also about eight times lower than that of skeletal myofibrils reconstituted with troponin C. These findings indicated that the difference in the sensitivity to Ca2+ of the ATPase activity between skeletal and cardiac CDTA-treated myofibrils reconstituted with skeletal troponin C was mostly due to the change in the affinity for Ca2+ of the low-affinity sites on the troponin C molecule.  相似文献   

5.
Surface structure of myofibrils of rabbit skeletal muscle and their transverse elasticity were studied by atomic force microscopy. Images of myofibrils had a periodic structure characteristic of sarcomeres of skeletal muscle fibers. The transverse elasticity distribution in the sarcomere was determined based on force-distance curves measured at various loci of single myofibrils. The Z-line in rigor myofibrils was the most rigid in all the loci of myofibrils studied under various physiological conditions. The overall transverse elasticity of myofibrils decreased in the order in rigor solution > +AMPPNP solution > relaxing solution. The "apparent" transverse Young's modulus of myofibrils estimated at the overlap region between thin and thick filaments was 84.0 +/- 18.1, 37.5 +/- 14.0, and 11.5 +/- 3.5 kPa in rigor, +AMPPNP, and relaxing solution respectively.  相似文献   

6.
High hydrostatic pressures of 100 MPa to 300 MPa were applied to isolated myofibrils prepared from rabbit skeletal muscle to investigate the pressure-induced degradation of myofibrillar structure in the muscle.

A marked loss of the regular structure was observed in the phase-contrast image of the isolated myofibrils pressurized at 150 MPa, with further progress of the rupture of structure with increasing pressure applied. When exposed to pressures of 200 MPa or higher, clumping of the crushed myofibrils was observed. Electron microscopic studies of the pressurized myofibrils showed that the loss of M-line materials, rupture of I-filament, and the loss of the structural continuity with the loss of Z-line progressed in the myofibrils with increasing pressure applied. A sigmoidal relationship was obtained between the degree of solubilization and the intensity of the pressure applied to the isolated myofibrils. The electrophoretic analysis indicated that the amount and the species of the protein released from the myofibrils at each stage of the pressurization corresponded to the disruption of the ultrastructure in the myofibrils.  相似文献   

7.
The Ca2+-sensitive ATPase activity of rabbit skeletal myofibrils disappeared completely after treatment with a solution containing CDTA, a strong divalent cation chelator, at a low ionic strength. A gel electrophoretic study revealed that all troponin C and about half of myosin light chain 2 were removed from the myofibrils by the CDTA treatment. The CDTA-treated myofibrils, when reconstituted with skeletal troponin C, showed almost exactly the same Ca2+- or Sr2+-sensitive ATPase activity as that of intact myofibrils. The CDTA-treated myofibrils reconstituted with porcine cardiac troponin C showed the same Ca2+- or Sr2+-sensitivity of the ATPase as that of porcine cardiac myofibrils; Sr2+-sensitivity relative to Ca2+-sensitivity was about ten times higher than, and the maximal slope of the activation curve was about half that of skeletal myofibrils. These findings indicate that these characteristic features of divalent cation regulation in the contraction of skeletal and cardiac muscles are determined solely by the species of troponin C. Bovine brain calmodulin hardly activated the ATPase activity of the CDTA-treated myofibrils even in the presence of Ca2+. Excess calmodulin, however, was found to give Ca2+- or Sr2+-sensitivity to the ATPase activity of the CDTA-treated myofibrils. Frog skeletal parvalbumins 1 and 2, even in excess, did not affect the ATPase activity of the CDTA-treated myofibrils.  相似文献   

