首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Yeast vacuole fusion requires soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), the Rab GTPase Ypt7p, vacuolar lipids, Sec17p and Sec18p, and the homotypic fusion and vacuole protein sorting complex (HOPS). HOPS is a multisubunit protein with direct affinities for SNAREs, vacuolar lipids, and the GTP-bound form of Ypt7p; each of these affinities contributes to HOPS association with the organelle. Using all-purified components, we have reconstituted fusion, but the Rab Ypt7p was not required. We now report that phosphorylation of HOPS by the vacuolar kinase Yck3p blocks HOPS binding to vacuolar lipids, making HOPS membrane association and the ensuing fusion depend on the presence of Ypt7p. In accord with this finding in the reconstituted fusion reaction, the inactivation of Ypt7p by the GTPase-activating protein Gyp1–46p only blocks the fusion of purified vacuoles when Yck3p is present and active. Thus, although Ypt7p may contribute to other fusion functions, its central role is to bind HOPS to the membrane.Rab proteins are small GTP-binding proteins involved in multiple steps of membrane traffic, including protein sorting, vesicle transport, and SNARE3-dependent membrane fusion (1). Rabs in their GTP-bound state bind proteins that are essential for mediating Rab function, which are therefore termed “effectors.” These effectors are diverse and perform various biochemical functions. For membrane fusion, Rabs and their effectors support tethering, the initial membrane contact that is needed for the subsequent assembly of trans-SNARE complexes between membranes (1, 2). A central question in organelle trafficking, which we now address, is whether Rabs are only required for binding their effectors to the membrane or whether they also activate the bound effector or provide some additional essential function for membrane fusion.We study membrane fusion using isolated yeast vacuoles (3). Yeast vacuole fusion requires the Rab GTPase Ypt7p, the heterohexameric HOPS complex, four vacuolar SNAREs, the SNARE disassembly chaperones Sec17p and Sec18p, and chemically minor yet functionally essential lipids, termed “regulatory” lipids. The HOPS complex is an effector of Ypt7p (4) and belongs to a group of functionally conserved large multisubunit tethering complexes, many of which are Rab effectors (5). The Vps39p subunit of HOPS is a nucleotide exchange factor for Ypt7p (6). HOPS is also a SNARE chaperone; its Vps33p subunit is a Sec1p/Munc18-1 family (SM) protein, HOPS binds multiple vacuolar SNAREs (79), and it proofreads SNARE complex structure (10). HOPS also binds to specific phosphoinositides (8), and these are among the regulatory lipids that are important for fusion (1113).We have recently reconstituted membrane fusion using proteoliposomes of pure vacuolar proteins and lipids (13). HOPS and the regulatory lipids are crucial for rapid fusion of proteoliposome pairs bearing the three Q-SNAREs on one proteoliposome and the R-SNARE on the other and are absolutely required when all four SNAREs are present on each proteoliposome and Sec17p and Sec18p are present. Ypt7p is not required, showing that HOPS can stimulate SNARE-dependent fusion in vitro even in the absence of its Rab, although Ypt7p stimulates the fusion of these proteoliposomes.4Yeast vacuole fusion can be negatively regulated either by GTPase-activating proteins (GAPs) (14, 15) that promote GTP hydrolysis by Ypt7p or by the kinase Yck3p, which phosphorylates the Vps41p subunit of HOPS (16) and the vacuolar SNARE Vam3p (15). Yck3p is a palmitoylated (17), vacuole-localized kinase of the casein kinase I family (18). The complete fragmentation of vacuoles in vivo, indicating a block of fusion, requires both Ypt7p inactivation by a RabGAP and the presence of Yck3p (15). Yck3p is necessary for efficient vacuole inheritance (16) and normal vacuole morphology (19), suggesting that its function is part of the normal mechanism of vacuole segregation during the cell cycle. Although Yck3p clearly regulates vacuole fusion through phosphorylation of HOPS, it remains unclear which activities of HOPS are inhibited by Yck3p phosphorylation and whether Yck3p must also phosphorylate other vacuole fusion proteins such as Vam3p to block fusion.We now show that phosphorylation of the Vps41p subunit of HOPS by purified Yck3p reduces HOPS binding to membrane lipids, thereby making HOPS association with the membrane and the ensuing fusion of reconstituted proteoliposomes dependent on active Ypt7p. These data with proteoliposomes are supported by assays with purified vacuoles; the RabGAP Gyp1–46p only inhibits the in vitro fusion of yck3Δ vacuoles when purified Yck3p is added. As for Ypt7p and HOPS, the major function of other Rabs may also be to act as membrane receptors for their effectors.  相似文献   

2.
