首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel that is defective in cystic fibrosis, and has also been closely associated with ATP permeability in cells. Using a Xenopus oocyte cRNA expression system, we have evaluated the molecular mechanisms that control CFTR-modulated ATP release. CFTR-modulated ATP release was dependent on both cAMP activation and a gradient change in the extracellular chloride concentration. Activation of ATP release occurred within a narrow concentration range of external Cl that was similar to that reported in airway surface fluid. Mutagenesis of CFTR demonstrated that Cl conductance and ATP release regulatory properties could be dissociated to different regions of the CFTR protein. Despite the lack of a need for Cl conductance through CFTR to modulate ATP release, alterations in channel pore residues R347 and R334 caused changes in the relative ability of different halides to activate ATP efflux (wtCFTR, Cl >> Br; R347P, Cl >> Br; R347E, Br >> Cl; R334W, Cl = Br). We hypothesize that residues R347 and R334 may contribute a Cl binding site within the CFTR channel pore that is necessary for activation of ATP efflux in response to increases of extracellular Cl. In summary, these findings suggest a novel chloride sensor mechanism by which CFTR is capable of responding to changes in the extracellular chloride concentration by modulating the activity of an unidentified ATP efflux pathway. This pathway may play an important role in maintaining fluid and electrolyte balance in the airway through purinergic regulation of epithelial cells. Insight into these molecular mechanisms enhances our understanding of pathogenesis in the cystic fibrosis lung.  相似文献   

3.
The deletion of phenylalanine 508 in the first nucleotide binding domain of the cystic fibrosis transmembrane conductance regulator is directly associated with >90% of cystic fibrosis cases. This mutant protein fails to traffic out of the endoplasmic reticulum and is subsequently degraded by the proteasome. The effects of this mutation may be partially reversed by the application of exogenous osmolytes, expression at low temperature, and the introduction of second site suppressor mutations. However, the specific steps of folding and assembly of full-length cystic fibrosis transmembrane conductance regulator (CFTR) directly altered by the disease-causing mutation are unclear. To elucidate the effects of the ΔF508 mutation, on various steps in CFTR folding, a series of misfolding and suppressor mutations in the nucleotide binding and transmembrane domains were evaluated for effects on the folding and maturation of the protein. The results indicate that the isolated NBD1 responds to both the ΔF508 mutation and intradomain suppressors of this mutation. In addition, identification of a novel second site suppressor of the defect within the second transmembrane domain suggests that ΔF508 also effects interdomain interactions critical for later steps in the biosynthesis of CFTR.  相似文献   

4.
In cystic fibrosis (CF), dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl channel disrupts epithelial ion transport and perturbs the regulation of intracellular pH (pHi). CFTR modulates pHi through its role as an ion channel and by regulating transport proteins. However, it is unknown how CFTR senses pHi. Here, we investigate the direct effects of pHi on recombinant CFTR using excised membrane patches. By altering channel gating, acidic pHi increased the open probability (Po) of wild-type CFTR, whereas alkaline pHi decreased Po and inhibited Cl flow through the channel. Acidic pHi potentiated the MgATP dependence of wild-type CFTR by increasing MgATP affinity and enhancing channel activity, whereas alkaline pHi inhibited the MgATP dependence of wild-type CFTR by decreasing channel activity. Because these data suggest that pHi modulates the interaction of MgATP with the nucleotide-binding domains (NBDs) of CFTR, we examined the pHi dependence of site-directed mutations in the two ATP-binding sites of CFTR that are located at the NBD1:NBD2 dimer interface (site 1: K464A-, D572N-, and G1349D-CFTR; site 2: G551D-, K1250M-, and D1370N-CFTR). Site 2 mutants, but not site 1 mutants, perturbed both potentiation by acidic pHi and inhibition by alkaline pHi, suggesting that site 2 is a critical determinant of the pHi sensitivity of CFTR. The effects of pHi also suggest that site 2 might employ substrate-assisted catalysis to ensure that ATP hydrolysis follows NBD dimerization. We conclude that the CFTR Cl channel senses directly pHi. The direct regulation of CFTR by pHi has important implications for the regulation of epithelial ion transport.  相似文献   