8.
The incorporation of actin into myofibrils has been examined in a cell-free system [Bouché et al.: Journal of Cell Biology 107:587-596, 1988; Goldfine et al.: Cellular and Molecular Biology of Muscle Development, 1989]. Actin was translated in a reticulocyte lysate in the presence of 35S-methionine (35S-actin) or purified from muscle and labeled with fluorescein-5-isothiocyanate (FITC-actin). Myofibrils were incubated with either 35S-actin or FITC-actin and then analyzed by gel electrophoresis or fluorescence microscopy. When myofibrils were incubated with FITC-actin monomer in the reticulocyte lysate buffer, strong fluorescent labeling was observed in Z-band regions and less so in I-bands. No fluorescence was detected in non-overlap regions of A-bands. Confocal microscopic analysis of these myofibrils indicated that FITC-actin was distributed evenly across the diameter of the myofibrils. These observations suggest that actin incorporation in the reticulocyte lysate buffer occurred at sites in the sarcomere which contain actin. In contrast, FITC-actin showed a variety of non-physiological incorporation patterns when incubated with myofibrils in the presence of an isotonic buffer (I-buffer). However, when ATP was added to I-buffer, FITC-actin showed a pattern of incorporation into myofibrils similar to that seen in the reticulocyte lysate buffer. Immunoblots indicated that actin of native size was released from myofibrils during incubation in the reticulocyte lysate buffer. No actin release was detected when the myofibrils were incubated in I-buffer lacking ATP. We used this system to compare the incorporation of actin isoforms into myofibrils. Both alpha- and beta-actins exhibited incorporation into the myofibrils but there was a three-fold greater incorporation of the alpha isoform. We propose that the differential affinities of actin isoforms for myofibrils and other cytoskeletal structures could provide a mechanism for actin isoform targeting within the cytoplasm.  相似文献   

9.
A new protein having a subunit weight of 40,000 has been purified from myosin-extracted bovine cardiac myofibrils. Its amino acid composition and isoelectric point are distinct from actin, eu-actinin, and a variety of sarcoplasmic proteins of similar size. Affinity-purified antibodies made to this protein only react with a single 40-kDa protein band from cardiac myofibrils on immunoblots. The anti-40-kDa protein also shows cross-reactivities with cardiac myofibrils from rabbits, rats, and chickens. Immunofluorescence studies demonstrate that the 40-kDa protein is localized at the Z-bands of cardiac myofibrils and at the intercalated discs. The antibody did not react with skeletal muscle myofibrils by immunofluorescence or immunoblotting. It appears that the 40-kDa protein may play a role in the strong attachments between adjacent myofibrils in cardiac muscle.  相似文献   

10.
From the four known vertebrate tropomyosin genes (designated TPM1, TPM2, TPM3, and TPM4) over 20 isoforms can be generated. The predominant TPM1 isoform, TPM1alpha, is specifically expressed in both skeletal and cardiac muscles. A newly discovered alternatively spliced isoform, TPM1kappa, containing exon 2a instead of exon 2b contained in TPM1alpha, was found to be cardiac specific and developmentally regulated. In this work, we transfected quail skeletal muscle cells with green fluorescent proteins (GFP) coupled to chicken TPM1alpha and chicken TPM1kappa and compared their localizations in premyofibrils and mature myofibrils. We used the technique of fluorescence recovery after photobleaching (FRAP) to compare the dynamics of TPM1alpha and TPM1kappa in myotubes. TPM1alpha and TPM1kappa incorporated into premyofibrils, nascent myofibrils, and mature myofibrils of quail myotubes in identical patterns. The two tropomyosin isoforms have a higher exchange rate in premyofibrils than in mature myofibrils. F-actin and muscle tropomyosin are present in the same fibers at all three stages of myofibrillogenesis (premyofibrils, nascent myofibrils, mature myofibrils). In contrast, the tropomyosin-binding molecule nebulin is not present in the initial premyofibrils. Nebulin is gradually added during myofibrillogenesis, becoming fully localized in striated patterns by the mature myofibril stage. A model of thin filament formation is proposed to explain the increased stability of tropomyosin in mature myofibrils. These experiments are supportive of a maturing thin filament and stepwise model of myofibrillogenesis (premyofibrils to nascent myofibrils to mature myofibrils), and are inconsistent with models that postulate the immediate appearance of fully formed thin filaments or myofibrils.  相似文献   

11.
Control guinea pig cardiac myofibrils were isolated in the presence of Triton X-100. Experimental myofibrils, prepared in the presence of Triton X-100, NaF, cyclic AMP and ATP, possessed a reduced myofibrillar ATPase activity. When myofibrils isolated under control conditions were incubated for two hours at 25°C with NaF, ATP and cyclic AMP, the ATPase activity was also decreased; however, the ATPase activity was not reduced as much as that of myofibrils isolated under experimental conditions. Incubation of myofibrils with E. coli aklaline phosphatase and guinea pig heart phosphoprotein phosphatase resulted in an increase in ATPase activity and a decrease in phosphoprotein phosphate. Thus there appeared to be an inverse relationship between myofibrillar ATPase activity and phosphoprotein phosphate content. The results indicated that a protein kinase is associated with the Triton X-100 purified myofibrils and supports the notion that intact myofibrils can exist in at least two catalytic forms.  相似文献   

