首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
2.
3.
4.

Background

Tbx5 deficiency in zebrafish causes several abnormal phenotypes of the heart and pectoral fins. It has been reported that exogenous human growth hormone can enhance expression of downstream mediators in the growth hormone and insulin-like growth factor I (IGF-I) pathway and partially restore dysmorphogenesis in tbx5 morphants. This study aimed to further evaluate the effects of IGF-I on cell apoptosis and dysmorphogenesis in zebrafish embryos deficient for tbx5.

Results

Among the five studied groups of zebrafish embryos (wild-type embryos [WT], tbx5 morphants [MO], mismatched tbx5 morpholino-treated wild-type embryos [MIS], IGF-I-treated wild-type embryos [WTIGF1], and IGF-I-treated tbx5 morphants [MOIGF1]), the expression levels of the ifg1, igf1-ra, ifg-rb, erk1, and akt2 genes as well as the ERK and AKT proteins were significantly reduced in the MO group, but were partially restored in the MOIGF1 group. These expression levels remained normal in the WT, MIS, and WTIGF1 groups. Exogenous human IGF-I also reduced the incidence of phenotypic anomalies, decreased the expression levels of apoptotic genes and proteins, suppressed cell apoptosis, and improved survival of the MOIGF1 group.

Conclusions

These results suggest that IGF-I has an anti-apoptotic protective effect in zebrafish embryos with tbx5 deficiency.
  相似文献   

5.
Akt2 regulates cardiac metabolism and cardiomyocyte survival   总被引:4,自引:0,他引:4  
The Akt family of serine-threonine kinases participates in diverse cellular processes, including the promotion of cell survival, glucose metabolism, and cellular protein synthesis. All three known Akt family members, Akt1, Akt2 and Akt3, are expressed in the myocardium, although Akt1 and Akt2 are most abundant. Previous studies demonstrated that Akt1 and Akt3 overexpression results in enhanced myocardial size and function. Yet, little is known about the role of Akt2 in modulating cardiac metabolism, survival, and growth. Here, we utilize murine models with targeted disruption of the akt2 or the akt1 genes to demonstrate that Akt2, but not Akt1, is required for insulin-stimulated 2-[(3)H]deoxyglucose uptake and metabolism. In contrast, akt2(-/-) mice displayed normal cardiac growth responses to provocative stimulation, including ligand stimulation of cultured cardiomyocytes, pressure overload by transverse aortic constriction, and myocardial infarction. However, akt2(-/-) mice were found to be sensitized to cardiomyocyte apoptosis in response to ischemic injury, and apoptosis was significantly increased in the peri-infarct zone of akt2(-/-) hearts 7 days after occlusion of the left coronary artery. These results implicate Akt2 in the regulation of cardiomyocyte metabolism and survival.  相似文献   

6.
We examined the effect of a high-fat diet (HFD) vs. control diet (CD) upon pregestational and gestational wild-type (wt) and glucose transporter (glut)3 heterozygous (glut3+/−) female mice and observed an increase in pregestational body weights, white adiposity (wt > glut3+/−), circulating cholesterol, and high-density lipoproteins, with glucose intolerance in both genotypes. The HFD-exposed offspring displayed reduced birth weight with catch up to CD-fed in wt vs. an increased birth weight persisting as such at weaning by day 21 in glut3+/− mice. To decipher the mechanism behind this genotype-specific difference in the HFD offspring's phenotype, we first examined placental macronutrient transporters and noted HFD-induced increase in CD36 in wt with no change in other FATPs, sodium-coupled neutral amino acid transporters and system L amino acid transporter in both genotypes. In contrast, while placental Glut1 increased in both the genotypes, only Glut3 increased in the glut3+/− genotype in response to HFD. Hence, we next assessed glut3+/− embryonic (ES) cells under differing stressors of low glucose, hypoxia and inhibition of oxidative phosphorylation. Reduced Glut3-mediated glucose uptake in glut3+/− vs. wt ES cells culminated in deficient growth. We conclude that maternal HFD affects the in utero growth potential of the offspring by altering placental CD36 and Glut1 concentrations. In contrast, a differential effect on placental Glut3 concentrations between glut3+/− and wt genotypes is evident, with an increase occurring in the glut3+/− genotype alone. Deficient Glut3 in ES cells interferes with glucose uptake, cell survival and growth being further exaggerated with low glucose, hypoxia and inhibition of oxidative phosphorylation.  相似文献   

