首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
4-(3-Substitutedphenyl-5-polymethoxyphenyl-4,5-dihydro-1H-pyrazol-1-yl)benzenesulfonamides (916) were synthesized and their chemical structures were elucidated by 1H NMR, 13C NMR, and HRMS. The compounds designed include pyrazoline and sulfonamide pharmacophores in a single molecule by hibrit molecule approach which is a useful technique in medicinal chemistry in designing new compounds with potent activity for the desired several bioactivities. Inhibition potency of the sulfonamides were evaluated against human CA isoenzymes (hCA I and hCA II) and acetylcholinesterase (AChE) enzyme and also their cytotoxicities were investigated towards oral squamous cancer cell carcinoma (OSCC) cell lines (Ca9-22, HSC-2, HSC-3, and HSC-4) and non-tumor cells (HGF, HPLF, and HPC). Cytosolic hCA I and hCA II isoenzymes were inhibited by the sulfonamide derivatives (916) and Ki values were found in the range of 27.9 ± 3.2–74.3 ± 28.9 nM and 27.4 ± 1.4–54.5 ± 11.6 nM, respectively. AChE enzyme was strongly inhibited by the sulfonamide derivatives with Ki values in the range of 37.7 ± 14.4–89.2 ± 30.2 nM The CC50 values of the compounds were found between 15 and 200 µM towards OSCC malign cell lines. Their tumor selectivities were also calculated with two ways. Compound’s selectivities towards cancer cell line were found generally low, except compounds bearing 3,4-dimethoxyphenyl 14 (TS1 = 1.3, TS2 = 1.4) and 10 (TS2 = 1.4). All sulfonamide derivatives studied here can be considered as good candidates to develop novel CAs or AChE inhibitor candidates based on the enzyme inhibition potencies with their low cytotoxicity and tumor selectivity.  相似文献   

2.
Methanesulfonicacid hydrazide (a sulfonamide compound, msh: CH3SO2NHNH2) derivatives: methylsalicylaldehydemethanesulfonylhydrazone (5msalmsh), 5-methyl-2-hydroxyaceto-phenonemethanesulfonylhydrazone (5mafmsh) and their Ni(II), Co(II) complexes have been synthesized for the first time. The structure of these sulfonamide compounds has been investigated by using elemental analyses; FT-IR, 1H NMR, 13C NMR, LC-MS, and UV-Vis spectrometric methods; magnetic susceptibility; conductivity measurements; thermal studies. The crystal structure of 5msalmsh has been investigated by X-ray analysis. The antibacterial activities of synthesized compounds were studied against gram positive bacteria: Staphylococcus aureus, Bacillus subtilis, and Bacillus magaterium; and gram negative bacteria: Salmonella enteritidis, and Escherichia coli by using the microdilution broth method. The biological activity screening showed that ligands have more activity than complexes against the tested bacteria.  相似文献   

3.
A series of sulfenamide and sulfonamide derivatives was synthesized and evaluated for the affinity at CB1 and CB2 receptors. The N-bornyl-S-(5,6-di-p-tolylpyridazin-3-yl)-sulfenamide, compound 11, displayed good affinity and high selectivity for CB1 receptors (Ki values of 44.6?nM for CB1 receptors and >40?μM for CB2 receptors, respectively). The N-isopinocampheyl-sulfenamide 12 and its sulfonamide analogue 22 showed similar selectivity for CB1 receptors with Ki values of 75.5 and 73.2?nM, respectively. These novel compounds behave as antagonists/inverse agonists at CB1 receptor in the [35S]-GTPγS binding assays, and none showed adequate predictive blood–brain barrier permeation, exhibiting low estimated LD50. However, testing compound 12 in a supraspinal analgesic test (hot-plate) revealed that it was as effective as the classic CB1 receptor antagonist rimonabant, in reversing the analgesic effect of a cannabinoid agonist.  相似文献   

4.
A library of cathepsin S inhibitors of the dipeptide nitrile chemotype, bearing a bioisosteric sulfonamide moiety, was synthesized. Kinetic investigations were performed at four human cysteine proteases, i.e. cathepsins S, B, K and L. Compound 12 with a terminal 3-biphenyl sulfonamide substituent was the most potent (Ki = 4.02 nM; selectivity ratio cathepsin S/K = 5.8; S/L = 67) and 24 with a 4′-fluoro-4-biphenyl sulfonamide substituent the most selective cathepsin S inhibitor (Ki = 35.5 nM; selectivity ratio cathepsin S/K = 57; S/L = 31). In silico design and biochemical evaluation emphasized the impact of the sulfonamide linkage on selectivity and a possible switch of P2 and P3 substituents with respect to the occupation of the corresponding binding sites of cathepsin S.  相似文献   