Membrane fusion without lysis has been reconstituted with purified yeast vacuolar SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors), the SNARE chaperones Sec17p/Sec18p and the multifunctional HOPS complex, which includes a subunit of the SNARE-interactive Sec1-Munc18 family, and vacuolar lipids: phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), phosphatidic acid (PA), cardiolipin (CL), ergosterol (ERG), diacylglycerol (DAG), and phosphatidylinositol 3-phosphate (PI3P). We now report that many of these lipids are required for rapid and efficient fusion of the reconstituted SNARE proteoliposomes in the presence of SNARE chaperones. Omission of either PE, PA, or PI3P from the complete set of lipids strongly reduces fusion, and PC, PE, PA, and PI3P constitute a minimal set of lipids for fusion. PA could neither be replaced by other lipids with small headgroups such as DAG or ERG nor by the acidic lipids PS or PI. PA is needed for full association of HOPS and Sec18p with proteoliposomes having a minimal set of lipids. Strikingly, PA and PE are as essential for SNARE complex assembly as for fusion, suggesting that these lipids facilitate functional interactions among SNAREs and SNARE chaperones.Biological membrane fusion is the regulated rearrangement of the lipids in two apposed sealed membranes to form one bilayer while mixing lumenal contents without leakage or lysis. It is fundamental for intracellular vesicular traffic, cell growth and division, regulated secretion of hormones and other blood proteins, and neurotransmission and thus has attracted wide and sustained study (1, 2). Its fundamental mechanisms are conserved and employ a Rab-family GTPase, proteins which bind to the GTP-bound form of a Rab, termed its “effectors” (3), and SNARE3 (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) proteins (4) with their attendant chaperones. SNAREs are integral or peripheral membrane proteins with characteristic heptad-repeat domains, which can associate in 4-helical coiled-coils (5), termed “cis-SNARE complexes,” if they are all anchored to the same membrane bilayer, or “trans-SNARE complexes” if they are anchored to apposed membranes.Stable membrane proximity (docking) does not suffice for fusion. Studies in model systems have shown that fusion can be promoted by any of several agents, which promote bilayer rearrangement, such as diacylglycerol (6), high levels of calcium (7), viral-encoded fusion proteins (8, 9), or SNAREs (10, 11). These studies frequently employed liposomes or proteoliposomes of simple lipid composition, suggesting that fusion may not have stringent requirements of lipid head group species. However, each of these model fusion reactions is accompanied by substantial lysis (1215), whereas the preservation of subcellular compartments is a hallmark of physiological membrane fusion.We have studied membrane fusion with the vacuole (lysosome) of Saccharomyces cerevisiae (reviewed in Ref. 16). The fusion of isolated vacuoles requires the Rab Ypt7p, 4 SNAREs (Vam3p, Vti1p, Vam7p, and Nyv1p), the SNARE chaperones Sec17p (α-soluble N-ethylmaleimide-sensitive factor attachment protein)/Sec18p (N-ethylmaleimide-sensitive factor) and the hexameric HOPS complex (17), and key “regulatory” lipids including ERG, phosphoinositides, and DAG (18). HOPS interacts physically or functionally with each component of this fusion system. HOPS stably associates with Ypt7p in its GTP-bound state (19). One HOPS subunit, Vps33p, is a member of the Sec1-Munc18 family of SNARE-binding proteins, and HOPS exhibits direct affinity for SNAREs (17, 2022) and proofreads correct vacuolar SNARE pairing (23). HOPS also has direct affinity for phosphoinositides (17). The SNAREs on isolated vacuoles are in cis-complexes, which are disassembled by Sec17p, Sec18p, and ATP (24). Docking requires Ypt7p (25) and HOPS (17). During docking, vacuoles are drawn against each other until each has a substantial membrane domain tightly apposed to the other. Each of the proteins (26) and lipids (18) required for fusion becomes enriched in a ring-shaped microdomain, the “vertex ring,” which surrounds the two tightly apposed membrane domains. Not only do the proteins depend on each other, in a cascade fashion, for vertex ring enrichment, and the lipids depend on each other for their vertex ring enrichment as well, but the lipids and proteins are mutually interdependent for their enrichment at this ring-shaped microdomain (18, 27). Fusion occurs around the ring, joining the two organelles. The fusion of vacuoles bearing physiological fusion constituents does not cause measurable organelle lysis, although fusion supported exclusively by higher levels of SNARE proteins is accompanied by massive lysis (28), in accord with model liposome studies (14). Thus fusion microdomain assembly and the coordinate action of SNAREs with other proteins and lipids to promote fusion without lysis are central topics in membrane fusion studies.Reconstitution of fusion with pure components allows chemical definition of essential elements of this biologically important reaction. Although SNAREs can drive a slow fusion of PC/PS proteoliposomes (29), this was not stimulated by HOPS and Sec17p/Sec18p (30). SNARE proteoliposomes bearing all the vacuolar lipids (18, 3133), PC, PE, PI, PS, CL, PA, ERG, DAG, PI3P, and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), showed rapid and efficient fusion that was fully dependent on Sec17p/Sec18p and HOPS (30). The omission of either DAG, ERG, or phosphoinositide from the liposomes caused a marked reduction in fusion (30). We now report that PE and PA are also necessary for rapid and efficient fusion, function in distinct manners, and are required for efficient assembly of newly formed SNARE complexes by the SNARE chaperones Sec17p/Sec18p and HOPS.  相似文献   

3.
