首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Factors potentially contributing to the lower incidence of Lyme borreliosis (LB) in the far-western than in the northeastern United States include tick host-seeking behavior resulting in fewer human tick encounters, lower densities of Borrelia burgdorferi-infected vector ticks in peridomestic environments, and genetic variation among B. burgdorferi spirochetes to which humans are exposed. We determined the population structure of B. burgdorferi in over 200 infected nymphs of the primary bridging vector to humans, Ixodes pacificus, collected in Mendocino County, CA. This was accomplished by sequence typing the spirochete lipoprotein ospC and the 16S-23S rRNA intergenic spacer (IGS). Thirteen ospC alleles belonging to 12 genotypes were found in California, and the two most abundant, ospC genotypes H3 and E3, have not been detected in ticks in the Northeast. The most prevalent ospC and IGS biallelic profile in the population, found in about 22% of ticks, was a new B. burgdorferi strain defined by ospC genotype H3. Eight of the most common ospC genotypes in the northeastern United States, including genotypes I and K that are associated with disseminated human infections, were absent in Mendocino County nymphs. ospC H3 was associated with hardwood-dominated habitats where western gray squirrels, the reservoir host, are commonly infected with LB spirochetes. The differences in B. burgdorferi population structure in California ticks compared to the Northeast emphasize the need for a greater understanding of the genetic diversity of spirochetes infecting California LB patients.In the United States, Lyme borreliosis (LB) is the most commonly reported vector-borne illness and is caused by infection with the spirochete Borrelia burgdorferi (3, 9, 52). The signs and symptoms of LB can include a rash, erythema migrans, fever, fatigue, arthritis, carditis, and neurological manifestations (50, 51). The black-legged tick, Ixodes scapularis, and the western black-legged tick, Ixodes pacificus, are the primary vectors of B. burgdorferi to humans in the United States, with the former in the northeastern and north-central parts of the country and the latter in the Far West (9, 10). These ticks perpetuate enzootic transmission cycles together with a vertebrate reservoir host such as the white-footed mouse, Peromyscus leucopus, in the Northeast and Midwest (24, 35), or the western gray squirrel, Sciurus griseus, in California (31, 46).B. burgdorferi is a spirochete species with a largely clonal population structure (14, 16) comprising several different strains or lineages (8). The polymorphic ospC gene of B. burgdorferi encodes a surface lipoprotein that increases expression within the tick during blood feeding (47) and is required for initial infection of mammalian hosts (25, 55). To date, approximately 20 North American ospC genotypes have been described (40, 45, 49, 56). At least four, and possibly up to nine, of these genotypes are associated with B. burgdorferi invasiveness in humans (1, 15, 17, 49, 57). Restriction fragment length polymorphism (RFLP) and, subsequently, sequence analysis of the 16S-23S rRNA intergenic spacer (IGS) are used as molecular typing tools to investigate genotypic variation in B. burgdorferi (2, 36, 38, 44, 44, 57). The locus maintains a high level of variation between related species, and this variation reflects the heterogeneity found at the genomic level of the organism (37). The IGS and ospC loci appear to be linked (2, 8, 26, 45, 57), but the studies to date have not been representative of the full range of diversity of B. burgdorferi in North America.Previous studies in the northeastern and midwestern United States have utilized IGS and ospC genotyping to elucidate B. burgdorferi evolution, host strain specificity, vector-reservoir associations, and disease risk to humans. In California, only six ospC and five IGS genotypes have been described heretofore in samples from LB patients or I. pacificus ticks (40, 49, 56) compared to approximately 20 ospC and IGS genotypes identified in ticks, vertebrate hosts, or humans from the Northeast and Midwest (8, 40, 45, 49, 56). Here, we employ sequence analysis of both the ospC gene and IGS region to describe the population structure of B. burgdorferi in more than 200 infected I. pacificus nymphs from Mendocino County, CA, where the incidence of LB is among the highest in the state (11). Further, we compare the Mendocino County spirochete population to populations found in the Northeast.  相似文献   

2.
3.
Bacteria often infect their hosts from environmental sources, but little is known about how environmental and host-infecting populations are related. Here, phylogenetic clustering and diversity were investigated in a natural community of rhizobial bacteria from the genus Bradyrhizobium. These bacteria live in the soil and also form beneficial root nodule symbioses with legumes, including those in the genus Lotus. Two hundred eighty pure cultures of Bradyrhizobium bacteria were isolated and genotyped from wild hosts, including Lotus angustissimus, Lotus heermannii, Lotus micranthus, and Lotus strigosus. Bacteria were cultured directly from symbiotic nodules and from two microenvironments on the soil-root interface: root tips and mature (old) root surfaces. Bayesian phylogenies of Bradyrhizobium isolates were reconstructed using the internal transcribed spacer (ITS), and the structure of phylogenetic relatedness among bacteria was examined by host species and microenvironment. Inoculation assays were performed to confirm the nodulation status of a subset of isolates. Most recovered rhizobial genotypes were unique and found only in root surface communities, where little bacterial population genetic structure was detected among hosts. Conversely, most nodule isolates could be classified into several related, hyper-abundant genotypes that were phylogenetically clustered within host species. This pattern suggests that host infection provides ample rewards to symbiotic bacteria but that host specificity can strongly structure only a small subset of the rhizobial community.Symbiotic bacteria often encounter hosts from environmental sources (32, 48, 60), which leads to multipartite life histories including host-inhabiting and environmental stages. Research on host-associated bacteria, including pathogens and beneficial symbionts, has focused primarily on infection and proliferation in hosts, and key questions about the ecology and evolution of the free-living stages have remained unanswered. For instance, is host association ubiquitous within a bacterial lineage, or if not, do host-infecting genotypes represent a phylogenetically nonrandom subset? Assuming that host infection and free-living existence exert different selective pressures, do bacterial lineages diverge into specialists for these different lifestyles? Another set of questions addresses the degree to which bacteria associate with specific host partners. Do bacterial genotypes invariably associate with specific host lineages, and is such specificity controlled by one or both partners? Alternatively, is specificity simply a by-product of ecological cooccurrence among bacteria and hosts?Rhizobial bacteria comprise several distantly related proteobacterial lineages, most notably the genera Azorhizobium, Bradyrhizobium, Mesorhizobium, Rhizobium, and Sinorhizobium (52), that have acquired the ability to form nodules on legumes and symbiotically fix nitrogen. Acquisition of nodulation and nitrogen fixation loci has likely occurred through repeated lateral