7.
Polo-like kinase 1 (Plk1) is central to cell division. Here, we report that Plk1 is critical for mitosis in the embryonic development of zebrafish. Using a combination of several cell biology tools, including single-cell live imaging applied to whole embryos, we show that Plk1 is essential for progression into mitosis during embryonic development. Plk1 morphant cells displayed mitotic infidelity, such as abnormal centrosomes, irregular spindle assembly, hypercondensed chromosomes, and a failure of chromosome arm separation. Consequently, depletion of Plk1 resulted in mitotic arrest and finally death by 6 days post-fertilization. In comparison, Plk2 or Plk3 morphant embryos did not display any significant abnormalities. Treatment of embryos with the Plk1 inhibitor, BI 2536, caused a block in mitosis, which was more severe when used to treat plk1 morphants. Finally, using an assay to rescue the Plk1 morphant phenotype, we found that the kinase domain and PBD domains are both necessary for Plk1 function in zebrafish development. Our studies demonstrate that Plk1 is required for embryonic proliferation because its activity is crucial for mitotic integrity. Furthermore, our study suggests that zebrafish will be an efficient and economical in vivo system for the validation of anti-mitotic drugs.  相似文献   

8.
Zebrafish tgfβ3 is strongly expressed in a subpopulation of the migrating neural crest cells, developing pharyngeal arches and neurocranial cartilages. To study the regulatory role of tgfβ3 in head skeletal formation, we knocked down tgfβ3 in zebrafish and found impaired craniofacial chondrogenesis, evident by malformations in selected neurocranial and pharyngeal arch cartilages. Over-expressing tgfβ3 in embryos resulted in smaller craniofacial cartilages without any gross malformations. These defects suggest that tgfβ3 is required for normal chondrogenesis. To address the cellular mechanisms that lead to the observed malformations, we analyzed cranial neural crest development in morphant and tgfβ3 over-expressing fish. We observed reduced pre-migratory and migratory cranial neural crest, the precursors of the neurocranial cartilage and pharyngeal arches, in tgfβ3 knockdown embryos. In contrast, only the migratory neural crest was reduced in embryos over-expressing tgfβ3. This raised the possibility that the reduced number of cranial neural crest cells is a result of increased apoptosis. Consistent with this, markedly elevated TUNEL staining in the midbrain and hindbrain, and developing pharyngeal arch region was observed in morphants, while tgfβ3 over-expressing embryos showed marginally increased apoptosis in the developing pharyngeal arch region. We propose that both Tgfβ3 suppression and over-expression result in reduced chondrocyte and osteocyte formation, but to different degrees and through different mechanisms. In Tgfβ3 suppressed embryos, this is due to impaired formation and survival of a subpopulation of cranial neural crest cells through markedly increased apoptosis in regions containing the cranial neural crest cells, while in Tgfβ3 over-expressing embryos, the milder phenotype is also due to a slightly elevated apoptosis in these regions. Therefore, proper cranial neural crest formation and survival, and ultimately craniofacial chondrogenesis and osteogenesis, are dependent on tight regulation of Tgfβ3 protein levels in zebrafish.  相似文献   

9.
10.
11.
Recent studies from our laboratory have begun to elucidate the role of agrin in zebrafish development. One agrin morphant phenotype that results from agrin knockdown is microphthalmia (reduced eye size). To begin to understand the mechanisms underlying the role of agrin in eye development, we have analyzed retina development in agrin morphants. Retinal differentiation is impaired in agrin morphants, with retinal lamination being disrupted following agrin morpholino treatment. Pax 6.1 and Mbx1 gene expression, markers of eye development, are markedly reduced in agrin morphants. Formation of the optic fiber layer of the zebrafish retina is also impaired, exhibited as both reduced size of the optic fiber layer, and disruption of retinal ganglion cell axon growth to the optic tectum. The retinotectal topographic projection to the optic tectum is perturbed in agrin morphants in association with a marked loss of heparan sulfate expression in the retinotectal pathway, with this phenotype resembling retinotectal phenotypes observed in mutant zebrafish lacking enzymes for heparan sulfate synthesis. Treatment of agrin morphants with a fibroblast growth factor (Fgf) receptor inhibitor, rescue of the retinal lamination phenotype by transplantation of Fgf8-coated beads, and disruption of both the expression of Fgf-dependent genes and activation of ERK in agrin morphants provides evidence that agrin modulation of Fgf function contributes to retina development. Collectively, these agrin morphant phenotypes provide support for a crucial role of agrin in retina development and formation of an ordered retinotectal topographic map in the optic tectum of zebrafish.  相似文献   

