首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apple leaf senescence: leaf disc compared to attached leaf   总被引:4,自引:4,他引:0       下载免费PDF全文
Attached apple leaves (Pyrus malus L., Golden Delicious) began to lose protein in early August as the first sign of senescence. Apple leaf discs prepared from samples before early August gained protein for up to 7 days after detachment. After early August, the loss of protein from leaf discs was no greater than the loss from attached leaves in 7 days. The loss of chlorophyll from leaf discs began over 2 months before attached leaves began to lose chlorophyll naturally and before leaf discs lost protein. Leaf discs from presenescent leaves did not senesce significantly faster when maintained in darkness instead of 12 hours of light. In general, the loss of protein and chlorophyll from apple leaf discs after 7 days was much less than for most other leaf types studied.  相似文献   

2.
Osada  Noriyuki 《Plant Ecology》2020,221(10):939-950
Plant Ecology - Spring leaf phenology has been intensively studied in temperate deciduous broad-leaved tree species, but the phenology of evergreen broad-leaved tree species has seldom been focused...  相似文献   

3.
Networks in leaf development   总被引:6,自引:0,他引:6  
Shoots are characterized by indeterminate growth resulting from divisions of undifferentiated cells in the central region of the shoot apical meristem. These cells give rise to peripheral derivatives from which lateral organ initials are recruited. During initial stages of cell recruitment, the three-dimensional form of lateral organs is specified. Lateral organs such as leaves develop and differentiate along proximodistal (base-to-tip), dorsoventral (top-to bottom) and mediolateral (middle-to-margin) planes. Current findings are refining our knowledge of the genes and genetic interactions that regulate these early processes and are providing a picture of how these pathways may contribute to variation in leaf form.  相似文献   

4.
Question: Do thick‐twigged/large‐leaf species have an advantage in leaf display over their counterparts, and what are the effects of leaf habit and leaf form on the leaf‐stem relationship in plant twigs of temperature broadleaf woody species? Location: Gongga Mountain, southwest China. Methods: (1) We investigated stem cross‐sectional area and stem mass, leaf area and leaf/lamina mass of plant twigs (terminal branches of current‐year shoots) of 89 species belonging to 55 genera in 31 families. (2) Data were analyzed to determine leaf‐stem scaling relationships using both the Model type II regression method and the phylogenetically independent comparative (PIC) method. Results: (1) Significant, positive allometric relationships were found between twig cross‐sectional area and total leaf area supported by the twig, and between the cross‐sectional area and individual leaf area, suggesting that species with large leaves and thick twigs could support a disproportionately greater leaf area for a given twig cross‐sectional area. (2) However, the scaling relationships between twig stem mass and total leaf area and between stem mass and total lamina mass were approximately isometric, which indicates that the efficiency of deploying leaf area and lamina mass was independent of leaf size and twig size. The results of PIC were consistent with these correlations. (3) The evergreen species were usually smaller in total leaf area for a given twig stem investment in terms of both cross‐sectional area and stem mass, compared to deciduous species. Leaf mass per area (LMA) was negatively associated with the stem efficiency in deploying leaf area. (4) Compound leaf species could usually support a larger leaf area for a given twig stem mass and were usually larger in both leaf size and twig size than simple leaf species. Conclusions: Generally, thick‐twigged/large‐leaf species do not have an advantage over their counterparts in deploying photosynthetic compartments for a given twig stem investment. Leaf habit and leaf form types can modify leaf‐stem scaling relationships, possibly because of contrasting leaf properties. The leaf size‐twig size spectrum is related to the LMA‐leaf life span dimension of plant life history strategies.  相似文献   

5.
6.
This study assessed the intraspecific variability of senescent leaves of alder (Alnus glutinosa Gaertn.) and the effects of this variability on leaf decomposition in streams. Leaves were collected at five geographically distant locations in Europe. We analyzed 10 batches of leaf samples for seven quantitative leaf traits as well as leaf decomposition rate in coarse and fine mesh bags exposed in a single stream. The geographic origin of leaf samples largely explained the observed variation in litter quality and decomposition rate. Phosphorus (0.034–0.187%) and lignin (3.9–18.7%) concentrations in leaves varied widely. Together, these two traits accurately predicted leaf decomposition rate (r2=84.1%). Intraspecific variation in leaf decomposition rate was within a range similar to that reported for interspecific variation among co-occurring riparian plant species in Europe. Our study demonstrates extensive intraspecific variability in leaf traits on a continental scale, which can have enormous effects on major ecosystem processes such as leaf decomposition.  相似文献   