Niemann-Pick C1-like 1 (NPC1L1) plays a critical role in the enterohepatic absorption of free cholesterol. Cellular cholesterol depletion induces the transport of NPC1L1 from the endocytic recycling compartment to the plasma membrane (PM), and cholesterol replenishment causes the internalization of NPC1L1 together with cholesterol via clathrin-mediated endocytosis. Although NPC1L1 has been characterized, the other proteins involved in cholesterol absorption and the endocytic recycling of NPC1L1 are largely unknown. Most of the vesicular trafficking events are dependent on the cytoskeleton and motor proteins. Here, we investigated the roles of the microfilament and microfilament-associated triple complex composed of myosin Vb, Rab11a, and Rab11-FIP2 in the transport of NPC1L1 from the endocytic recycling compartment to the PM. Interfering with the dynamics of the microfilament by pharmacological treatment delayed the transport of NPC1L1 to the cell surface. Meanwhile, inactivation of any component of the myosin Vb·Rab11a·Rab11-FIP2 triple complex inhibited the export of NPC1L1. Expression of the dominant-negative mutants of myosin Vb, Rab11a, or Rab11-FIP2 decreased the cellular cholesterol uptake by blocking the transport of NPC1L1 to the PM. These results suggest that the efficient transport of NPC1L1 to the PM is dependent on the microfilament-associated myosin Vb·Rab11a·Rab11-FIP2 triple complex.Cholesterol homeostasis in human bodies is maintained through regulated cholesterol synthesis, absorption, and excretion. Intestinal cholesterol absorption is one of the major pathways to maintain cholesterol balance. NPC1L1 (Niemann-Pick C1-like protein 1), a polytopic transmembrane protein highly expressed in the intestine and liver, is required for dietary cholesterol uptake and biliary cholesterol reabsorption (14). Genetic or pharmaceutical inactivation of NPC1L1 significantly inhibits cholesterol absorption and confers the resistance to diet-induced hypercholesterolemia (1, 2, 4). Ezetimibe, an NPC1L1-specific inhibitor, is currently used to prevent and treat cardiovascular diseases (5).Human NPC1L1 contains 1,332 residues with 13 transmembrane domains (6). The third to seventh transmembrane helices constitute a conserved sterol-sensing domain (4, 7). NPC1L1 recycles between the endocytic recycling compartment (ERC)3 and the plasma membrane (PM) in response to the changes of cholesterol level (8). ERC is a part of early endosomes that is involved in the recycling of many transmembrane proteins. It is also reported that ERC is a pool for free cholesterol storage (9). When cellular cholesterol concentration is low, NPC1L1 moves from the ERC to the PM (8, 10). Under cholesterol-replenishing conditions, NPC1L1 and cholesterol are internalized together and transported to the ERC (8). Disruption of microfilament, depletion of the clathrin·AP2 complex, or ezetimibe treatment can impede the endocytosis of NPC1L1, thereby decreasing cholesterol internalization (8, 10, 11).The microfilament (MF) system, part of the cytoskeleton network, is required for multiple cellular functions such as cell shape maintenance, cell motility, mitosis, protein secretion, and endocytosis (12, 13). The major players in the microfilament system are actin fibers and motor proteins (14). Actin fibers form a network that serves as the tracks for vesicular transport (15, 16). Meanwhile, the dynamic assembly and disassembly of actin fibers and the motor proteins provides the driving force for a multitude of membrane dynamics including endocytosis, exocytosis, and vesicular trafficking between compartments (15, 16).Myosins are a large family of motor proteins that are responsible for actin-based mobility (14). Class V myosins (17, 18), comprising myosin Va, Vb, and Vc, are involved in a wide range of vesicular trafficking events in different mammalian tissues. Myosin Va is expressed mainly in neuronal tissues (19, 20), whereas myosins Vb and Vc are universally expressed with enrichment in epithelial cells (21, 22). Class V myosins are recruited to their targeting vesicles by small GTPase proteins (Rab) (23). Rab11a and Rab11 family-interacting protein 2 (Rab11-FIP2) facilitate the binding of myosin Vb to the cargo proteins of endocytic recycling vesicles (2428).Myosin Vb binds Rab11a and Rab11-FIP2 through the C-terminal tail (CT) domain. The triple complex of myosin Vb, Rab11a, and Rab11-FIP2 is critical for endocytic vesicular transport and the recycling of many proteins including transferrin receptor (29), AMPA receptors (30), CFTR (28), GLUT4 (31, 32), aquaporin-2 (26), and β2-adrenergic receptors (33). The myosin Vb-CT domain (24) competes for binding to Rab11a and Rab11-FIP2 and functions as a dominant-negative form. Expression of the CT domain substantially impairs the transport of vesicles. Deficient endocytic trafficking is also observed in cells expressing the GDP-locked form of Rab11a (S25N) (34) or a truncated Rab11-FIP2, which competes for the rab11a binding (35).Here we investigated the roles of actin fibers and motor proteins in the cholesterol-regulated endocytic recycling of NPC1L1. Using pharmaceutical inactivation, dominant-negative forms, and an siRNA technique, we demonstrated that actin fibers and myosin Vb·Rab11a·Rab11-FIP2 triple complex are involved in the export of NPC1L1 to the PM and that this intact MF-associated triple complex is required for efficient cholesterol uptake. Characterization of the molecules involved in the recycling of NPC1L1 may shed new light upon the mechanism of cholesterol absorption.  相似文献   

4.