transfer of symbiotic loci (13, 74). Thus, the term “rhizobia” identifies a suite of symbiotic traits in multiple genomic backgrounds rather than a taxonomic classification. When rhizobia infect legume hosts, they differentiate into specialized endosymbiotic cells called bacteroids, which reduce atmospheric nitrogen in exchange for photosynthates from the plant (35, 60). Rhizobial transmission among legume hosts is infectious. Rhizobia can spread among hosts through the soil (60), and maternal inheritance (through seeds) is unknown (11, 43, 55). Nodule formation on hosts is guided by reciprocal molecular signaling between bacteria and plant (5, 46, 58), and successful infection requires a compatible pairing of legume and rhizobial genotypes. While both host and symbiont genotypes can alter the outcome of rhizobial competition for adsorption (34) and nodulation (33, 39, 65) of legume roots, little is known about how this competition plays out in nature.Rhizobia can achieve reproductive success via multiple lifestyles (12), including living free in the soil (14, 44, 53, 62), on or near root surfaces (12, 18, 19, 51), or in legume nodules (60). Least is known about rhizobia in bulk soil (not penetrated by plant roots). While rhizobia can persist for years in soil without host legumes (12, 30, 61), it appears that growth is often negligible in bulk soil (4, 10, 14, 22, 25). Rhizobia can also proliferate in the rhizosphere (soil near the root zone) of legumes (4, 10, 18, 19, 22, 25, 51). Some rhizobia might specialize in rhizosphere growth and infect hosts only rarely (12, 14, 51), whereas other genotypes are clearly nonsymbiotic because they lack key genes (62) and must therefore persist in the soil. The best-understood rhizobial lifestyle is the root nodule symbiosis with legumes, which is thought to offer fitness rewards that are superior to life in the soil (12). After the initial infection, nodules grow and harbor increasing populations of bacteria until the nodules senesce and the rhizobia are released into the soil (11, 12, 38, 40, 55). However, rhizobial fitness in nodules is not guaranteed. Host species differ in the type of nodules they form, and this can determine the degree to which differentiated bacteroids can repopulate the soil (11, 12, 38, 59). Furthermore, some legumes can hinder the growth of nodules with ineffective rhizobia, thus punishing uncooperative symbionts (11, 27, 28, 56, 71).Here, we investigated the relationships between environmental and host-infecting populations of rhizobia. A main objective was to test the hypothesis that rhizobia exhibit specificity among host species as well as among host microenvironments, specifically symbiotic nodules, root surfaces, and root tips. We predicted that host infection and environmental existence exert different selective pressures on rhizobia, leading to divergent patterns of clustering, diversity, and abundance of rhizobial genotypes.  相似文献   

4.
5.
6.
Immunogold localization revealed that OmcS, a cytochrome that is required for Fe(III) oxide reduction by Geobacter sulfurreducens, was localized along the pili. The apparent spacing between OmcS molecules suggests that OmcS facilitates electron transfer from pili to Fe(III) oxides rather than promoting electron conduction along the length of the pili.There are multiple competing/complementary models for extracellular electron transfer in Fe(III)- and electrode-reducing microorganisms (8, 18, 20, 44). Which mechanisms prevail in different microorganisms or environmental conditions may greatly influence which microorganisms compete most successfully in sedimentary environments or on the surfaces of electrodes and can impact practical decisions on the best strategies to promote Fe(III) reduction for bioremediation applications (18, 19) or to enhance the power output of microbial fuel cells (18, 21).The three most commonly considered mechanisms for electron transfer to extracellular electron acceptors are (i) direct contact between redox-active proteins on the outer surfaces of the cells and the electron acceptor, (ii) electron transfer via soluble electron shuttling molecules, and (iii) the conduction of electrons along pili or other filamentous structures. Evidence for the first mechanism includes the necessity for direct cell-Fe(III) oxide contact in Geobacter species (34) and the finding that intensively studied Fe(III)- and electrode-reducing microorganisms, such as Geobacter sulfurreducens and Shewanella oneidensis MR-1, display redox-active proteins on their outer cell surfaces that could have access to extracellular electron acceptors (1, 2, 12, 15, 27, 28, 31-33). Deletion of the genes for these proteins often inhibits Fe(III) reduction (1, 4, 7, 15, 17, 28, 40) and electron transfer to electrodes (5, 7, 11, 33). In some instances, these proteins have been purified and shown to have the capacity to reduce Fe(III) and other potential electron acceptors in vitro (10, 13, 29, 38, 42, 43, 48, 49).Evidence for the second mechanism includes the ability of some microorganisms to reduce Fe(III) that they cannot directly contact, which can be associated with the accumulation of soluble substances that can promote electron shuttling (17, 22, 26, 35, 36, 47). In microbial fuel cell studies, an abundance of planktonic cells and/or the loss of current-producing capacity when the medium is replaced is consistent with the presence of an electron shuttle (3, 14, 26). Furthermore, a soluble electron shuttle is the most likely explanation for the electrochemical signatures of some microorganisms growing on an electrode surface (26, 46).Evidence for the third mechanism is more circumstantial (19). Filaments that have conductive properties have been identified in Shewanella (7) and Geobacter (41) species. To date, conductance has been measured only across the diameter of the filaments, not along the length. The evidence that the conductive filaments were involved in extracellular electron transfer in Shewanella was the finding that deletion of the genes for the c-type cytochromes OmcA and MtrC, which are necessary for extracellular electron transfer, resulted in nonconductive filaments, suggesting that the cytochromes were associated with the filaments (7). However, subsequent studies specifically designed to localize these cytochromes revealed that, although the cytochromes were extracellular, they were attached to the cells or in the exopolymeric matrix and not aligned along the pili (24, 25, 30, 40, 43). Subsequent reviews of electron transfer to Fe(III) in Shewanella oneidensis (44, 45) appear to have dropped the nanowire concept and focused on the first and second mechanisms.Geobacter sulfurreducens has a number of c-type cytochromes (15, 28) and multicopper proteins (12, 27) that have been demonstrated or proposed to be on the outer cell surface and are essential for extracellular electron transfer. Immunolocalization and proteolysis studies demonstrated that the cytochrome OmcB, which is essential for optimal Fe(III) reduction (15) and highly expressed during growth on electrodes (33), is embedded in the outer membrane (39), whereas the multicopper protein OmpB, which is also required for Fe(III) oxide reduction (27), is exposed on the outer cell surface (39).OmcS is one of the most abundant cytochromes that can readily be sheared from the outer surfaces of G. sulfurreducens cells (28). It is essential for the reduction of Fe(III) oxide (28) and for electron transfer to electrodes under some conditions (11). Therefore, the localization of this important protein was further investigated.  相似文献   

7.