12.
GLUT1 is essential for human brain development and function, as evidenced by the severe epileptic encephalopathy observed in children with GLUT1 deficiency syndrome resulting from inherited loss-of-function mutations in the gene encoding this facilitative glucose transporter. To further elucidate the pathophysiology of this disorder, the zebrafish orthologue of human GLUT1 was identified, and expression of this gene was abrogated during early embryonic development, resulting in a phenotype of aberrant brain organogenesis consistent with the observed expression of Glut1 in the embryonic tectum and specifically rescued by human GLUT1 mRNA. Affected embryos displayed impaired glucose uptake concomitant with increased neural cell apoptosis and subsequent ventricle enlargement, trigeminal ganglion cell loss, and abnormal hindbrain architecture. Strikingly, inhibiting expression of the zebrafish orthologue of the proapoptotic protein Bad resulted in complete rescue of this phenotype, and this occurred even in the absence of restoration of apparent glucose uptake. Taken together, these studies describe a tractable system for elucidating the cellular and molecular mechanisms of Glut1 deficiency and provide compelling in vivo genetic evidence directly linking nutrient availability and activation of mitochondria-dependent apoptotic mechanisms during embryonic brain development.  相似文献   

13.
A notable advantage of zebrafish as a model organism is the ease of gene knockdown using morpholino antisense oligonucleotide (MO). However, zebrafish morphants injected with MO for a target protein often show heterogeneous phenotypes, despite controlling the injection volume of the MO solution in all embryos. We developed a method for estimating the quantity of MO injected into each living morphant, based on the co-injection of a control MO labeled with the fluorophore lissamine. By applying this method for knockdown of cardiac troponin T (tnnt2a) in zebrafish, we could efficiently select the partial tnnt2a-depleted zebrafish with a decreased heart rate and impairment of cardiac contraction. To investigate cardiac impairment of the tnnt2a morphant, we performed fluorescent cardiac imaging using Bodipy-ceramide. Cardiac image analysis showed moderate reduction of tnnt2a impaired diastolic distensibility and decreased contraction and relaxation velocities. To the best of our knowledge, this is the first report to analyze the role of tnnt2a in cardiac function in tnnt2a-depleted living animals. Our combinatorial approach can be applied for analyzing the molecular function of any protein associated with human cardiac diseases.  相似文献   

14.
15.
16.
C Zhang  W Niu  Z Wang  X Wang  G Xia 《PloS one》2012,7(8):e42406
Although the effects of Gonadotropin on ovarian physiology have been known for many decades, its action on glucose uptake in the rat ovary remained poorly understood. Evidence also suggests that glucose uptake is mediated by a number of glucose transporter proteins (Glut). Therefore, we examined the rat ovary for the presence of Glut1-4 and blood glucose level after eCG (equine chorionic gonadotropin) and anti-eCG antiserum treatment. All of the glucose transports were present in the ovarian oocyte, granulosa cells and theca cells in different stage follicles. The expression of Glut in ovary was up-regulated by eCG, however, anti-eCG antiserum reversed eCG action. Western blot analysis also demonstrated the content of Glut1 was higher in eCG treatment group compared with anti-eCG antiserum and control group. The same tendency was shown in other glut isoforms. Moreover, there were no significant difference between the anti-eCG antiserum and control group. In additional, the level of serum glucose in eCG treatment group was significantly higher than others, which is similar with glut expression pattern. High glucose level in blood is correlated with increased expression of glucose transporter proteins in rat ovary. Meanwhile, anti-eCG antiserum increased granulosa cell apoptosis in antral follicle compared with those in eCG group. Our observations provide potential explanation for the effects of Glut on follicular development in rat ovary and a role for eCG in the regulation of ovarian glucose uptake.  相似文献   