7.
Accumulation of the pathogenesis-related (PR) proteins localised in intercellular spaces of barley primary leaves, chlorophyll content, structure of chloroplasts, and photosynthesis were examined during natural and in vitro induced leaf senescence (cultivation of whole plants in the dark or detached leaves under nutrient deficiency). Some of PR proteins accumulated during natural senescence, but their accumulation pattern was different from those of pathogen-induced as well as during in vitro-induced senescence, which indicate different molecular bases of these processes. Photosynthetic rate and chlorophyll content indicate that natural senescence of barley primary leaves began from 15th day after sowing. In 35-d-old first leaves, the chloroplasts showed typical characteristics of senescence as significant decrease of size, greater grana, and prominent plastoglobuli. The chloroplasts contained more grana under in vitro induced senescence and they had reduced length in the dark. Correspondingly, accumulation of PR proteins was detectable on about the 15th day but the content of some PR proteins increased in later stages of senescence. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Summary The influence of leaf orientation on leaf temperature has been studied in an sclerophyll vegetation of the Amazon basin, which grows on white sandy soils of very low water retention capacity and variable depth of the water table.Leaf size of the species studied is mainly mesophyllous (sensu Raunkiaer). The high degree of leaf inclination in all species is very characteristic; 55% of the leaves present inclination angles (relative to the vertical) smaller than 45°.Water potential is generally high, not being lower than –14 bars. Leaf resistance increases toward noon during the course of sunny days, indicating either water stress at leaf level or the influence of low relative humidity on stomata opening.Leaf temperature under sunny conditions reflects the influence of leaf orientation on the amount of radiation absorbed by the leaf. Temperature differences recorded range from 1.8–5.4° C. The difference depends on leaf angle, leaf color and leaf diffusion resistance during the period of measurement.Analysis of the relationship between leaf angle and leaf temperature, using Gates leaf energy balance, shows that under the conditions prevailing at noon in sunny days, leaf angles smaller than 50° are effective in reducing leaf temperature within a wide range of leaf resistances to water vapor transfer.Contribution from the Venezuela MAB-1 Programm, partially supported by the National Research Council (CONICIT) and the Organization of American States (OEA)  相似文献   

9.
Geminivirus associated with yellow leaf disease of cantaloupe plants was detected using polymerase chain reaction (PCR) with geminivirus-specific degenerate primers which anneal within the AC1 ORF (replication initiator protein gene) and the AV1 ORF (coat protein gene). A DNA fragment of 1.2 kbp was amplified, cloned and sequenced. The 32-base stem loop region was found in the amplified fragment. This included the conserved nonanucleotide sequence TAATATTAC present in all geminiviruses. The nucleotide sequence of the intergenic region (IR) was compared with 28 whitefly-transmitted geminiviruses. The geminivirus associated with yellow leaf disease of cantaloupe plants showed 96.2% sequence identity with DNA A of tomato leaf curl geminivirus from India (ToLCV-In2). These data suggest that cantaloupe yellow leaf disease was caused by ToLCV.  相似文献   

10.
BACKGROUND AND AIMS: Changes in number of trichomes and in composition and concentrations of their exudates throughout leaf development may have important consequences for plant adaptation to abiotic and biotic factors. In the present study, seasonal changes in leaf trichomes and epicuticular flavonoid aglycones in three Finnish birch taxa (Betula pendula, B. pubescens ssp. pubescens, and B. pubescens ssp. czerepanovii) were followed. METHODS: Trichome number and ultrastructure were studied by means of light, scanning and transmission electron microscopy, while flavonoid aglycones in ethanolic leaf surface extracts were analysed by high-pressure liquid chromatography. KEY RESULTS: Density of both glandular and non-glandular trichomes decreased drastically with leaf expansion while the total number of trichomes per leaf remained constant, indicating that the final number of trichomes is established early in leaf development. Cells of glandular trichomes differentiate before those of the epidermis and produce secreted material only during the relatively short period (around 1-2 weeks) of leaf unfolding and expansion. In fully expanded leaves, glandular trichomes appeared to be at the post-secretory phase and function mainly as storage organs; they contained lipid droplets and osmiophilic material (probably phenolics). Concentrations (mg g(-1) d. wt) of surface flavonoids decreased with leaf age in all taxa. However, the changes in total amount ( microg per leaf) of flavonoids during leaf development were taxon-specific: no changes in B. pubescens ssp. czerepanovii, increase in B. pendula and in B. pubescens ssp. pubescens followed by the decline in the latter taxon. Concentrations of most of the individual leaf surface flavonoids correlated positively with the density of glandular trichomes within species, suggesting the participation of glandular trichomes in production of surface flavonoids. CONCLUSIONS: Rapid decline in the density of leaf trichomes and in the concentrations of flavonoid aglycones with leaf age suggests that the functional role of trichomes is likely to be most important at the early stages of birch leaf development.  相似文献   