5.
Chloride channels in the luminal membrane of exocrine gland acini from frog skin (Rana esculenta) constituted a single homogeneous population. In cell-attached patches, channels activated upon exposure to isoproterenol, forskolin, or dibutyryl-cAMP and isobutyl-1-methyl-xanthine rectified in the outward direction with a conductance of 10.0 ± 0.4 pS for outgoing currents. Channels in stimulated cells reversed at 0 mV applied potential, whereas channels in unstimulated cells reversed at depolarized potentials (28.1 ± 6.7 mV), indicating that Cl was above electrochemical equilibrium in unstimulated, but not in stimulated, cells. In excised inside-out patches with 25 mM Cl on the inside, activity of small (8-pS) linear Cl-selective channels was dependent upon bath ATP (1.5 mM) and increased upon exposure to cAMP-dependent protein kinase. The channels displayed a single substate, located just below 2/3 of the full channel amplitude. Halide selectivity was identified as PBr > PI > PCl from the Goldman equation; however, the conductance sequence when either halide was permeating the channel was GCl > GBr >> GI. In inside-out patches, the channels were blocked reversibly by 5-nitro-2-(3-phenylpropylamino)benzoic acid, glibenclamide, and diphenylamine-2-carboxylic acid, whereas 4,4-diisothiocyanatostilbene-2,2-disulfonic acid blocked channel activity completely and irreversibly. Single-channel kinetics revealed one open state (mean lifetime = 158 ± 72 ms) and two closed states (lifetimes: 12 ± 4 and 224 ± 31 ms, respectively). Power density spectra had a double-Lorentzian form with corner frequencies 0.85 ± 0.11 and 27.9 ± 2.9 Hz, respectively. These channels are considered homologous to the cystic fibrosis transmembrane conductance regulator Cl channel, which has been localized to the submucosal skin glands in Xenopus by immunohistochemistry (Engelhardt, J.F., S.S. Smith, E. Allen, J.R. Yankaskas, D.C. Dawson, and J.M. Wilson. 1994. Am. J. Physiol. 267: C491–C500) and, when stimulated by cAMP-dependent phosphorylation, are suggested to function in chloride secretion.  相似文献   

6.

Background

Gene mutations that produce misprocessed proteins are linked to many human disorders. Interestingly, some misprocessed proteins retained their biological function when stabilized by low temperature treatment of cultured cells in vitro. Here we investigate whether low temperature treatment in vivo can rescue misfolded proteins by applying 5’-AMP mediated whole body cooling to a Cystic Fibrosis (CF) mouse model carrying a mutant cystic fibrosis transmembrane conductance regulator (CFTR) with a deletion of the phenylalanine residue in position 508 (ΔF508-CFTR). Low temperature treatment of cultured cells was previously shown to be able to alleviate the processing defect of ΔF508-CFTR, enhancing its plasma membrane localization and its function in mediating chloride ion transport.

Results

Here, we report that whole body cooling enhanced the retention of ΔF508-CFTR in intestinal epithelial cells. Functional analysis based on β-adrenergic dependent salivary secretion and post-natal mortality rate revealed a moderate but significant improvement in treated compared with untreated CF mice.

Conclusions

Our findings demonstrate that temperature sensitive processing of mutant proteins can be responsive to low temperature treatment in vivo.  相似文献   

7.
Formation of multiple-protein macromolecular complexes at specialized subcellular microdomains increases the specificity and efficiency of signaling in cells. In this study, we demonstrate that phosphodiesterase type 3A (PDE3A) physically and functionally interacts with cystic fibrosis transmembrane conductance regulator (CFTR) channel. PDE3A inhibition generates compartmentalized cyclic adenosine 3′,5′-monophosphate (cAMP), which further clusters PDE3A and CFTR into microdomains at the plasma membrane and potentiates CFTR channel function. Actin skeleton disruption reduces PDE3A–CFTR interaction and segregates PDE3A from its interacting partners, thus compromising the integrity of the CFTR-PDE3A–containing macromolecular complex. Consequently, compartmentalized cAMP signaling is lost. PDE3A inhibition no longer activates CFTR channel function in a compartmentalized manner. The physiological relevance of PDE3A–CFTR interaction was investigated using pig trachea submucosal gland secretion model. Our data show that PDE3A inhibition augments CFTR-dependent submucosal gland secretion and actin skeleton disruption decreases secretion.  相似文献   