Epac Activates the Small G Proteins Rap1 and Rab3A to Achieve Exocytosis   总被引:1,自引:0,他引:1  
Exocytosis of the acrosome (the acrosome reaction) relies on cAMP production, assembly of a proteinaceous fusion machinery, calcium influx from the extracellular medium, and mobilization from inositol 1,4,5-trisphosphate-sensitive intracellular stores. Addition of cAMP to human sperm suspensions bypasses some of these requirements and elicits exocytosis in a protein kinase A- and extracellular calcium-independent manner. The relevant cAMP target is Epac, a guanine nucleotide exchange factor for the small GTPase Rap. We show here that a soluble adenylyl cyclase synthesizes the cAMP required for the acrosome reaction. Epac stimulates the exchange of GDP for GTP on Rap1, upstream of a phospholipase C. The Epac-selective cAMP analogue 8-pCPT-2′-O-Me-cAMP induces a phospholipase C-dependent calcium mobilization in human sperm suspensions. In addition, our studies identify a novel connection between cAMP and Rab3A, a secretory granule-associated protein, revealing that the latter functions downstream of soluble adenylyl cyclase/cAMP/Epac but not of Rap1. Challenging sperm with calcium or 8-pCPT-2′-O-Me-cAMP boosts the exchange of GDP for GTP on Rab3A. Recombinant Epac does not release GDP from Rab3A in vitro, suggesting that the Rab3A-GEF activation by cAMP/Epac in vivo is indirect. We propose that Epac sits at a critical point during the exocytotic cascade after which the pathway splits into two limbs, one that assembles the fusion machinery into place and another that elicits intracellular calcium release.During fertilization in eutherian mammals, the spermatozoon must penetrate the zona pellucida to reach the oolema. Only sperm that have completed the acrosome reaction (AR)4 can successfully accomplish this task (1). The AR is a regulated exocytosis where the membrane of the acrosome, the single dense core secretory granule in sperm, fuses to the plasma membrane surrounding the anterior portion of the head. This process releases hydrolytic enzymes stored in the granule. These enzymes, together with the physical thrust derived from strong flagellar beating, enable sperm to penetrate the zona pellucida (1, 2). Physiological agonists accomplish the AR by inducing an influx of calcium from the extracellular medium and the assembly of a conserved proteinaceous fusion machinery that includes Rab3A, α-SNAP/NSF, synaptotagmin, complexin, and neurotoxin-sensitive SNAREs; the AR also requires an efflux of calcium from inside the acrosome through IP3-sensitive channels (reviewed in Refs. 3, 4).In certain neurons, neuroendocrine and exocrine acinar cells, cAMP potentiates calcium-dependent exocytosis. Either cAMP-dependent protein kinase (PKA) or the exchange protein directly activated by cAMP (Epac) can be the targets of cAMP in the cAMP-regulated exocytosis. On the other hand, cAMP is the principal trigger of regulated secretion in various non-neuronal cells (57). Likewise, an elevation of cAMP alone is sufficient to trigger exocytosis in human sperm. Moreover, calcium relies on endogenous cAMP to accomplish acrosomal release, and it does so through a PKA-insensitive pathway involving Epac. The stimulation of endogenous Epac by the selective cAMP analogue 8-(p-chlorophenylthio)-2′-O-methyladenosine-3′,5′-cyclic monophosphate (8-pCPT-2′-O-Me-cAMP) is sufficient to trigger the AR even in the absence of extracellular calcium. Furthermore, when Epac is sequestered with specific antibodies, cAMP, calcium (8), and recombinant Rab3A (this study) are unable to elicit exocytosis.Epac1 and Epac2 are multidomain proteins that consist of an N-terminal regulatory region and a C-terminal catalytic region (911). The regulatory domain harbors the cAMP-binding site, which auto-inhibits the catalytic activity in the absence of cAMP (1215). The catalytic portion bears a guanine-nucleotide exchange factor (GEF) activity specific for Rap1 and Rap2 (16, 17). Like all small G proteins, Raps cycle between an inactive GDP-bound and an active GTP-bound conformation. The GDP-GTP cycle is regulated by GEFs that induce the release of the bound GDP to be replaced by the more abundant GTP and by GTPase-activating proteins that coax the intrinsic GTPase activity to rapidly hydrolyze bound GTP, returning the G proteins to the inactive GDP-bound state (18, 19). Most small G proteins are linked to biological membranes via lipid modifications at their C terminus; for instance, Rap2A is farnesylated, and Rap1A/B, Rap2B, and Rabs are geranylgeranylated (20, 21). Guanine nucleotide dissociation inhibitors (GDIs) remove Rabs from membranes by sequestration of their lipid tails (22).Extracellular stimuli often result in the activation of cellular adenylate cyclases and an increase in cAMP levels. By serving as a cAMP-binding protein with intrinsic GEF activity, Epac couples cAMP production to a variety of Rap-mediated processes such as the control of cell adhesion and cell-cell junction formation, water resorption, cell differentiation, inflammatory processes, etc. (911). Many are the effectors of Epac and Epac-Rap signaling. Of particular interest to us is the observation that Epac stimulates phospholipase Cϵ (PLCϵ) through the activation of Rap1 and -2, resulting in IP3-mediated release of calcium from internal stores (23, 24). PLCϵ is an unusual enzyme with two catalytic