11.
Samples of the leaf tissue (14cm2) were placed in a plexiglass chamber which consisted of three parts. Water absorbed by the leaf tissue on one side of the sample was transported through the middle part of the sample to the opposite side and was transpirated there. The intensity of transpiration the intensity of water absorption and water saturation deficit (w.s.d.) were determined simultaneously in this tissue by gravimetry. Water balance was studied either in saturated samples of leaf tissue or in tissue where w.s.d. (10%, 20%, 30%, 40%) was established in advance. Although conditions for water absorption in leaf segments were optimal, w.s.d. originated in the saturated leaf tissue under all given external conditions (evaporation from 41.7 to 17.8 mg cm?2 h?1). W.s.d. which was established in advance for the most part increased during the experiment and reached even high values (more than 60%). the equilibration was reached only under conditions of low evaporation and initial w.s.d. higher than 20% in young leaves and higher than 30% in adult leaves. A positive correlation between the ratio of the intensity of water absorption to the intensity of transpiration and w.s.d. was found only under conditions of lower evaporation (17.8 and 23.2mg cm?2h?1). The maximal values of w.s.d. were limited in this way. Water balance was studied: 1. in leaf tissue of upper, middle and lower leaves of fodder cabbage, 2. in leaf tissue of middle leaves of young and adult plants of fodder cabbage, 3. in leaf tissue of dicots (fodder cabbage) with different vessel orientation in respect to water transport, 4. in leaf tissue of monocots (banana-tree) with water transport upright to the vessel orientation. Considerable change of water balance was observed when the water transport was prolonged by two incisions in the middle part of the sample. Results of all these experiments revealed the possibility of water stress origin even in leaf tissue sufficiently supplied with water.  相似文献   

12.
In melanosomes of Pachymedusa (Agalychnis) dacnicolor and other leaf frogs, the pteridine dimer, pterorhodin, is found in fibers concentric to a kernel of eumelanin. The kernel is a remnant mature larval melanosome that is renovated at metamorphic climax and on which pterorhodin is deposited at the completion of metamorphosis. When pterorhodin is initially detected by chemical means in the skin of stage 25 individuals, flocculations of fibers are first seen in melanosomes. At stage 25+ a more intense chemical demonstration is accompanied by larger flocculations. These larval melanosomes are smaller than those of other vertebrates, but are formed from classical premelanosomes. At metamorphosis, the melanosome's limiting membrane is elevated from the surface of the eumelanin, and small spheroids are seen in the space and on the pigment surface. The Golgi complex is extremely active, numerous small vesicles are seen in the cytoplasm, and blebbing of the outer membrane of the nuclear envelope occurs. At stage 25 small thick-walled vesicles appear in the cytoplasm in contact with or within the melanosome; they may represent the transport of pterorhodin or elements necessary for its formation.  相似文献   

13.
Yeast abundance and species diversity of endophytic complexes in galls (cecidia) formed on the leaves of Salix fragilis, Salix caprea, Quercus robur, Tilia cordata, and Ulmus laevis and the epiphytic yeast communities of undamaged leaves of these plants were studied. Dynamics of yeast abundance in the galls was significantly different from that of the epiphytic yeast communities. Maximum numbers of endophytic yeast cells in the galls (up to 104 CFU/g) were comparable to abundance of epiphytic yeasts. A total of 14 species of endophytic yeasts were isolated from galls of different plants. Ascomycetous yeasts were found to predominate in the insect galls on willows and oak, while basidiomycetous yeasts dominated in mite galls on linden and elm, as well as on plant leaves. These results indicate that gall formation may be considered not only as a bidirectional pathological process of the interaction between plants and invertebrates, but also as a process in which the endophytic microbial population of the galls plays an important role.  相似文献   

14.
The process of photosynthesis is of such importance that most courses of biochemistry and physiology include some reference to it. This paper describes a simple experimental system, which uses radioactive carbon dioxide to study whole leaf photosynthesis under a variety of conditions.