The emergence of natural isolates of human respiratory syncytial virus group B (HRSV-B) with a 60-nucleotide (nt) duplication in the G protein gene in Buenos Aires, Argentina, in 1999 (A. Trento et al., J. Gen. Virol. 84:3115-3120, 2003) and their dissemination worldwide allowed us to use the duplicated segment as a natural tag to examine in detail the evolution of HRSV during propagation in its natural host. Viruses with the duplicated segment were all clustered in a new genotype, named BA (A. Trento et al., J. Virol. 80:975-984, 2006). To obtain information about the prevalence of these viruses in Spain, we tested for the presence of the duplicated segment in positive HRSV-B clinical samples collected at the Severo Ochoa Hospital (Madrid) during 12 consecutive epidemics (1996-1997 to 2007-2008). Viruses with the 60-nt duplication were found in 61 samples, with a high prevalence relative to the rest of B genotypes in the most recent seasons. Global phylogenetic and demographic analysis of all G sequences containing the duplication, collected across five continents up until April 2009, revealed that the prevalence of the BA genotype increased gradually until 2004-2005, despite its rapid dissemination worldwide. After that date and coinciding with a bottleneck effect on the population size, a relatively new BA lineage (BA-IV) replaced all other group B viruses, suggesting further adaptation of the BA genotype to its natural host.Human respiratory syncytial virus (HRSV), a member of the Pneumovirus genus within the Paramyxoviridae family, is recognized as the leading agent responsible for severe respiratory infections in the pediatric population (31, 34, 35) and a pathogen of considerable importance in vulnerable adults (23, 24). The global respiratory syncytial virus (RSV) disease burden is estimated at 64 million cases and 160,000 deaths every year (70). This virus causes regular seasonal epidemics which take place during the winter months in temperate countries or during the rainy season in tropical areas (12). A peculiar aspect of HRSV is that the immune response produced by infection does not confer long-lasting protection, which is why reinfections are common throughout life (30).Neutralization tests performed with hyperimmune serum (16) and reactivity with specific monoclonal antibodies (4, 45) were used to classify HRSV isolates into two antigenic groups, A and B, which correlated with genetically distinct viruses (18). The main differences between these two groups are located in the major attachment G protein. This protein is a type II glycoprotein that shares neither sequence nor structural features with the attachment proteins (HN or H) of other paramyxoviruses (69), and it represents one of the targets of the immune response (27, 43). The full-length membrane-bound G protein (Gm) of 292 to 319 amino acids (depending on the viral strain) is also expressed in a secreted version (Gs) that lacks the transmembrane domain due to alternative initiation of translation at a second in-frame AUG codon in the G open reading frame (M48) (52). The G protein is the viral gene product with the highest degree of antigenic and genetic diversity among viral isolates (4, 18, 28, 45). Most changes are concentrated in two hypervariable regions that flank a highly conserved central region of the G protein ectodomain, which includes a cluster of four cysteines and the putative receptor binding site (43). It has been suggested that antigenic differences within this protein could facilitate repeated HRSV infections (37, 59). In addition, positive selection of amino acid changes was observed in the two hypervariable regions of the G protein ectodomain (7, 43, 71, 73, 74). One of the hypervariable regions, located in the C-terminal one-third of the G molecule, contains multiple epitopes recognized by monoclonal antibodies (43), suggesting that immune selection of new variants by antibodies may contribute to generation of HRSV diversity.Phylogenetic studies based on sequence analysis of the G protein have identified numerous genotypes in the antigenic groups A and B that show complex circulation patterns, since multiple genotypes of both antigenic groups may circulate within the same season and community, with one or two dominant genotypes being replaced in successive years (13, 14, 26, 27, 32, 49, 50). Each community shows a seasonal circulation pattern of genotypes, probably determined by local factors, such as the level of herd immunity to certain strains (3, 14, 49).The capacity of the G protein to accommodate drastic sequence changes was illustrated best by three antigenic group B viruses isolated in Buenos Aires, Argentina, in 1999 that contained a duplication of 60 nucleotides (nt) in the C-terminal third of the G protein gene (63). The global dissemination of these viruses allowed us to use the duplicated segment as a natural tag to reexamine the evolution of HRSV during propagation in its natural host. Phylogenetic analysis of G sequences revealed that all viruses with the duplicated segment clustered in a new genotype, named BA, and this finding supported the idea of a common ancestor for all viruses with the 60-nt duplication, dated about 1998 (64). The limited information about the molecular epidemiology of HRSV in Spain, together with an increase in G sequences with the duplicated segment reported worldwide, prompted us to conduct both a local search in Madrid for these viruses and a global phylogenetic analysis of HRSV with the 60-nt duplication from the time that these viruses were first detected, taking into account the geographic and temporal distribution of each isolate.  相似文献   

8.
9.
Antibodies against the extracellular virion (EV or EEV) form of vaccinia virus are an important component of protective immunity in animal models and likely contribute to the protection of immunized humans against poxviruses. Using fully human monoclonal antibodies (MAbs), we now have shown that the protective attributes of the human anti-B5 antibody response to the smallpox vaccine (vaccinia virus) are heavily dependent on effector functions. By switching Fc domains of a single MAb, we have definitively shown that neutralization in vitro—and protection in vivo in a mouse model—by the human anti-B5 immunoglobulin G MAbs is isotype dependent, thereby demonstrating that efficient protection by these antibodies is not simply dependent on binding an appropriate vaccinia virion antigen with high affinity but in fact requires antibody effector function. The complement components C3 and C1q, but not C5, were required for neutralization. We also have demonstrated that human MAbs against B5 can potently direct complement-dependent cytotoxicity of vaccinia virus-infected cells. Each of these results was then extended to the polyclonal human antibody response to the smallpox vaccine. A model is proposed to explain the mechanism of EV neutralization. Altogether these findings enhance our understanding of the central protective activities of smallpox vaccine-elicited antibodies in immunized humans.The smallpox vaccine, live vaccinia virus (VACV), is frequently considered the gold standard of human vaccines and has been enormously effective in preventing smallpox disease. The smallpox vaccine led to the worldwide eradication of the disease via massive vaccination campaigns in the 1960s and 1970s, one of the greatest successes of modern medicine (30). However, despite the efficacy of the smallpox vaccine, the mechanisms of protection remain unclear. Understanding those mechanisms is key for developing immunologically sound vaccinology principles that can be applied to the