activities as follows: the typical phosphatidylinositol 4,5-bisphosphate hydrolyzing PLC activity plus a Rap-GEF activity. Thus, PLCϵ acts both downstream and upstream of Ras-like GTPases, perhaps to guarantee sustained Rap signaling (25).During membrane fusion, Rab proteins direct the recognition and physical attachments of the compartments that are going to fuse (26, 27). This association, or tethering, represents one of the earliest known events in membrane fusion and is accomplished through the recruitment of tethering factors. Rab3A localizes to vesicles and secretory granules and is one of the isoforms directly implicated in regulated exocytosis of neurotransmitters and hormones (28). Rab3A interacts in a GTP-dependent manner with at least two effector proteins, rabphilin and Rim (2931). Rab3A is present in the acrosomal region of human (32), rat (33), and mouse sperm (34). Rab3A (full-length recombinant protein or a synthetic peptide corresponding to the effector domain) stimulates human (32, 35) and ram (36) and inhibits rat sperm AR (33). Rab3A is required for the AR triggered by calcium (37, 38) and cAMP (8).Epac is a multifunctional protein in which cAMP exerts its effects not only by promoting the exchange of GDP for GTP on Rap but also by allosterically regulating other molecules (10). In exocytosis for instance, a number of Rap-independent, Epac-linked signaling pathways have been described. They include the interaction of Epac2 with Rim2 (39) and the Rim2-related protein Piccolo (40). Epac2 also stimulates exocytosis by interacting with SUR1 (41). Finally, Epac2 controls ryanodine-sensitive calcium channels that are involved in calcium-induced calcium release (CICR) from internal stores in insulin-secreting cells (42).In this study, we piece together the analysis of two phenomena as follows: calcium mobilization and protein-protein interactions preceding exocytosis. To the best of our knowledge, this constitutes the first integrated molecular model that includes both the assembly of the fusion and intravesicular calcium release protein machineries during regulated exocytosis. By enquiring further into the signaling pathways operating during sperm exocytosis, we have found more players than previously suspected, and we discovered that the key components of these cascades are not arranged in a linear sequence. Epac sits at a central point of the signaling cascade after which the exocytotic pathway splits into two limbs as follows: one that assembles the fusion machinery into place, and another that elicits the release of calcium from the acrosome; both need to act in concert to achieve exocytosis. Our results identify Rab3A for the first time as a downstream target for Epac and place this small GTPase as an early component of the “fusion machinery” branch of the pathway. They also show that Epac stimulates the exchange of GDP for GTP on Rap1 and that this protein, as well as a PLC, drives intracellular calcium mobilization. Finally, our data reveal that a soluble adenylyl cyclase (sAC) (43, 44) synthesizes the cAMP that activates Epac. Again, we believe that this is the first report linking sAC to an exocytotic event.  相似文献   

5.
6.
Tethering factors and SNAREs control the last two steps of vesicular trafficking: the initial interaction and the fusion, respectively, of transport vesicles with target membranes. The Golgi-associated retrograde protein (GARP) complex regulates retrograde transport from endosomes to the trans-Golgi network (TGN). Although GARP has been proposed to function as a tethering factor at the TGN, direct evidence for such a role is still lacking. Herein we report novel and specific interactions of the mammalian GARP complex with SNAREs that participate in endosome-to-TGN transport, namely, syntaxin 6, syntaxin 16, and Vamp4. These interactions depend on the N-terminal regions of Vps53 and Vps54 and the SNARE motif of the SNAREs. We show that GARP functions upstream of the SNAREs, regulating their localization and assembly into SNARE complexes. However, interactions of GARP with SNAREs are insufficient to promote retrograde transport, because deletion of the C-terminal region of Vps53 precludes GARP function without affecting GARP-SNARE interactions. Finally, we present in vitro data consistent with a tethering role for GARP, which is disrupted by deletion of the Vps53 C-terminal region. These findings indicate that GARP orchestrates retrograde transport from endosomes to the TGN by promoting vesicle tethering and assembly of SNARE complexes in consecutive, independent steps.Conveyance of cargo among organelles of the secretory and endosomal-lysosomal pathways is mediated by transport vesicles that bud from a donor compartment and fuse with an acceptor compartment in a specific and regulated manner (2, 25, 42). The accuracy and efficiency of vesicle fusion with the target compartment are provided by the concomitant actions of at least three protein families: tethers, small GTPases, and SNAREs. The general view is that a transport vesicle first finds its target organelle through interaction with tethering factors and then fuses with it through assembly of SNARE proteins while small GTPases of the Rab and Arl subfamilies orchestrate multiple steps of the overall process (1, 38, 44). The mechanistic details, however, are far from being completely understood and might vary depending