An apparatus of very simple construction, in which the experiments can be safely carried out, is described. The experiments basically consist of the exposure of leaves to 14CO2 and the subsequent determination of radioactivity distribution and intensity by counting of leaf discs in a Geiger-Muller system and/or by autoradiography.

Experiments to demonstrate photosynthesis in the presence and absence of light, in variegated leaves of different types and to illustrate the importance of stomata are described.  相似文献   

15.
Signal transduction in leaf senescence   总被引:1,自引:0,他引:1  
Leaf senescence is a complex developmental phase that involves both degenerative and nutrient recycling processes. It is characterized by loss of chlorophyll and the degradation of proteins, nucleic acids, lipids, and nutrient remobilization. The onset and progression of leaf senescence are controlled by an array of environmental cues (such as drought, darkness, extreme temperatures, and pathogen attack) and endogenous factors (including age, ethylene, jasmonic acid, salicylic acid, abscisic acid, and cytokinin). This review discusses the major breakthroughs in signal transduction during the onset of leaf senescence, in dark- and drought-mediated leaf senescence, and in various hormones regulating leaf senescence achieved in the past several years. Various signals show different mechanisms of controlling leaf senescence, and cross-talks between different signaling pathways make it more complex. Key senescence regulatory networks still need to be elucidated, including cross-talks and the interaction mechanisms of various environmental signals and internal factors.  相似文献   

16.
The relationship between near-infrared reflectance at 800 nm (NIRR) from leaves and characteristics of leaf structure known to affect photosynthesis was investigated in 48 species of alpine angiosperms. This wavelength was selected to discriminate the effects of leaf structure vs. chemical or water content on leaf reflectance. A quantitative model was first constructed correlating NIRR with leaf structural characteristics for six species, and then validated using all 48 species. Among the structural characteristics tested in the reflectance model were leaf trichome density, the presence or absence of both leaf bicoloration and a thick leaf cuticle (>1 μm), leaf thickness, the ratio of palisade mesophyll to spongy mesophyll thickness (PM/SM), the proportion of the mesophyll occupied by intercellular air spaces (%IAS), and the ratio of mesophyll cell surface area exposed to IAS (A(mes)) per unit leaf surface area (A), or A(mes)/A. Multiple regression analysis showed that measured NIRR was highly correlated with A(mes)/A, leaf bicoloration, and the presence of a thick leaf cuticle (r = 0.93). In contrast, correlations between NIRR and leaf trichome density, leaf thickness, the PM/SM ratio, or %IAS were relatively weak (r < 0.25). A model incorporating A(mes)/A, leaf bicoloration, and cuticle thickness predicted NIRR accurately for 48 species (r = 0.43; P < 0.01) and may be useful for linking remotely sensed data to plant structure and function.  相似文献   