design of future vaccines for other infectious diseases (3, 101).Clinical studies of fatal human cases of smallpox disease (variola virus infection) have shown that neutralizing antibody titers were either low or absent in patient serum (24, 68). In contrast, neutralizing antibody titers for the VACV intracellular mature virion (MV or IMV) were correlated with protection of vaccinees against smallpox (68). VACV immune globulin (VIG) (human polyclonal antibodies) is a promising treatment against smallpox (47), since it was able to reduce the number of smallpox cases ∼80% among variola-exposed individuals in four case-controlled clinical studies (43, 47, 52, 53, 69). In animal studies, neutralizing antibodies are crucial for protecting primates and mice against pathogenic poxviruses (3, 7, 17, 21, 27, 35, 61, 66, 85).The specificities and the functions of protective antipoxvirus antibodies have been areas of intensive research, and the mechanics of poxvirus neutralization have been debated for years. There are several interesting features and problems associated with the antibody response to variola virus and related poxviruses, including the large size of the viral particles and the various abundances of many distinct surface proteins (18, 75, 91, 93). Furthermore, poxviruses have two distinct virion forms, intracellular MV and extracellular enveloped virions (EV or EEV), each with a unique biology. Most importantly, MV and EV virions share no surface proteins (18, 93), and therefore, there is no single neutralizing antibody that can neutralize both virion forms. As such, an understanding of virion structure is required to develop knowledge regarding the targets of protective antibodies.Neutralizing antibodies confer protection mainly through the recognition of antigens on the surface of a virus. A number of groups have discovered neutralizing antibody targets of poxviruses in animals and humans (3). The relative roles of antibodies against MV and EV in protective immunity still remain somewhat unclear. There are compelling data that antibodies against MV (21, 35, 39, 66, 85, 90, 91) or EV (7, 16, 17, 36, 66, 91) are sufficient for protection, and a combination of antibodies against both targets is most protective (66). It remains controversial whether antibodies to one virion form are more important than those to the other (3, 61, 66). The most abundant viral particles are MV, which accumulate in infected cells and are released as cells die (75). Neutralization of MV is relatively well characterized (3, 8, 21, 35). EV, while less abundant, are critical for viral spread and virulence in vivo (93, 108). Neutralization of EV has remained more enigmatic (3).B5R (also known as B5 or WR187), one of five known EV-specific proteins, is highly conserved among different strains of VACV and in other orthopoxviruses (28, 49). B5 was identified as a protective antigen by Galmiche et al., and the available evidence indicated that the protection was mediated by anti-B5 antibodies (36). Since then, a series of studies have examined B5 as a potential recombinant vaccine antigen or as a target of therapeutic monoclonal antibodies (MAbs) (1, 2, 7, 17, 40, 46, 66, 91, 110). It is known that humans immunized with the smallpox vaccine make antibodies against B5 (5, 22, 62, 82). It is also known that animals receiving the smallpox vaccine generate antibodies against B5 (7, 20, 27, 70). Furthermore, previous neutralization assays have indicated that antibodies generated against B5 are primarily responsible for neutralization of VACV EV (5, 83). Recently Chen at al. generated chimpanzee-human fusion MAbs against B5 and showed that the MAbs can protect mice from lethal challenge with virulent VACV (17). We recently reported, in connection with a study using murine monoclonal antibodies, that neutralization of EV is highly complement dependent and the ability of anti-B5 MAbs to protect in vivo correlated with their ability to neutralize EV in a complement-dependent manner (7).The focus of the study described here was to elucidate the mechanisms of EV neutralization, focusing on the human antibody response to B5. Our overall goal is to understand underlying immunobiological and virological parameters that determine the emergence of protective antiviral immune responses in humans.  相似文献   

10.
Understanding the mechanisms underlying potential altered susceptibility to human immunodeficiency virus type 1 (HIV-1) infection in highly exposed seronegative (ES) individuals and the later clinical consequences of breakthrough infection can provide insight into strategies to control HIV-1 with an effective vaccine. From our Seattle ES cohort, we identified one individual (LSC63) who seroconverted after over 2 years of repeated unprotected sexual contact with his HIV-1-infected partner (P63) and other sexual partners of unknown HIV-1 serostatus. The HIV-1 variants infecting LSC63 were genetically unrelated to those sequenced from P63. This may not be surprising, since viral load measurements in P63 were repeatedly below 50 copies/ml, making him an unlikely transmitter. However, broad HIV-1-specific cytotoxic T-lymphocyte (CTL) responses were detected in LSC63 before seroconversion. Compared to those detected after seroconversion, these responses were of lower magnitude and half of them targeted different regions of the viral proteome. Strong HLA-B27-restricted CTLs, which have been associated with disease control, were detected in LSC63 after but not before seroconversion. Furthermore, for the majority of the protein-coding regions of the HIV-1 variants in LSC63 (except gp41, nef, and the 3′ half of pol), the genetic distances between the infecting viruses and the viruses to which he was exposed through P63 (termed the exposed virus) were comparable to the distances between random subtype B HIV-1 sequences and the exposed viruses. These results suggest that broad preinfection immune responses were not able to prevent the acquisition of HIV-1 infection in LSC63, even though the infecting viruses were not particularly distant from the viruses that may have elicited these responses.Understanding the mechanisms of altered susceptibility or control of human immunodeficiency virus type 1 (HIV-1) infection in highly exposed seronegative (ES) persons may provide invaluable information aiding the design of HIV-1 vaccines and therapy (9, 14, 15, 33, 45, 57, 58). In a cohort of female commercial sex workers in Nairobi, Kenya, a small proportion of individuals remained seronegative for over 3 years despite the continued practice of unprotected sex (12, 28, 55, 56). Similarly, resistance to HIV-1 infection has been reported in homosexual men who frequently practiced unprotected sex with infected partners (1, 15, 17, 21, 61). Multiple factors have been associated with the resistance to HIV-1 infection in ES individuals (32), including host genetic factors (8, 16, 20, 37-39, 44, 46, 47, 49, 59, 63), such as certain HLA class I and II alleles (41), as well as cellular (1, 15, 26, 55, 56), humoral (25, 29), and innate immune responses (22, 35).Seroconversion in previously HIV-resistant Nairobi female commercial sex workers, despite preexisting HIV-specific cytotoxic T-lymphocyte (CTL) responses, has been reported (27). Similarly, 13 of 125 ES enrollees in our Seattle ES cohort (1, 15, 17) have become late seroconverters (H. Zhu, T. Andrus, Y. Liu, and T. Zhu, unpublished observations). Here, we analyze the virology, genetics, and immune responses of HIV-1 infection in one of the later seroconverting subjects, LSC63, who had developed broad CTL responses before seroconversion.  相似文献   

11.