on the transport pathway considered.Tethering represents the first step in the interaction between a transport vesicle and its target membrane and results in the formation of physical links between two membranes that are bound to fuse. Two types of tethering factor, long coiled-coil proteins (e.g., p115, GCC185, and GM-130) and multisubunit complexes (e.g., HOPS/Vps-C, exocyst, COG, and GARP/VFT) have been implicated in nearly all vesicular transport routes (19, 38), although their direct role in connecting two opposing membranes has been documented for only a few (7, 40). Fusion is triggered by the assembly of SNAREs on the transport vesicle (v-SNAREs) with their cognate SNAREs on the target membranes (t-SNAREs) to form a SNARE pin or SNARE complex (12, 35). SNARE complex assembly involves the formation of a four-helix bundle that drives fusion of the two lipid bilayers (10, 14). Small GTPases participate in the initial recruitment of tethering factors and other peripherally associated effectors to specific locations on membranes, as well as in the subsequent fusion events (21). For example, the long coiled-coil protein GCC185 binds different GTPases, Rab9 on transport vesicles through the middle part and Rab6 and Arl1 at the trans-Golgi network (TGN) through the C-terminal part, thereby facilitating the recognition and connection of both membrane-bound compartments (11, 33). Other coiled-coil tethers have the ability to bind several different Rabs through domains that are not required for Golgi apparatus targeting. This supports a general model for a tentacular Golgi complex in which coiled-coil proteins capture and retain Rab-containing vesicles (33).In addition to bringing together transport vesicles with target organelles, tethers may also regulate SNARE complex assembly, thus coordinating these two steps of vesicular transport. Several examples of tether-SNARE interactions have been reported, but no consensus for a mechanism of interaction or functional significance has yet emerged. For example, the HOPS complex associates with v- and t-SNARE complexes on Saccharomyces cerevisiae vacuoles both before and after fusion (37). Sec6p, a member of the exocyst complex, binds to the plasma membrane t-SNARE Sec9p, preventing its interaction with the cognate t-SNARE Sso1p (34). The COG complex binds the Golgi t-SNARE syntaxin 5 and enhances intra-Golgi SNARE complex stability (29). The long coiled-coil protein p115 also stimulates SNARE complex assembly (30).The Golgi-associated retrograde protein (GARP) complex, also named the Vps fifty-three (VFT) complex, together with COG and the exocyst, belongs to the quatrefoil family of multisubunit tethering complexes (43), a structurally diverse group of peripheral membrane protein assemblies. Defects in the GARP, COG, or exocyst complexes cause accumulation of untethered vesicles that are scattered throughout the cytoplasm and contain different cargo proteins (18, 20, 45, 47). Direct proof of a tethering function for the GARP complex is still lacking, although its inactivation leads to defects consistent with a prominent role in the fusion of endosome-derived transport intermediates with the TGN (4-6, 20, 31). The yeast GARP complex is composed of four subunits named Vps51p, Vps52p, Vps53p, and Vps54p. Mutations in any of these subunits impair the retrieval of the secretory vesicle v-SNARE Snc1p and the carboxypeptidase Y receptor, Vps10p, from endosomes (5, 23, 32). The mammalian GARP complex also comprises Vps52, Vps53, and Vps54 subunits, but no Vps51 subunit has been identified to date (13). Depletion of the mammalian GARP complex prevents the delivery of Shiga toxin B subunit and the retrieval of TGN-localized proteins, such as TGN46, from endosomes to the TGN (20). Moreover, GARP depletion blocks the recycling of the cation-independent mannose 6-phosphate receptor (CI-MPR) from endosomes to the TGN, leading to missorting of the CI-MPR cargo, lysosomal hydrolases, into the extracellular space (20). The essential nature of mammalian GARP function in endosome-to-TGN transport is highlighted by the embryonic lethality of mice with ablation of the Vps54 subunit gene (27) and the motor neuron degeneration of Wobbler mice bearing a Vps54 hypomorphic mutation (27).In yeast, the GARP subunit Vps51p specifically binds to the conserved N-terminal regulatory domain of the t-SNARE Tlg1p (5, 32). This finding led to the proposal that GARP tethers endosome-derived vesicles through its interaction with Tlg1p. However, deletions or point mutations that eliminate the binding of Vps51p to Tlg1p do not show any functional phenotype in vivo (8). Binding of Tlg1p to Vps51p is thus not essential for GARP-mediated vesicle tethering. In this work, we set out to study the possible link between the mammalian GARP complex and SNAREs. We found that GARP specifically and directly interacts with SNAREs that participate in the endosome-to-TGN retrograde route (i.e., syntaxin 6 [Stx6], Stx16, and Vamp4). These interactions depend on the fusion-inducing SNARE “motif” of the SNAREs and the N-terminal regions of Vps53 and Vps54. Functional analyses place the GARP complex upstream of the SNAREs, regulating their localization and assembly into SNARE complexes. In addition, we demonstrate that the GARP complex has a vesicle tethering function independent of its interaction with the SNAREs.  相似文献   

7.