12.
Thick and thin filaments in asynchronous flight muscle overlap nearly completely and thick filaments are attached to the Z-disc by connecting filaments. We have raised antibodies against a fraction of Lethocerus flight muscle myofibrils containing Z-discs and associated filaments and also against a low ionic strength extract of myofibrils. Monoclonal antibodies were obtained to proteins of 800 kd (p800), 700 kd (p700), 400 kd (p400) and alpha-actinin. The positions of the proteins in Lethocerus flight and leg myofibrils were determined by immunofluorescence and electron microscopy. p800 is in connecting filaments of flight myofibrils and in A-bands of leg myofibrils. p700 is in Z-discs of flight myofibrils and an immunologically related protein, p500, is in leg muscle Z-discs. p400 is in M-lines of both flight and leg myofibrils. Preliminary DNA sequencing shows that p800 is related to vertebrate titin and nematode twitchin. Molecules of p800 could extend from the Z-disc a short way along thick filaments, forming a mechanical link between the two structures. All three high molecular weight proteins probably stabilize the structure of the myofibril.  相似文献   

13.
Ion-exchange column-purified I-protein was labeled by fluorescein isothiocyanate (FITC) at an equimolar ratio. When FITC-labeled I-protein was reacted with glycerinated myofibrils of chicken breast muscle in a phosphate-buffered saline, fluorescence was observed at the A-band and/or the Z-line of the sarcomere. However, FITC-labeled I-protein did not stain freshly prepared myofibrils. When FITC-I-protein was reacted with a nitrocellulose paper sheet on which muscle proteins were blotted after SDS-polyacrylamide gel electrophoresis, some peptide bands, including connectin and nebulin, were fluorescent. These facts can explain why anti-I-protein antibodies stain the A-I junctional region of fresh myofibrils and A-bands and/or Z-lines of glycerinated myofibrils. It is very likely that I-protein is transferred from the A-I junctions of myofibrils and translocates to A-bands and Z-lines, where some components that can bind to I-protein are localized, as myofibrils are degraded during the glycerination.  相似文献   

14.
The mechanical strength of sarcomere structures of skeletal muscle was studied by rupturing single myofibrils of rabbit psoas muscle by submicromanipulation techniques. Microbeads coated with alpha-actinin were attached to the surface of myofibrils immobilized to coverslip. By use of either optical tweezers or atomic force microscope, the attached beads were captured and detached from the myofibrils. During the detachment of the beads, the actin filaments bound specifically to the beads were peeled off from the bulk structures of myofibrils, thus rupturing the peripheral components of the myofibrils bound to the actin filaments. By analyzing the ruptures thus produced in various myofibril preparations, it was found that the sarcomere structure of myofibrils is maintained by numerous molecular components having the mechanical strength sufficient to sustain the contractile force produced by the actomyosin system. The present techniques could be applied to study the mechanical strength of cellular organelles containing actin filaments as their component.  相似文献   

15.
To investigate the constituents of Z-disk, reconstitution of Z-disk by incubating some proteins released from myofibrils by CAF(Ca2+-activated factor) with Z-disk-extracted fiber bundles was carried out and examined with electron microscope. The materials released from myofibrils by CAF have been bound in Z-disk region, and Z-disk extracted from myofibrils with a low ionic strength solution has been reconstituted. On the other hand, Z-disk removed from myofibrils by CAF has not been reconstituted by the same way.  相似文献   

16.
A rapid method of fixation of myofibrils using dry ice is reported. A glass slide or coverslip containing a drop of glutaraldehyde-fixed suspension of myofibrils is placed on dry ice causing the myofibrils to adhere to the glass surface. The specimens are then dehydrated through the alcohols, air dried and metal coated. This technique gives the myofibrils a corrugated appearance under the scanning electron microscope corresponding to the sarcomere banding.  相似文献   

17.
The somatic musculature of Trichodorus porosus is transversely striated, and that of Criconemoides similis is obliquely striated. The species also differ in configuration of the myofibrils, arrangement of the filaments within the myofibrils, and abundance of sarcoplasmic reticulum. Both species are platymyarian and meromyarian. The muscle cells are composed of myofibrils, sarcoplasm, sarcoplasmic reticulum, and various organelles. The myofibrils of both species contain actin and myosin filaments.  相似文献   