5.
A series of (S)-tryptamine derivatives containing an allyl group and an aryl sulfonamide unit were designed, synthesized and evaluated for their potential application as anticancer agents. The structures of the synthesized compounds were characterized by 1H NMR, 13C NMR and ESI-MS spectral analyses. The target compounds were evaluated for their in vitro cytotoxicity against HepG2, HeLa, CNE1 and A549 human cancer cell lines. Some of the synthesized compounds showed moderate to good anticancer activities against four selected cancer cell lines, among of which 6ag was found to be the most active analogue possessing IC50 values 16.5–18.7?μM. Further mechanism studies revealed that compound 6ag could significantly induce HepG2 cell cycle arrest at G1 phase, promote cell apoptosis, and inhibit the colony formation as well.  相似文献   

6.
A novel series of N-(3-((7H-purin-6-yl)thio)-4-hydroxynaphthalen-1-yl)-sulfonamides were designed and synthesized. Biological characterization revealed that several compounds exerted enhanced anti-proliferative activity against human umbilical vein endothelial cells (HUVECs) and several cancer cell lines and high specific protein kinase and angiogenesis inhibitory activities. Compared with our previously synthesized compounds, the substitution of sulfonamide structure for amide fragment played an essential role for the advance of inhibitory activities. In addition, the replacement of 1H-1,2,4-triazole ring by 7H-purine did not result in obvious decrease of inhibition efficacy, indicating that the sulfonamide structure contributes even more to the inhibition efficacy than the 1H-1,2,4-triazole ring. Among these compounds, compound 9n demonstrated comparable in vitro antiangiogenic activities to pazopanib in both HUVEC tube formation assay and the rat thoracic aorta rings (TARs) test. Meanwhile, compound 9n was identified to inhibit Akt1 (IC50 = 1.73 μM) and Abl tyrosine kinase (IC50 = 1.53 μM) effectively.  相似文献   

7.
A series of new sulfonamide analogues of 6/7-aminoflavones were synthesized by using molecular hybridization approach. These new sulfonamide analogues were screened for antiproliferative activity against human hepatocellular carcinoma (HepG-2), human lung cancer cell line (A-549), human colorectal adenocarcinoma (Caco-2) cancer cell lines. Compounds 5p, 5q, 5t, 5v, 5w and 5x exhibited good anticancer activity against selected cancer cell lines. These compounds were further evaluated to predict their ability to inhibit topoisomerase-II enzyme. Compound 5x has shown potent antiproliferative activity (IC50 value 0.98 µM) as compared to standard drug Adriamycin (IC50 = 0.94 µM) indicating that these compounds exhibits anticancer activity via inhibition of topoisomerase-II enzyme. Docking results also have supported above observations by indicating that compounds are held in the active pocket by combination of various hydrogen and hydrophobic interactions with Top II-DNA-etoposide enzyme.  相似文献   

8.
Chagas disease is a neglected pathology responsible for about 12,000 deaths every year across Latin America. Although six million people are infected by the Trypanosoma cruzi, current therapeutic options are limited, highlighting the need for new drugs. Here we report the preliminary structure activity relationships of a small library of 17 novel pyridyl sulfonamide derivatives. Analogues 4 and 15 displayed significant potency against intracellular amastigotes with EC50 of 5.4?µM and 8.6?µM. In cytotoxicity assays using mice fibroblast L929 cell lines, both compounds indicated low toxicity with decent selectivity indices (SI) >36 and?>23 respectively. Hence these compounds represent good starting points for further lead optimization.  相似文献   

9.
A new series of s-triazine derivatives incorporating sulfanilamide, homosulfanilamide, 4-aminoethyl-benzenesulfonamide and piperazine or aminoalcohol structural motifs is reported. Molecular docking was exploited to select compounds from virtual combinatorial library for synthesis and subsequent biological evaluation. The compounds were prepared by using step by step nucleophilic substitution of chlorine atoms from cyanuric chloride (2,4,6-trichloro-1,3,5-triazine). The compounds were tested as inhibitors of physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isoforms. Specifically, against the cytosolic hCA I, II and tumor-associated hCA IX. These compounds show appreciable inhibition. hCA I was inhibited with KIs in the range of 8.5–2679.1 nM, hCA II with KIs in the range of 4.8–380.5 nM and hCA IX with KIs in the range of 0.4–307.7 nM. As other similar derivatives, some of the compounds showed good or excellent selectivity ratios for inhibiting hCA IX over hCA II, of 3.5–18.5. 4-[({4-Chloro-6-[(4-hydroxyphenyl)amino]-1,3,5-triazin-2-yl}amino)methyl] benzene sulfonamide demonstrated subnanomolar affinity for hCA IX (0.4 nM) and selectivity (18.50) over the cytosolic isoforms. This series of compounds may be of interest for the development of new, unconventional anticancer drugs targeting hypoxia-induced CA isoforms such as CA IX.  相似文献   