Rin1 is a Rab5 guanine nucleotide exchange factor that plays an important role in Ras-activated endocytosis and growth factor receptor trafficking in fibroblasts. In this study, we show that Rin1 is expressed at high levels in a large number of non-small cell lung adenocarcinoma cell lines, including Hop62, H650, HCC4006, HCC827, EKVX, HCC2935, and A549. Rin1 depletion from A549 cells resulted in a decrease in cell proliferation that was correlated to a decrease in epidermal growth factor receptor (EGFR) signaling. Expression of wild type Rin1 but not the Rab5 guanine nucleotide exchange factor-deficient Rin1 (Rin1Δ) complemented the Rin1 depletion effects, and overexpression of Rin1Δ had a dominant negative effect on cell proliferation. Rin1 depletion stabilized the cell surface levels of EGFR, suggesting that internalization was necessary for robust signaling in A549 cells. In support of this conclusion, introduction of either dominant negative Rab5 or dominant negative dynamin decreased A549 proliferation and EGFR signaling. These data demonstrate that proper internalization and endocytic trafficking are critical for EGFR-mediated signaling in A549 cells and suggest that up-regulation of Rin1 in A549 cell lines may contribute to their proliferative nature.Internalization of epidermal growth factor receptors (EGFR)2 and their subsequent delivery to lysosomes play key roles in attenuating EGF-mediated signaling cascades (1, 2). The proper delivery of EGFR into lysosomes for degradation requires a series of highly regulated targeting and delivery events. Following ligand binding, EGFR is internalized via endocytic vesicles that are subsequently targeted to early endosomes. This targeting event is mediated by the small GTPase, Rab5 (3, 4). Once delivered to the early endosome, receptors that are destined for degradation are incorporated into vesicles that bud into the lumen of the endosome, forming the multivesicular body (reviewed in Refs. 5, 6). Sequestration of the activated cytoplasmic domain of EGFR into the intralumenal vesicles of the multivesicular body effectively terminates receptor signaling (7). Subsequent fusion of the multivesicular body with lysosomes delivers the intralumenal vesicles and their contents into the lumen of the lysosome where they are degraded (reviewed in Refs. 810). Inactivating mutations in Rab5 disrupt the delivery of cell surface receptors, such as EGFR, to early endosomes, thereby inhibiting receptor trafficking to the lysosome and receptor degradation (11, 12). Therefore, activation of Rab5 is a key point of regulation for EGFR signaling.Rab5 cycles between an inactive GDP-bound state and an active GTP-bound state, and Rab5 activation requires the exchange of GDP to GTP. This exchange is catalyzed by guanine nucleotide exchange factors (GEFs) that are specific to the Rab5 family of proteins (reviewed in Ref. 13). Rab5 family GEFs all contain a catalytic vacuolar protein sorting 9 (Vps9) domain that facilitates the GDP to GTP exchange (1417). Many Rab5 GEFs contain other functional domains that are involved in cell signaling events (13). Rin1 is a good example of a multidomain Rab5 GEF. In addition to the Vps9 domain, Rin1 also contains an Src homology 2 domain, a proline-rich domain, and a Ras association domain. Rin1 was originally identified through its ability to interact with active Ras (18), and a role for Rin1 in a number of cell signaling systems has been established, including EGF-mediated signaling (1921). Rin1 directly interacts with the activated EGFR through its Src homology 2 domain (22). Furthermore, Ras occupation of the Rin1 Ras association domain positively impacts the Rab5 GEF activity of Rin1, which promotes EGFR internalization and attenuation in fibroblasts (23). However, Rin1 expression is up-regulated in several types of cancers, including squamous cell carcinoma (24), colorectal cancer (25), and cervical cancer (26), through duplications or rearrangements of the RIN1 locus. These studies suggest that Rin1 may also play a role in enhancing cell proliferation.It is well established that a large percentage of non-small cell lung adenocarcinomas exhibit up-regulation of EGFR and aberrant signaling through the Ras/MAPK pathway (reviewed in Ref. 27). In addition, a recent study examining 188 human lung adenocarcinomas identified that 132 of 188 tumor samples exhibited mutations relating to the Ras/MAPK signaling pathway (28). Accordingly, the role of Rin1 in non-small cell lung adenocarcinoma was addressed. Examination of a panel of non-small cell lung adenocarcinoma lines (including A549) revealed enhanced Rin1 expression relative to a nontransformed lung epithelial cell line (BEAS-2B). Depletion of Rin1 from A549 cells resulted in decreased proliferation. This decrease correlated with a reduction in EGF-activated ERK phosphorylation and the stabilization of cell surface EGFR. These defects were complemented by wild type Rin1 expression but not by mutant Rin1 lacking a functional Vps9 domain, suggesting that the GEF activity of Rin1 is necessary for proper EGFR signaling in A549 cells. In addition, overexpression of Rin1Δ, dominant negative Rab5, and dynamin resulted in similar defects in cell proliferation and EGFR signaling as Rin1 depletion. These data indicate that proper EGFR internalization and trafficking are critical for robust EGFR-mediated signaling and cell proliferation in A549 cells and offer evidence that Rin1 positively regulates cell proliferation in non-small cell lung adenocarcinoma.  相似文献   

8.
9.