Clade B of the New World arenaviruses contains both pathogenic and nonpathogenic members, whose surface glycoproteins (GPs) are characterized by different abilities to use the human transferrin receptor type 1 (hTfR1) protein as a receptor. Using closely related pairs of pathogenic and nonpathogenic viruses, we investigated the determinants of the GP1 subunit that confer these different characteristics. We identified a central region (residues 85 to 221) in the Guanarito virus GP1 that was sufficient to interact with hTfR1, with residues 159 to 221 being essential. The recently solved structure of part of the Machupo virus GP1 suggests an explanation for these requirements.Arenaviruses are bisegmented, single-stranded RNA viruses that use an ambisense coding strategy to express four proteins: NP (nucleoprotein), Z (matrix protein), L (polymerase), and GP (glycoprotein). The viral GP is sufficient to direct entry into host cells, and retroviral vectors pseudotyped with GP recapitulate the entry pathway of these viruses (5, 13, 24, 31). GP is a class I fusion protein comprising two subunits, GP1 and GP2, cleaved from the precursor protein GPC (4, 14, 16, 18, 21). GP1 contains the receptor binding domain (19, 28), while GP2 contains structural elements characteristic of viral membrane fusion proteins (8, 18, 20, 38). The N-terminal stable signal peptide (SSP) remains associated with the mature glycoprotein after cleavage (2, 39) and plays a role in transport, maturation, and pH-dependent fusion (17, 35, 36, 37).The New World arenaviruses are divided into clades A, B, and C based on phylogenetic relatedness (7, 9, 11). Clade B contains the human pathogenic viruses Junin (JUNV), Machupo (MACV), Guanarito (GTOV), Sabia, and Chapare, which cause severe hemorrhagic fevers in South America (1, 10, 15, 26, 34). Clade B also contains the nonpathogenic viruses Amapari (AMAV), Cupixi, and Tacaribe (TCRV), although mild disease has been reported for a laboratory worker infected with TCRV (29).Studies with both viruses and GP-pseudotyped retroviral vectors have shown that the pathogenic clade B arenaviruses use the human transferrin receptor type 1 (hTfR1) to gain entry into human cells (19, 30). In contrast, GPs from nonpathogenic viruses, although capable of using TfR1 orthologs from other species (1), cannot use hTfR1 (1, 19) and instead enter human cells through as-yet-uncharacterized hTfR1-independent pathways (19). In addition, human T-cell lines serve as useful tools to distinguish these GPs, since JUNV, GTOV, and MACV pseudotyped vectors readily transduce CEM cells, while TCRV and AMAV GP vectors do not (27; also unpublished data). These properties of the GPs do not necessarily reflect a tropism of the pathogenic viruses for human T cells, since viral tropism is influenced by many factors and T cells are not a target for JUNV replication in vivo (3, 22, 25).  相似文献   

12.
Paenibacillus larvae is the etiological agent of American foulbrood (AFB) in honeybees. Recently, different genotypes of P. larvae (ERIC I to ERIC IV) were defined, and it was shown that these genotypes differ inter alia in their virulence on the larval level. On the colony level, bees mitigate AFB through the hygienic behavior of nurse bees. Therefore, we investigated how the hygienic behavior shapes P. larvae virulence on the colony level. Our results indicate that P. larvae virulence on the larval level and that on the colony level are negatively correlated.American foulbrood (AFB) is among the economically most important honeybee diseases. The etiological agent of AFB is the gram-positive, spore-forming bacterium Paenibacillus larvae (9). The extremely tenacious spores are the infectious form of this organism. These spores drive disease transmission within colonies (11), as well as between colonies as soon as they end up in the honey stores of an infected colony (12).The species P. larvae can be subdivided into four different genotypes designated ERIC I to ERIC IV based on results from repetitive-element PCR (20) using enterobacterial repetitive intergenic consensus (ERIC) primers (9, 10), with P. larvae ERIC I and ERIC II being the two practically most important genotypes (1, 2, 9, 10, 13, 16). The four genotypes were shown previously to differ in phenotype, including virulence on the larval level (8, 9). While larvae infected with genotypes ERIC II to ERIC IV were killed within only 6 to 7 days, it took P. larvae ERIC I around 12 to 14 days to kill all infected individuals. Therefore, genotype ERIC I was considered to be less virulent and the other three genotypes were considered to be highly virulent (7-9) on the larval level.P. larvae is an obligately killing pathogen which must kill its host to be transmitted. The virulence of such an obligate killer is thought to be determined primarily by two factors, (i) the probability of infecting a host and (ii) the time to host death (6). The problem of ensuring a high enough probability of infecting the next host is solved for P. larvae by (i) the tenacious exospores, which remain infectious for over half a century (17) and, therefore, can wait for decades for the next host to pass by, and (ii) a high pathogen reproduction rate (23) and, thus, the production of an extremely high number of spores within each infected larva.For evaluating the second factor determining P. larvae virulence, the time to host death, it is important to consider the two levels of honeybee hosts, the level of the individual larva dying from AFB and the level of the colony succumbing to AFB.The virulence of P. larvae genotypes on the larval level has been analyzed recently (8, 9). We have now determined the colony-level virulence for the two most common and practically important (10, 16) genotypes of P. larvae, ERIC I and ERIC II, significantly differing in virulence on the larval level (8). We will discuss how the time to larval death relates to the time to colony death and how the hygienic response shapes P. larvae virulence.  相似文献   

13.
The essential cell division protein FtsL is a substrate of the intramembrane protease RasP. Using heterologous coexpression experiments, we show here that the division protein DivIC stabilizes FtsL against RasP cleavage. Degradation seems to be initiated upon accessibility of a cytosolic substrate recognition motif.Cell division in bacteria is a highly regulated process (1). The division site selection as well as assembly and disassembly of the divisome have to be strictly controlled (1, 4). Although the spatial control of the divisome is relatively well understood (2, 4, 14, 17), mechanisms governing the temporal control of division are still mainly elusive. Regulatory proteolysis was thought to be a potential modulatory mechanism (8, 9). The highly unstable division protein FtsL was shown to be rate limiting for division and would make an ideal candidate for a regulatory factor in the timing of bacterial cell division (7, 9). In Bacillus subtilis, FtsL is an essential protein of the membrane part of the divisome (5, 7, 8). It is necessary for the assembly of the membrane-spanning division proteins, and a knockout is lethal (8, 9, 12). We have previously reported that FtsL is a substrate of the intramembrane protease RasP (5).These findings raised the question of whether RasP can regulate cell division by cleaving FtsL from the division complex. In order to mimic the situation in which FtsL is bound to at least one of its interaction partners, we used a heterologous coexpression system in which we synthesized FtsL and DivIC. It has been reported before that DivIC and FtsL are intimate binding partners in various organisms (6, 9, 15, 21, 22, 26) and that FtsL and DivIC (together with DivIB) can form complexes even in the absence of the other divisome components (6, 21). We therefore asked whether RasP is able to cleave FtsL in the presence of its major interaction partner DivIC, which would argue for the possibility that RasP could cleave FtsL within a mature divisome. In contrast, if interaction with DivIC could stabilize FtsL against RasP cleavage, this result would bring such a model into question. An alternative option for the role of RasP might be the removal of FtsL from the membrane. It has been shown that divisome disassembly and prevention of reassembly are crucial to prevent minicell formation close to the new cell poles (3, 16).  相似文献   

14.