10.
Recently sulfamoyl benzamides were identified as a novel series of cannabinoid receptor ligands. Replacing the sulfonamide functionality and reversing the original carboxamide bond led to the discovery of N-(3-(morpholinomethyl)-phenyl)-amides as potent and selective CB2 agonists. Selective CB2 agonist 31 (Ki = 2.7; CB1/CB2 = 190) displayed robust activity in a rodent model of postoperative pain.  相似文献   

11.
4-Amino-N-(4-sulfamoylphenyl)benzamide was synthesized by reduction of 4-nitro-N-(4-sulfamoylphenyl)benzamide and used to synthesize novel acridine sulfonamide compounds, by a coupling reaction with cyclic-1,3-diketones and aromatic aldehydes. The new compounds were investigated as inhibitors of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1), and more precisely the cytosolic isoforms hCA I, II and VII. hCA I was inhibited in the micromolar range by the new compounds (KIs of 0.16–9.64 μM) whereas hCA II and VII showed higher affinity for these compounds, with KIs in the range of 15–96 nM for hCA II, and of 4–498 nM for hCA VII. The structure–activity relationships for the inhibition of these isoforms with the acridine–sulfonamides reported here were also elucidated.  相似文献   

12.
A novel series of pyridazinone analogs has been developed as potent β-1,3-glucan synthase inhibitors through structure-activity relationship study of the lead 5-[4-(benzylsulfonyl)piperazin-1-yl]-4-morpholino-2-phenyl-pyridazin-3(2H)-one (1). The effect of changes to the core structure is described in detail. Optimization of the sulfonamide moiety led to the identification of important compounds with much improved systematic exposure while retaining good antifungal activity against the fungal strains Candida glabrata and Candida albicans.  相似文献   

13.
We report new organoselenium compounds bearing the sulfonamide moiety as effective inhibitors of the β-isoform of Carbonic Anhydrase from the unicellular parasitic protozoan L. donovani chagasi. All derivatives were evaluated in vitro for their leishmanicidal activities against Leishmania infantum amastigotes along with their cytotoxicities in human THP-1 cells. Compounds 3e-g showed their activity in the low micromolar range with IC50 values spanning from 0.72 to 0.81 µM and selectivity indexes (SI) > 8 (for 3g SI > 30), thus much higher than those observed for the reference drugs miltefosine and edelfosine. This is the first study which reports new selenoderivatives with promising leishmanicidal properties and acting as Carbonic Anhydrase inhibitors too thus paving the way to the development of innovative agents for the treatment of neglected diseases such as leishmaniasis.  相似文献   

14.
The synthesis, characterization and biological evaluation of a series of novel N-substituted phthalazine sulfonamide (5a-l) are disclosed. Phthalazines which are nitrogen-containing heterocyclic compounds are biologically preferential scaffolds, endowed with versatile pharmacological activity, such as anti-inflammatory, cardiotonic vasorelaxant, anticonvulsant, antihypertensive, antibacterial, anti-cancer action. The compounds were investigated for the inhibition against the cytosolic hCA I, II and AChE. Most screened sulfonamides showed high potency in inhibiting hCA II, widely involved in glaucoma, epilepsy, edema, and other pathologies (Kis in the ranging from 6.32 ± 0.06 to 128.93 ± 23.11 nM). hCA I was inhibited with Kis in the range of 6.80 ± 0.10–85.91 ± 7.57 nM, whereas AChE in the range of 60.79 ± 3.51–249.55 ± 7.89 nM. ADME prediction study of the designed N-substituted phthalazine sulfonamides showed that they are not only with carbonic anhydrase and acetylcholinesterase inhibitory activities but also with appropriate pharmacokinetic, physicochemical parameters and drug-likeness properties. Also, in silico docking studies were investigated the binding modes of selected compounds, to hCA I, II, and AChE.  相似文献   