17.
18.
《植物生态学报》2014,38(6):640
叶片最大羧化速率是表征植物光合能力的关键参数, 受到光照、温度、水分、CO2浓度、叶片氮含量等多个要素的控制。准确地模拟植物叶片最大羧化速率对环境因子的响应是预测未来植被生产力和碳循环过程的前提。目前大多数陆地碳循环过程模型以Farqhuar光合作用模型为基础模拟植物的光合作用, 关于植物叶片的最大羧化速率与叶氮含量关系的模拟方法却各不相同。该文汇总了1990-2013年国内外植物叶片光合速率观测研究文献中叶片最大羧化速率与叶氮含量的关系式及相关数据, 分析了叶片最大羧化速率与叶氮含量关系随不同植被功能型和时间的变化特征, 以及环境因子变化条件下最大羧化速率与叶氮含量关系的变化特征, 探讨了二者关系变异性的可能原因以及影响因子。结果表明: 1)不同功能型植物叶片的最大羧化速率和叶氮含量的关系存在较大差异, 二者线性关系式的斜率平均值变化范围为16.29-50.25 μmol CO2·g N-1·s-1。落叶植被叶片的最大羧化速率随叶氮含量的变化率和光合氮利用效率一般都高于常绿植被, 其变异主要源于植物的比叶重和叶片内部氮素分配的差异。2)叶片最大羧化速率随叶氮含量的变化存在季节和年际变异。在没有受到水分胁迫的年份中, 叶片最大羧化速率随叶氮含量变化的速率一般在春季或夏季最高, 其季节变异与比叶重和叶氮在Rubisco的分配比例的季节变化有关。受到干旱的影响, 叶片最大羧化速率随叶氮含量的变化率会升高。3)当大气CO2浓度增加时, 由于叶片中Rubisco含量的降低, 多年生针叶叶片最大羧化速率和叶氮关系斜率值会出现降低; 当供氮水平增加时, 叶片最大羧化速率和叶片氮含量均表现出增加趋势, 二者线性关系的斜率也相应增加。在此基础上, 该文指出在模拟叶片最大羧化速率与叶氮含量的关系时, 应考虑叶片比叶重和叶氮在Rubisco中的分配比例的季节变异、水分胁迫、大气CO2浓度和供氮水平变化对二者关系的影响。囿于数据的有限性, 今后应进一步加强多因子控制实验研究, 深入探讨叶片最大羧化速率与叶氮含量关系的变异性机理, 并获得更系统的观测数据, 以助生态系统过程模型的改进, 提高模型的模拟精度。  相似文献   

19.
植物叶片最大羧化速率与叶氮含量关系的变异性   总被引:1,自引:0,他引:1       下载免费PDF全文
叶片最大羧化速率是表征植物光合能力的关键参数, 受到光照、温度、水分、CO2浓度、叶片氮含量等多个要素的控制。准确地模拟植物叶片最大羧化速率对环境因子的响应是预测未来植被生产力和碳循环过程的前提。目前大多数陆地碳循环过程模型以Farqhuar光合作用模型为基础模拟植物的光合作用, 关于植物叶片的最大羧化速率与叶氮含量关系的模拟方法却各不相同。该文汇总了1990-2013年国内外植物叶片光合速率观测研究文献中叶片最大羧化速率与叶氮含量的关系式及相关数据, 分析了叶片最大羧化速率与叶氮含量关系随不同植被功能型和时间的变化特征, 以及环境因子变化条件下最大羧化速率与叶氮含量关系的变化特征, 探讨了二者关系变异性的可能原因以及影响因子。结果表明: 1)不同功能型植物叶片的最大羧化速率和叶氮含量的关系存在较大差异, 二者线性关系式的斜率平均值变化范围为16.29-50.25 μmol CO2·g N-1·s-1。落叶植被叶片的最大羧化速率随叶氮含量的变化率和光合氮利用效率一般都高于常绿植被, 其变异主要源于植物的比叶重和叶片内部氮素分配的差异。2)叶片最大羧化速率随叶氮含量的变化存在季节和年际变异。在没有受到水分胁迫的年份中, 叶片最大羧化速率随叶氮含量变化的速率一般在春季或夏季最高, 其季节变异与比叶重和叶氮在Rubisco的分配比例的季节变化有关。受到干旱的影响, 叶片最大羧化速率随叶氮含量的变化率会升高。3)当大气CO2浓度增加时, 由于叶片中Rubisco含量的降低, 多年生针叶叶片最大羧化速率和叶氮关系斜率值会出现降低; 当供氮水平增加时, 叶片最大羧化速率和叶片氮含量均表现出增加趋势, 二者线性关系的斜率也相应增加。在此基础上, 该文指出在模拟叶片最大羧化速率与叶氮含量的关系时, 应考虑叶片比叶重和叶氮在Rubisco中的分配比例的季节变异、水分胁迫、大气CO2浓度和供氮水平变化对二者关系的影响。囿于数据的有限性, 今后应进一步加强多因子控制实验研究, 深入探讨叶片最大羧化速率与叶氮含量关系的变异性机理, 并获得更系统的观测数据, 以助生态系统过程模型的改进, 提高模型的模拟精度。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号