Human cytomegalovirus (HCMV) is a widely circulating pathogen that causes severe disease in immunocompromised patients and infected fetuses. By immortalizing memory B cells from HCMV-immune donors, we isolated a panel of human monoclonal antibodies that neutralized at extremely low concentrations (90% inhibitory concentration [IC90] values ranging from 5 to 200 pM) HCMV infection of endothelial, epithelial, and myeloid cells. With the single exception of an antibody that bound to a conserved epitope in the UL128 gene product, all other antibodies bound to conformational epitopes that required expression of two or more proteins of the gH/gL/UL128-131A complex. Antibodies against gB, gH, or gM/gN were also isolated and, albeit less potent, were able to neutralize infection of both endothelial-epithelial cells and fibroblasts. This study describes unusually potent neutralizing antibodies against HCMV that might be used for passive immunotherapy and identifies, through the use of such antibodies, novel antigenic targets in HCMV for the design of immunogens capable of eliciting previously unknown neutralizing antibody responses.Human cytomegalovirus (HCMV) is a member of the herpesvirus family which is widely distributed in the human population and can cause severe disease in immunocompromised patients and upon infection of the fetus. HCMV infection causes clinical disease in 75% of patients in the first year after transplantation (58), while primary maternal infection is a major cause of congenital birth defects including hearing loss and mental retardation (5, 33, 45). Because of the danger posed by this virus, development of an effective vaccine is considered of highest priority (51).HCMV infection requires initial interaction with the cell surface through binding to heparan sulfate proteoglycans (8) and possibly other surface receptors (12, 23, 64, 65). The virus displays a broad host cell range (24, 53), being able to infect several cell types such as endothelial cells, epithelial cells (including retinal cells), smooth muscle cells, fibroblasts, leukocytes, and dendritic cells (21, 37, 44, 54). Endothelial cell tropism has been regarded as a potential virulence factor that might influence the clinical course of infection (16, 55), whereas infection of leukocytes has been considered a mechanism of viral spread (17, 43, 44). Extensive propagation of HCMV laboratory strains in fibroblasts results in deletions or mutations of genes in the UL131A-128 locus (1, 18, 21, 36, 62, 63), which are associated with the loss of the ability to infect endothelial cells, epithelial cells, and leukocytes (15, 43, 55, 61). Consistent with this notion, mouse monoclonal antibodies (MAbs) to UL128 or UL130 block infection of epithelial and endothelial cells but not of fibroblasts (63). Recently, it has been shown that UL128, UL130, and UL131A assemble with gH and gL to form a five-protein complex (thereafter designated gH/gL/UL128-131A) that is an alternative to the previously described gCIII complex made of gH, gL, and gO (22, 28, 48, 63).In immunocompetent individuals T-cell and antibody responses efficiently control HCMV infection and reduce pathological consequences of maternal-fetal transmission (13, 67), although this is usually not sufficient to eradicate the virus. Albeit with controversial results, HCMV immunoglobulins (Igs) have been administered to transplant patients in association with immunosuppressive treatments for prophylaxis of HCMV disease (56, 57), and a recent report suggests that they may be effective in controlling congenital infection and preventing disease in newborns (32). These products are plasma derivatives with relatively low potency in vitro (46) and have to be administered by intravenous infusion at very high doses in order to deliver sufficient amounts of neutralizing antibodies (4, 9, 32, 56, 57, 66).The whole spectrum of antigens targeted by HCMV-neutralizing antibodies remains poorly characterized. Using specific immunoabsorption to recombinant antigens and neutralization assays using fibroblasts as model target cells, it was estimated that 40 to 70% of the serum neutralizing activity is directed against gB (6). Other studies described human neutralizing antibodies specific for gB, gH, or gM/gN viral glycoproteins (6, 14, 26, 29, 34, 41, 52, 60). Remarkably, we have recently shown that human sera exhibit a more-than-100-fold-higher potency in neutralizing infection of endothelial cells than infection of fibroblasts (20). Similarly, CMV hyperimmunoglobulins have on average 48-fold-higher neutralizing activities against epithelial cell entry than against fibroblast entry (10). However, epitopes that are targeted by the antibodies that comprise epithelial or endothelial cell-specific neutralizing activity of human immune sera remain unknown.In this study we report the isolation of a large panel of human monoclonal antibodies with extraordinarily high potency in neutralizing HCMV infection of endothelial and epithelial cells and myeloid cells. With the exception of a single antibody that recognized a conserved epitope of UL128, all other antibodies recognized conformational epitopes that required expression of two or more proteins of the gH/gL/UL128-131A complex.  相似文献   

15.
Protein tyrosine kinase 6 (PTK6) is a nonmyristoylated Src-related intracellular tyrosine kinase. Although not expressed in the normal mammary gland, PTK6 is expressed in a majority of human breast tumors examined, and it has been linked to ErbB receptor signaling and AKT activation. Here we demonstrate that AKT is a direct substrate of PTK6 and that AKT tyrosine residues 315 and 326 are phosphorylated by PTK6. Association of PTK6 with AKT occurs through the SH3 domain of PTK6 and is enhanced through SH2 domain-mediated interactions following tyrosine phosphorylation of AKT. Using Src, Yes, and Fyn null mouse embryonic fibroblasts (SYF cells), we show that PTK6 phosphorylates AKT in a Src family kinase-independent manner. Introduction of PTK6 into SYF cells sensitized these cells to physiological levels of epidermal growth factor (EGF) and increased AKT activation. Stable introduction of active PTK6 into SYF cells also resulted in increased proliferation. Knockdown of PTK6 in the BPH-1 human prostate epithelial cell line led to decreased AKT activation in response to EGF. Our data indicate that in addition to promoting growth factor receptor-mediated activation of AKT, PTK6 can directly activate AKT to promote oncogenic signaling.Protein tyrosine kinase 6 (PTK6; also known as the breast tumor kinase BRK) is an intracellular Src-related tyrosine kinase (9, 48). Human PTK6 was identified in cultured human melanocytes (32) and breast tumor cells (39), while its mouse orthologue was cloned from normal small intestinal epithelial cell RNA (50). Although PTK6 shares overall structural similarity with Src family tyrosine kinases, it lacks an N-terminal myristoylation consensus sequence for membrane targeting (39, 51). As a consequence, PTK6 is localized to different cellular compartments, including the nucleus (14, 15). PTK6 is expressed in normal differentiated epithelial cells of the gastrointestinal tract (34, 42, 51), prostate (14), and skin (51-53). Expression of PTK6 is upregulated in different types of cancers, including breast carcinomas (6, 39, 54), colon cancer (34), ovarian cancer (47), head and neck cancers (33), and metastatic melanoma cells (16). The significance of apparent opposing signaling roles for PTK6 in normal differentiation and cancer is still poorly understood.In human breast tumor cells, PTK6 enhances signaling from members of the ErbB receptor family (10, 29, 30, 36, 40, 49, 54). In the HB4a immortalized human mammary gland luminal epithelial cell line, PTK6 promoted epidermal growth factor (EGF)-induced ErbB3 tyrosine phosphorylation and AKT activation (29). In response to EGF stimulation, PTK6 promoted phosphorylation of the focal adhesion protein paxillin and Rac1-mediated cell migration (10). PTK6 can be activated by the ErbB3 ligand heregulin and promotes activation of extracellular signal-regulated kinase 5 (ERK5) and p38 mitogen-activated protein kinase (MAPK) in breast cancer cells (40). PTK6 can also phosphorylate p190RhoGAP-A and stimulate its activity, leading to RhoA inactivation and Ras activation and thereby promoting EGF-dependent breast cancer cell migration and proliferation (49). Expression of PTK6 has been correlated with ErbB2 expression in human breast cancers (4, 5, 54).AKT (also called protein kinase B) is a serine-threonine kinase that is activated downstream of growth factor receptors (38). It is a key player in signaling pathways that regulate energy metabolism, proliferation, and cell survival (7, 45). Aberrant activation of AKT through diverse mechanisms has been discovered in different cancers (2). AKT activation requires phosphorylation of