18.
Binding of myosin to actin in myofibrils during ATP hydrolysis   总被引:4,自引:0,他引:4  
A M Duong  E Reisler 《Biochemistry》1989,28(3):1307-1313
Measurements of cross-bridge attachment to actin in myofibrils during ATP hydrolysis require prior fixation of myofibrils to prevent their contraction. The optimal cross-linking of myofibrils was achieved by using 10 mM carbodiimide (EDC) under rigor conditions and at 4 degrees C. The fixed myofibrils had elevated MgATPase activity (150%) and could not contract. As judged by chymotryptic digestions and subsequent SDS gel electrophoresis analysis, less than 25% of myosin heads were cross-linked in these myofibrils. The isolated, un-cross-linked myosin heads showed pH-dependent Ca2+- and EDTA(K+)-ATPase activities similar to those of standard intact S-1. For measurements of myosin binding to actin, the modified myofibrils were digested with trypsin at a weight ratio of 1:50 under rigor, relaxed, and active-state conditions. Aliquots of tryptic digestion reactions were then cleaved with chymotrypsin to yield isolated myosin heads and their fragments. Analysis of the decay of myosin heavy-chain bands on SDS gels yielded the rates of myosin cleavage under all conditions and enabled the measurements of actomyosin binding in myofibrils in the presence of MgATP. Using this approach, we detected rigorlike binding of 25 +/- 6% of myosin heads to actin in myofibrils during ATP hydrolysis.  相似文献   

19.
Gentle treatment with an ATP-containing relaxing solution of isolated myofibrils from rat diaphragm, soleus, extensor digitorum longus, and left atria maintained in vitro releases a small amount of myofilaments constituting less than 5% of total myofibrillar protein. Successive extraction of myofibrils produced little further filament release. Releasable myofilaments lack alpha-actinin (Mr = 95,000), certain very high molecular weight proteins (greater than 200,000), and possibly M-line protein but contain other myofibrillar proteins. After pulse-labeling with [3H]leucine for 8 min, specific activity of the myosin heavy chain in the easily releasable myofilaments is 3-6 times higher than the specific activity of myosin heavy chain in the residual myofibrils, although 85-90% of total label is in the myofibrillar myosin. In the absence of protein synthesis, releasable filament specific activity decreases, with a half-time of 60-90 min, to that of the myofibrillar myosin. This labeling pattern appears inconsistent with a simple precursor-product relationship between releasable filaments and myofibrils suggesting that the filaments originate largely from myofibrils. Preincubation of muscles with several factors known to decrease proteolysis, i.e. passive stretch, leupeptin, colchicine, and cycloheximide, reduced the size of the releasable filament fraction. Treatment of muscles with the calcium ionophore A23187, which accelerates proteolysis, and pretreatment of myofibrils with either trypsin or calcium-dependent protease increased filament release. Therefore, the releasable filament fraction may contain intermediates in the breakdown of myofibrils. The labeling kinetics may indicate a mixing of myofilaments within myofibrils which functions in the movement of contractile protein to its possible site of degradation, i.e. the myofibrillar surface.  相似文献   

20.
Atomic force microscopic images of single skeletal myofibrils showed periodical broad filamentous bands interspaced with narrow rigid bands corresponding to the sarcomere structures of skeletal muscle (Yoshikawa, Y., Yasuike, T., Yagi, A., and Yamada, T. 1999. Biochem. Biophys. Res. Comm., 256: 13-19). In order to identify the narrow rigid bands, comparative studies were made for intact single myofibrils and those treated with calcium-activated neutral protease by use of atomic force microscopy. It was found that (a) the periodical narrow rigid bands present in intact myofibrils were completely absent in myofibrils treated with calcium-activated neutral protease, and that (b) myofibrils treated with calcium-activated neutral protease were very fragile compared with intact myofibrils. As calcium-activated neutral protease selectively removes Z-bands of myofibrils (Reddy, M. K., Etlinger, J. D., Rabinowitz, M., Fischman, D. A., and Zak, R. 1975. J. Biol. Chem., 250: 4278-4284), these results clearly indicate that (a) the narrow rigid bands are the Z-bands, and that (b) the Z-bands are the essential disc supporting the sarcomere structure of skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号