Despite the important contribution of cell-cell fusion in the development and physiology of eukaryotes, little is known about the mechanisms that regulate this process. Our study shows that glycosaminoglycans and more specifically heparan sulfate (HS) expressed on the cell surface and extracellular matrix may act as negative regulator of cell-cell fusion. Using herpes simplex virus type-1 as a tool to enhance cell-cell fusion, we demonstrate that the absence of HS expression on the cell surface results in a significant increase in cell-cell fusion. An identical phenomenon was observed when other viruses or polyethylene glycol was used as fusion enhancer. Cells deficient in HS biosynthesis showed increased activity of two Rho GTPases, RhoA and Cdc42, both of which showed a correlation between increased activity and increased cell-cell fusion. This could serve as a possible explanation as to why HS-deficient cells showed significantly enhanced cell-cell fusion and suggests that HS could regulate fusion via fine tuning of RhoA and Cdc42 activities.Cell-cell fusion is an important physiological process widespread in organisms ranging from yeast to humans (1). It is critical for several biological phenomena including fertilization, placenta formation, skeletal muscle and bone development, tumorigenesis, immune response, and stem cell differentiation (19). Defects in cell-cell fusion can lead to serious diseases, such as myotonic dystrophy, centronuclear myopathy, preeclampsia, and osteopetrosis (1013). Defects in sperm-egg fusion are a major cause of infertility (5). Cell-cell fusion has also been utilized for therapeutic applications, including the generation of monoclonal antibody-producing hybridomas (14) as well as new agents for cancer immunotherapy (1517).Because of its critical nature, many studies have looked at the mechanism by which cell-cell fusion occurs. Although it can occur in a variety of different biological processes, many of the fusion events share common characteristics (8). For example, tetraspanin proteins function in gamete-, myoblast-, macrophage-, and virus-mediated fusion events (1821). Although many mediators of cell-cell fusion are known, little is known about the fine-tuning mechanisms that may regulate the membrane fusion process.Viruses have been a useful tool for studying cell-cell fusion since the discovery that they could induce the fusion of somatic cells in vitro (22). Enveloped viruses, like herpes simplex virus type-1 (HSV-1),2 use transmembrane viral proteins to mediate fusion with the host cell during entry and spread (2325). For HSV-1, fusion occurs after the virus has attached to host cells by binding to heparan sulfate (HS) using glycoproteins gB and gC (26). Fusion of the virus envelope with the plasma membrane requires that an additional glycoprotein, gD, binds to one of its receptors, a process that also requires HSV-1 gB, gH, and gL (2729). During HSV-1-mediated cell-cell fusion, gB, gD, gH, and gL are expressed on the surface of infected cells, allowing them to bind and fuse with surrounding uninfected cells, forming syncytia.Heparan sulfate proteoglycans are ubiquitously expressed cell surface molecules composed of a protein core, commonly syndecan, covalently attached to one or more HS glycosaminoglycan (GAG) side chains via a linker region (30). HS polysaccharide chains are composed of alternating hexuronic acid and d-glucosamine units (30, 31). HS chains undergo extensive modifications during their biosynthesis, including sulfation and epimerization, resulting in a variety of structurally diverse HS chains (30, 3233). This diversity allows HS to interact with an array of functionally unrelated proteins and participate in various processes, such as the regulation of embryonic development, angiogenesis, blood coagulation, growth factor/cytokine interactions, cell adhesion, and lipid metabolism (30).Much remains to be learned about the cell-cell fusion mechanism and regulation of this phenomenon. The purpose of our study was to examine the effect of HS on cell-cell fusion and how it may function in the fusion mechanism. Using HSV-1 as a tool, we discovered that the absence of HS from the cell surface significantly enhanced the ability of cells to fuse with each other. This effect was also seen independently of HSV-1 in cells that neither expressed HSV-1 glycoproteins nor their receptors. This suggests a novel role for HS as a negative regulator and a fine-tuner of cell-cell fusion events.  相似文献   

10.
A decoding algorithm is tested that mechanistically models the progressive alignments that arise as the mRNA moves past the rRNA tail during translation elongation. Each of these alignments provides an opportunity for hybridization between the single-stranded, -terminal nucleotides of the 16S rRNA and the spatially accessible window of mRNA sequence, from which a free energy value can be calculated. Using this algorithm we show that a periodic, energetic pattern of frequency 1/3 is revealed. This periodic signal exists in the majority of coding regions of eubacterial genes, but not in the non-coding regions encoding the 16S and 23S rRNAs. Signal analysis reveals that the population of coding regions of each bacterial species has a mean phase that is correlated in a statistically significant way with species () content. These results suggest that the periodic signal could function as a synchronization signal for the maintenance of reading frame and that codon usage provides a mechanism for manipulation of signal phase.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

11.
12.
13.
14.
15.
16.
Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.  相似文献   

17.
18.
19.
20.
A Boolean network is a model used to study the interactions between different genes in genetic regulatory networks. In this paper, we present several algorithms using gene ordering and feedback vertex sets to identify singleton attractors and small attractors in Boolean networks. We analyze the average case time complexities of some of the proposed algorithms. For instance, it is shown that the outdegree-based ordering algorithm for finding singleton attractors works in time for , which is much faster than the naive time algorithm, where is the number of genes and is the maximum indegree. We performed extensive computational experiments on these algorithms, which resulted in good agreement with theoretical results. In contrast, we give a simple and complete proof for showing that finding an attractor with the shortest period is NP-hard.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号