8.
9.
10.
Cystic fibrosis transmembrane conductance regulator (CFTR) is the principal apical route for transepithelial fluid transport induced by enterotoxin. Inhibition of CFTR has been confirmed as a pharmaceutical approach for the treatment of secretory diarrhea. Many traditional Chinese herbal medicines, like Rhodiola kirilowii (Regel) Maxim, have long been used for the treatment of secretory diarrhea. However, the active ingredients responsible for their therapeutic effectiveness remain unknown. The purpose of this study is to identify CFTR inhibitors from Rhodiola kirilowii (Regel) Maxim via bioactivity-directed isolation strategy. We first identified fractions of Rhodiola kirilowii (Regel) Maxim that inhibited CFTR Cl- channel activity. Further bioactivity-directed fractionation led to the identification of (-)–epigallocatechin-3-gallate (EGCG) as CFTR Cl- channel inhibitor. Analysis of 5 commercially available EGCG analogs including (+)–catechins (C), (-)–epicatechin (EC), (-)–epigallocatechin (EGC), (-)–epicatechin-3-gallate (ECG) and EGCG revealed that ECG also had CFTR inhibitory activity. EGCG dose-dependently and reversibly inhibited CFTR Cl- channel activity in transfected FRT cells with an IC50 value around 100 μM. In ex vivo studies, EGCG and ECG inhibited CFTR-mediated short-circuit currents in isolated rat colonic mucosa in a dose-dependent manner. In an intestinal closed-loop model in mice, intraluminal application of EGCG (10 μg) and ECG (10 μg) significantly reduced cholera toxin-induced intestinal fluid secretion. CFTR Cl- channel is a molecular target of natural compounds EGCG and ECG. CFTR inhibition may account, at least in part, for the antidiarrheal activity of Rhodiola kirilowii (Regel) Maxim. EGCG and ECG could be new lead compounds for development of CFTR-related diseases such as secretory diarrhea.  相似文献   

11.
12.
13.
The genetic background of the mutations that most often cause cystic fibrosis (CF) is different from that of non-CF chromosomes in populations of European origin. It is not known whether these haplotype backgrounds could be found at high frequencies in populations in which CF is, at present, not common; such populations would be candidates for the place of origin of CF mutations. An analysis of haplotypes of CF transmembrane conductance regulator, together with their variation in specific CF chromosomes, in a worldwide survey of normal chromosomes shows (1) a very low frequency or absence of the most common CF haplotypes in all populations analyzed and (2) a strong genetic variability and divergence, among various populations, of the chromosomes that carry disease-causing mutations. The depth of the gene genealogy associated with disease-causing mutations may be greater than that of the evolutionary process that gave rise to present-day human populations. The concept of "population of origin" lacks either spatial or temporal meaning for mutations that are likely to have been present in Europeans before the ethnogenesis of present populations; subsequent population processes may have erased the traces of their geographic origin.  相似文献   

14.
15.
The hyperpolarizing receptor potential of ciliary photoreceptors of scallop and other mollusks is mediated by a cGMP-activated K conductance; these cells also express a transient potassium current triggered by depolarization. During steady illumination, the outward currents elicited by voltage steps lose their decay kinetics. One interesting conjecture that has been proposed is that the currents triggered by light and by depolarization are mediated by the same population of channels, and that illumination evokes the receptor potential by removing their steady-state inactivation. Exploiting the information that has become available on the phototransduction cascade of ciliary photoreceptors, we demonstrated that the same downstream signaling elements are implicated in the modulation of voltage-elicited currents: direct chemical stimulation both at the level of the G protein and of the final messenger that controls the light-dependent channels (cGMP) also attenuate the falling phase of the voltage-activated current. Application of a protein kinase G antagonist was ineffective, suggesting that a cGMP-initiated phosphorylation step is not implicated. To ascertain the commonality of ionic pathways we used pharmacological blockers. Although millimolar 4-aminopyridine (4-AP) suppressed both currents, at micromolar concentrations only the photocurrent was blocked. Conversely, barium completely and reversibly antagonized the transient voltage-activated current with no detectable effect on the light-evoked current. These results rule out that the same ionic pores mediate both currents; the mechanism of light modulation of the depolarization-evoked K current was elucidated as a time-dependent increase in the light-sensitive conductance that is superimposed on the inactivating K current.  相似文献   

16.

Background

Tiotropium is a once-daily, long-acting anticholinergic bronchodilator with the potential to alleviate airway obstruction in cystic fibrosis. Our objective was to evaluate the efficacy and safety of 2.5 and 5 µg once-daily tiotropium delivered via the Respimat Soft Mist Inhaler vs. placebo in people with cystic fibrosis.

Methods

This phase 2, 12-week, randomized, double-blind, placebo-controlled parallel-group study of tiotropium Respimat as add-on to usual cystic fibrosis maintenance therapy included people with cystic fibrosis with pre-bronchodilator forced expiratory volume in 1 second (FEV1) ≥25% predicted. Co-primary efficacy end points were change from baseline in percent-predicted FEV1 area under the curve from 0 to 4 hours (FEV1 AUC0–4h), and trough FEV1 at the end of week 12.