AKT on threonine residue 308 and serine residue 473. The significance of phosphorylation of AKT on tyrosine residues is less well understood. Src has been shown to phosphorylate AKT on conserved tyrosine residues 315 and 326 near the activation loop (11). Substitution of these two tyrosine residues with phenylalanine abolished AKT kinase activity stimulated by EGF (11). Use of the Src family inhibitor PP2 impaired AKT activation following IGF-1 stimulation of oligodendrocytes (13). The RET/PTC receptor tyrosine kinase that responds to glial cell-line-derived neurotrophic factor also phosphorylated AKT tyrosine residue 315 promoting activation of AKT (28). AKT tyrosine residue 474 was phosphorylated when cells were treated with the tyrosine phosphatase inhibitor pervanadate, and phosphorylation of tyrosine 474 contributed to full activation of AKT (12). Recently, the nonreceptor tyrosine kinase Ack1 was shown to regulate AKT tyrosine phosphorylation and activation (37).Here we show that AKT is a cytoplasmic substrate of the intracellular tyrosine kinase PTK6. We identify the tyrosine residues on AKT that are targeted by PTK6, and we demonstrate that tyrosine phosphorylation plays a role in regulating association between PTK6 and AKT. In addition, we show that PTK6 promotes AKT activation and cell proliferation in a Src-independent manner.  相似文献   

16.
The multiplicity of infection (MOI), i.e., the number of virus genomes that infect a cell, is a key parameter in virus evolution, as it determines processes such as genetic exchange among genomes, selection intensity on viral genes, epistatic interactions, and the evolution of multipartite viruses. In fact, the MOI level is equivalent to the virus ploidy during genome expression. Nevertheless, there are few experimental estimates of MOI, particularly for viruses with eukaryotic hosts. Here we estimate the MOI of Tobacco mosaic virus (TMV) in its systemic host, Nicotiana benthamiana. The progress of infection of two TMV genotypes, differently tagged with the green or red fluorescent proteins GFP and RFP, was monitored by determining the number of leaf cell protoplasts that showed GFP, RFP, or GFP and RFP fluorescence at different times postinoculation. This approach allowed the quantitative analysis of the kinetics of infection and estimation of the generation time and the number of infection cycles required for leaf colonization. MOI levels were estimated from the frequency of cells infected by only TMV-GFP or TMV-RFP. The MOI was high, but it changed during the infection process, decreasing from an initial level of about 6 to a final one of 1 to 2, with most infection cycles occurring at the higher MOI levels. The decreasing MOI can be explained by mechanisms limiting superinfection and/or by genotype competition within double-infected cells, which was shown to occur in coinfected tobacco protoplasts. To our knowledge, this is the first estimate of MOI during virus colonization of a eukaryotic host.Virus evolution has been a very active area of research in the last few decades, as viruses are both important pathogens of humans, animals, and plants and good models to experimentally test hypotheses on parasite evolution or, more generally, central questions on evolutionary biology (11, 12, 21, 36). Considerable efforts have been devoted to modeling the evolution of viral populations. However, contrasting the theoretical models with reality may be hindered by limited experimental information on important parameters of the virus life cycle. The multiplicity of infection (MOI), i.e., the number of virus particles or genomes that may infect a cell, is a key parameter in many models of virus evolution (5, 6, 14, 15, 37, 38, 39, 52, 53, 57, 61) for which experimental estimates are scant.When a cell is coinfected by different viral genomes, competition may lead to decreased fitness of individual genotypes in comparison with their fitness in single infections (15, 31, 40). Thus, limiting coinfection may result in a selective advantage for viruses (58), which have developed mechanisms to prevent superinfection of previously infected cells (51, 60). On the other hand, infection of a cell by more than one virus genome is a prerequisite for two central phenomena in virus genetics to take place: recombination and complementation of defective mutants. Recombination between viral strains during replication in the same cell and complementation of defective mutants have been extensively documented for viruses infecting prokaryotes, animals, and plants (2, 25, 56), indicating that there must be some degree of coinfection and, hence, that the MOI must be higher than one in at least some infected cells. However, estimates of MOI in the natural hosts of viruses are surprisingly scarce in spite of this parameter''s relevance: values of about 2 to 3 have been reported for different DNA or RNA bacteriophages (26, 41, 51, 58), and a value of 4 to 5 was reported for Autographa californica nuclear polyhedrosis virus infecting larvae of the moth Tricoplusia ni (3), to our knowledge, the only estimate for a virus in its eukaryotic host. We are not aware of estimates reported for viruses infecting mammals or plants, although a MOI of about 3 can be inferred from the number of proviral copies of HIV in spleen cells of infected patients (29). This paucity of data may be due to the technical difficulty of directly measuring MOI, particularly within a eukaryotic host. Genetic approaches may provide valid alternatives for estimating MOI levels (3, 58), and here, the MOI of a plant virus is estimated through the analysis of the relative frequencies of two genotypes during the process of host colonization.Host colonization by plant-infecting viruses has been known for a long time to be a two-step phenomenon. First, colonization proceeds slowly from the initially infected cells to their neighbors by way of the cytoplasmic connections called plasmodesmata, a process known as cell-to-cell movement. After infection thus reaches the cells in the vasculature, the second step, known as long-distance or systemic movement, occurs as viruses move faster to distant organs through the vascular tissue, the phloem in most cases (59). As a result of these processes, the virus population within the infected plant may be strongly structured. Analyses of different viruses in different host plant species have shown that systemic movement causes population bottlenecks that may be severe (16, 28, 32, 34, 46), resulting in differences in the genetic composition of the virus subpopulations in different systemically infected organs. No analysis of population bottlenecks during cell-to-cell movement has been reported, but data indicate that the virus population within a leaf has a strong spatial structure with a separate distribution of different genotypes in different leaf areas. These reports derive from analyses of viruses that differ in genomic organization and gene expression strategies in different host plant species (9, 10, 23, 55); they indicate that a separate distribution of viral genotypes within the infected leaf is a general phenomenon and suggest limitation of coinfection. Data on the spatial exclusion of virus genotypes within the infected leaf are in apparent contradiction with the abundant evidence of recombination and complementation of defective mutants, which has been widely documented for plant viruses (19, 44, 50, 62). It should be pointed out that all reports on the spatial exclusion of virus genotypes in an infected leaf derive from microscopy observations, mostly at late times after infection of the tissue. No information is available on the kinetics of leaf colonization by viruses, and current data do not allow the estimation of MOI.In this report, we estimate the MOI of a plant RNA virus, Tobacco mosaic virus (TMV), in its systemic host, Nicotiana benthamiana. For this, we have reexamined the process of virus colonization by monitoring the progress of infection of two TMV genotypes in inoculated and in systemically infected leaves. The two TMV genotypes differed in the expression of fluorescent tags, either the green fluorescent protein (GFP) from Aequorea victoria (42, 43) or a red fluorescent protein (RFP) from Discosoma sp. (49). The expression of GFP and RFP allowed the precise quantification of the number of cells infected by either one or both TMV genotypes, and these data allowed the estimation of genotype frequencies and of MOI. The results show evidence of strong spatial structure of the virus population, with most cells being infected by either TMV-GFP or TMV-RFP alone and only a small fraction of cells being double infected. The kinetics of the single and double infections show that the MOI changes with time, decreasing as colonization progresses and therefore suggesting that exclusion mechanisms operate at later times after infection.  相似文献   

17.