15.
In this study, several sulfonamide derivatives, 4-(2-methylacetylamino)benzenesulfonamides were synthesized. Chemical structures of the derivatives were characterized by 1H NMR, 13C NMR, LC–MS–MS, UV–Vis, FTIR, photoluminescence and elemental analysis. Sulfanilamide was reacted with 2-bromopropionyl bromide, in the presence of pyridine, to form bromo-substituted sulfonamide key intermediates, which were subsequently treated with secondary amines to obtain novel sulfonamide derivatives. All the synthesized compounds were evaluated for in vitro antimicrobial activities and cytotoxicity. Increases in ring size, and rings bearing a nitrogen heteroatom led to improvements in antimicrobial activities. As the presence of CA IX and CA XII enzymes have been implicated in some cancerous tumors, the studies presented herein focuses on targeting these enzymes. It was found that the synthesized derivatives had in vitro anti-cancer properties, where compounds (36) were found to be active against all cancerous cells, and no cytotoxic effects on normal cells were observed.  相似文献   

16.
The catalytic activity and the inhibition of a new coral carbonic anhydrase (CA, EC 4.2.1.1), from the scleractinian coral Stylophora pistillata, STPCA-2, has been investigated. STPCA-2 has high catalytic activity for the physiological reaction being less sensitive to anion and sulfonamide inhibitors compared to STPCA, a coral enzyme previously described. The best STPCA-2 anion inhibitors were sulfamide, sulfamic acid, phenylboronic acid, and phenylarsonic acid (KIs of 5.7-67.2 μM) whereas the best sulfonamide inhibitors were acetazolamide and dichlorophenamide (KIs of 74-79 nM). Because this discriminatory effect between these two coral CAs, sulfonamides may be useful to better understand the physiological role of STPCA and STPCA-2 in corals and biomineralization processes.  相似文献   

17.
18.
A series of N1-substituted aromatic sulfonamides was obtained by applying a selective sulfonamide nitration synthetic strategy leading to Ar-SO2NHNO2 derivatives which were investigated as carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. Two human (h) hCA isoforms, the cytosolic hCA II and the transmembrane hCA IX, in addition to the fungal enzyme from Malassezia globosa, MgCA, were included in the study. Most of the new compounds reported selectively inhibited hCA IX over hCA II and at the same time showed effective MgCA inhibitory properties, with KIs ranging between 0.22 and 8.09 μM. The N-nitro sulfonamides are a new chemotype with CA inhibitory effects. As hCA IX was recently validated as antitumor/antimetastatic drug target, its selective inhibition could be exploited for interesting biomedical applications. Moreover, due to the effective MgCAs inhibitory properties of the N-nitro sulfonamides, of considerable interest in the cosmetics field as potential anti-dandruff agents, the N-nitro sulfonamides may be considered as interesting leads for the design of more efficient compounds targeting fungal enzymes.  相似文献   

19.
Herein, we report that acridine intermediates 5 were obtained from the reduction of nitro acridine derivatives 4, which were synthesized via condensation of dimedone, p-nitrobenzaldehyde with 4-amino-N-(5-sulfamoyl-1,3,4-thiadiazol-2-yl)benzamide, respectively. Then acridine sulfonamide/carboxamide (7ai) compounds were synthesized by reaction of amino acridine 5 with sulfonyl chlorides and carbamoyl chlorides. The new compounds were characterized by melting points, FT-IR, 1H NMR, 13C NMR and HRMS analyzes. The evaluation of in vitro test of the synthesized compounds against hCA I, II, IV and VII showed that some of them are potent inhibitors. Among them, compound 7e showed the most potent activity against hCA II with a KI of 7.9 nM.  相似文献   

20.
A series of substituted sulfonamide bioisosteres of 8-hydroxyquinoline were evaluated for their antibacterial activity against the common mastitis causative pathogens Streptococcus uberis, Staphylococcus aureus and Escherichia coli, both in the presence and absence of supplementary zinc. Compounds 9a-e, 10a-c, 11a-e, 12 and 13 were demonstrated to have MICs of 0.0625 µg/mL against S. uberis in the presence of 50 µM ZnSO4. Against S. aureus compounds 9g (MIC 4 µg/mL) and 11d (MIC 8 µg/mL) showed the greatest activity, whereas all compounds were found to be inactive against E. coli (MIC > 256 µg/mL); again in the presence of 50 µM ZnSO4. All compounds were demonstrated to be significantly less active in the absence of supplementary zinc. Compound 9g was subsequently confirmed to be bactericidal, with an MBC (≥3log10 cfu/mL reduction) of 0.125 µg/mL against S. uberis in the presence of 50 µM ZnSO4. To validate the sanitising activity of compound 9g in the presence of supplementary zinc, a quantitative suspension disinfection (sanitizer) test was performed. In this preliminary test, sanitizing activity (>5log10 reduction of CFU/mL in 5 min) was observed against S. uberis for compound 9g at concentrations as low as 1 mg/mL, validating the potential of this compound to function as a topical sanitizer against the major environmental mastitis-causing microorganism S. uberis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号