Findings

A total of 510 subjects with cystic fibrosis aged 5–69 years were randomized. Both doses of tiotropium resulted in significant improvement compared with placebo in the co-primary efficacy end points at the end of week 12 (change from baseline in percent-predicted FEV1 AUC0–4h: 2.5 µg: 2.94%, 95% confidence interval 1.19–4.70, p = 0.001; 5 µg: 3.39%, 95% confidence interval 1.67–5.12, p = 0.0001; in percent-predicted trough FEV1∶2.5 µg: 2.24%, p = 0.2; 5 µg: 2.22%, p = 0.02). There was a greater benefit with tiotropium 5 vs. 2.5 µg. No treatment-related adverse events or unexpected safety findings were observed in patients taking tiotropium.

Conclusions

Tiotropium significantly improved lung function in people with cystic fibrosis. The improvement was greater with the higher dose than the lower dose, with no difference in adverse events.

Trial Registration

ClinicalTrials.gov NCT00737100 EudraCT 2008-001156-43.  相似文献   

17.
Highlights? Two structures of the RGS2-Gαq complex were determined by X-ray crystallography ? RGS2 binds Gαq in a manner distinct from how other RGS proteins bind Gαi/o ? In its distinct pose, RGS2 forms extensive contacts with the α-helical domain of Gαq ? Helical domain contacts contribute to binding affinity and GAP potency of RGS2  相似文献   

18.
Orthologous Cys-loop glutamate-gated chloride channels (GluClR’s) have been cloned and described electrophysiologically and pharmacologically in arthropods and nematodes (both members of the invertebrate ecdysozoan superphylum). Recently, GluClR’s from Aplysia californica (a mollusc from the lophotrochozoan superphylum) have been cloned and similarly studied. In spite of sharing a common function, the ecdysozoan and lophotrochozoan receptors have been shown by phylogenetic analyses to have evolved independently. The recent crystallization of the GluClR from C. elegans revealed the binding pocket of the nematode receptor. An alignment of the protein sequences of the nematode and molluscan GluClRs showed that the Aplysia receptor does not contain all of the residues defining the binding mode of the ecdysozoan receptor. That the two receptors have slightly different binding modes is not surprising since earlier electrophysiological and pharmacological experiments had suggested that they were differentially responsive to certain agonists. Knowledge of the structure of the C. elegans GluClR has permitted us to generate a homology model of the binding pocket of the Aplysia receptor. We have analyzed the differences between the two binding modes and evaluated the relative significance of their non-common residues. We have compared the GluClRs electrophysiologically and pharmacologically and we have used site-directed mutagenesis on both receptor types to test predictions made from the model. Finally, we propose an explanation derived from the model for why the nematode receptors are gated only by glutamate, whereas the molluscan receptors can also be activated by β-alanine, GABA and taurine. Like the Aplysia receptor, the vertebrate glycine and GABAA-ρ receptors also respond to these other agonists. An alignment of the sequences of the molluscan and vertebrate receptors shows that the reasons we have given for the ability of the other agonists to activate the Aplysia receptor also explain the agonist profile seen in the glycine and GABAA-ρ receptors.  相似文献   

19.
To gain insight into the structure and conformational coupling in the Na,K-ATPase, this study characterized the reaction of the α1 subunit transmembrane cysteines with a small probe. Intact HeLa cells expressing heterologous Na,K-ATPase were treated with (μm) HgCl2 after placing the enzyme predominantly in either of two conformations, phosphorylated E2P.Na/E2P or dephosphorylated ATP.E1.K/ATP.E1. Under both conditions the treatment led to enzyme inactivation following a double exponential kinetic as determined by ouabain-sensitive K+ uptake measurements. However, the rate constant of the slow reacting component was ten times larger when the protein was probed in a medium that would favor enzyme phosphorylation. Enzymes carrying mutations of cysteines located in the α1 subunit transmembrane region were used to identify the reacting–SH groups. Replacement Cys104Ser reduced enzyme inactivation by removing the slow reacting component under both treatment conditions. Replacement of Cys964 reduced the inactivation rate constant of the fast reacting component (79%) and removed the slow reacting component when the dephosphorylated enzyme was treated with Hg2+. Moreover, Cys964Ser substituted enzyme was insensitive to Hg2+ when treated under phosphorylation conditions. These results indicate that Cys964 is involved in the fast inactivation by Hg2+. Although the double mutant Cys964, 104Ser was still partially inactivated by treatment under nonphosphorylating conditions, an enzyme devoid of transmembrane cysteines was insensitive to Hg2+ under all treatment conditions. Thus, this enzyme provides a background where accessibility of engineered transmembrane cysteines can be tested. Received: 13 March 2000/Revised: 23 June 2000  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号