18.
19.
Endothelial cell (EC) migration, cell-cell adhesion, and the formation of branching point structures are considered hallmarks of angiogenesis; however, the underlying mechanisms of these processes are not well understood. Lipid phosphate phosphatase 3 (LPP3) is a recently described p120-catenin-associated integrin ligand localized in adherens junctions (AJs) of ECs. Here, we tested the hypothesis that LPP3 stimulates β-catenin/lymphoid enhancer binding factor 1 (β-catenin/LEF-1) to induce EC migration and formation of branching point structures. In subconfluent ECs, LPP3 induced expression of fibronectin via β-catenin/LEF-1 signaling in a phosphatase and tensin homologue (PTEN)-dependent manner. In confluent ECs, depletion of p120-catenin restored LPP3-mediated β-catenin/LEF-1 signaling. Depletion of LPP3 resulted in destabilization of β-catenin, which in turn reduced fibronectin synthesis and deposition, which resulted in inhibition of EC migration. Accordingly, reexpression of β-catenin but not p120-catenin in LPP3-depleted ECs restored de novo synthesis of fibronectin, which mediated EC migration and formation of branching point structures. In confluent ECs, however, a fraction of p120-catenin associated and colocalized with LPP3 at the plasma membrane, via the C-terminal cytoplasmic domain, thereby limiting the ability of LPP3 to stimulate β-catenin/LEF-1 signaling. Thus, our study identified a key role for LPP3 in orchestrating PTEN-mediated β-catenin/LEF-1 signaling in EC migration, cell-cell adhesion, and formation of branching point structures.Angiogenesis, the formation of new blood vessels, involves several well-coordinated cellular processes, including endothelial cell (EC) migration, synthesis and deposition of extracellular matrix proteins, such as fibronectin, cell-cell adhesion, and formation of branching point structures (1-3, 19, 33); however, less is known about the underlying mechanisms of these processes (6, 8, 12, 14, 16, 17). For example, adherens junctions (AJs), which mediate cell-cell adhesion between ECs, may be involved in limiting the extent of cell migration (2, 14, 38, 40). VE-cadherin, a protein found in AJs, is a single-pass transmembrane polypeptide responsible for calcium-dependent homophilic interactions through its extracellular domains (2, 38, 40). The VE-cadherin cytoplasmic domain interacts with the Armadillo domain-containing proteins, β-catenin, γ-catenin (plakoglobin), and p120-catenin (p120ctn) (2, 15, 38, 40, 43). Genetic and biochemical evidence documents a crucial role of β-catenin in regulating cell adhesion as well as proliferation secondary to the central position of β-catenin in the Wnt signaling pathway (13, 16, 25, 31, 44). In addition, the juxtamembrane protein p120ctn regulates AJ stability via binding to VE-cadherin (2, 7, 9, 15, 21, 28, 32, 43). The absence of regulation or inappropriate regulation of β-catenin and VE-cadherin functions is linked to cardiovascular disease and tumor progression (2, 6).We previously identified lipid phosphate phosphatase 3 (LPP3), also known as phosphatidic acid phosphatase 2b (PAP2b), in a functional assay of angiogenesis (18, 19, 41, 42). LPP3 not only exhibits lipid phosphatase activity but also functions as a cell-associated integrin ligand (18, 19, 35, 41, 42). The known LPPs (LPP1, LPP2, and LPP3) (20-23) are six transmembrane domain-containing plasma membrane-bound enzymes that dephosphorylate sphingosine-1-phosphate (S1P) and its structural homologues, and thus, these phosphatases generate lipid mediators (4, 5, 23, 35, 39). All LPPs, which contain a single N-glycosylation site and a putative lipid phosphatase motif, are situated such that their N and C termini are within the cell (4, 5, 22, 23, 35, 39). Only the LPP3 isoform contains an Arg-Gly-Asp (RGD) sequence in the second extracellular loop, and this RGD sequence enables LPP3 to bind integrins (18, 19, 22). Transfection experiments with green fluorescent protein (GFP)-tagged LPP1 and LPP3 showed that LPP1 is apically sorted, whereas LPP3 colocalized with E-cadherin at cell-cell contact sites with other Madin-Darby canine kidney (MDCK) cells (22). Mutagenesis and domain swapping experiments established that LPP1 contains an apical targeting signal sequence (FDKTRL) in its N-terminal segment. In contrast, LPP3 contains a dityrosine (109Y/110Y) basolateral sorting motif (22). Interestingly, conventional deletion of Lpp3 is embryonic lethal, since the Lpp3 gene plays a critical role in extraembryonic vasculogenesis independent of its lipid phosphatase activity (11). In addition, an LPP3-neutralizing antibody was shown to prevent cell-cell interactions (19, 42) and angiogenesis (42). Here, we addressed the hypothesis that LPP3 plays a key role in EC migration, cell-cell adhesion, and formation of branching point structures by stimulating β-catenin/lymphoid enhancer binding factor 1 (β-catenin/LEF-1) signaling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号