17.
Dysfunctional zinc signaling is implicated in disease processes including cardiovascular disease, Alzheimer''s disease and diabetes. Of the twenty-four mammalian zinc transporters, ZIP7 has been identified as an important mediator of the ‘zinc wave’ and in cellular signaling. Utilizing siRNA targeting Zip7 mRNA we have identified that Zip7 regulates glucose metabolism in skeletal muscle cells. An siRNA targeting Zip7 mRNA down regulated Zip7 mRNA 4.6-fold (p = 0.0006) when compared to a scramble control. This was concomitant with a reduction in the expression of genes involved in glucose metabolism including Agl, Dlst, Galm, Gbe1, Idh3g, Pck2, Pgam2, Pgm2, Phkb, Pygm, Tpi1, Gusb and Glut4. Glut4 protein expression was also reduced and insulin-stimulated glycogen synthesis was decreased. This was associated with a reduction in the mRNA expression of Insr, Irs1 and Irs2, and the phosphorylation of Akt. These studies provide a novel role for Zip7 in glucose metabolism in skeletal muscle and highlight the importance of this transporter in contributing to glycaemic control in this tissue.  相似文献   

18.
T cell activation potently stimulates cellular metabolism to support the elevated energetic and biosynthetic demands of growth, proliferation, and effector function. We show that glucose uptake is limiting in T cell activation and that CD28 costimulation is required to allow maximal glucose uptake following TCR stimulation by up-regulating expression and promoting the cell surface trafficking of the glucose transporter Glut1. Regulation of T cell glucose uptake and Glut1 was critical, as low glucose prevented appropriate T cell responses. Additionally, transgenic expression of Glut1 augmented T cell activation, and led to accumulation of readily activated memory-phenotype T cells with signs of autoimmunity in aged mice. To further examine the regulation of glucose uptake, we analyzed CD28 activation of Akt, which appeared necessary for maximal glucose uptake of stimulated cells and which we have shown can promote Glut1 cell surface trafficking. Consistent with a role for Akt in Glut1 trafficking, transgenic expression of constitutively active myristoylated Akt increased glucose uptake of resting T cells, but did not alter Glut1 protein levels. Therefore, CD28 appeared to promote Akt-independent up-regulation of Glut1 and Akt-dependent Glut1 cell surface trafficking. In support of this model, coexpression of Glut1 and myristoylated Akt transgenes resulted in a synergistic increase in glucose uptake and accumulation of activated T cells in vivo that were largely independent of CD28. Induction of Glut1 protein and Akt regulation of Glut1 trafficking are therefore separable functions of CD28 costimulation that cooperate to promote glucose metabolism for T cell activation and proliferation.  相似文献   

19.
ZFPIP (Zinc Finger Pbx1 Interacting Protein) has been recently identified in our laboratory in a yeast two hybrid screen using an embryonic mouse cDNA library and PBX1 as a bait. This gene encodes a large protein (250 kDa) that contains a bipartite NLS, numerous C2H2 zinc fingers and is highly conserved amongst vertebrates. In order to address the role of ZFPIP during embryonic development, we analysed the expression pattern of the gene and performed morpholinos injections into Xenopus laevis embryos. We first showed that the ZFPIP protein was maternally present in oocytes. Then, ZFPIP was detected from morula to neurula stages in the nucleus of the cells, with a gradient from animal to vegetal pole. By injection of ZFPIP morpholinos, we showed that morphant embryos were unable to undergo proper gastrulation and subsequently exhibited a persistent opened blastopore. Analysis of molecular and cellular events that were altered in morphant embryos highlighted an impairment of cell division processes as illustrated by atypical mitosis with aberrant metaphase, anaphase or telophase, incomplete chromosome segregation or conjointed nuclei. The overall data presented here demonstrated that ZFPIP was a major developing gene that acts in the very first steps of embryonic development of Xenopuslaevis.  相似文献   

20.
Histone lysine methylation is important in early zebrafish development; however, the role of histone arginine methylation in this process remains unclear. H3R2me2a, generated by protein arginine methyltransferase 6 (Prmt6), is a repressive mark. To explore the role of Prmt6 and H3R2me2a during zebrafish embryogenesis, we identified the maternal characteristic of prmt6 and designed two prmt6-specific morpholino-oligos (MOs) to study its importance in early development, application of which led to early epiboly defects and significantly reduced the level of H3R2me2a marks. prmt6 mRNA could rescue the epiboly defects and the H3R2me2a reduction in the prmt6 morphants. Functionally, microarray data demonstrated that growth arrest and DNA damage-inducible, α, a (gadd45αa) was a significantly up-regulated gene in MO-treated embryos, the activity of which was linked to the activation of the p38/JNK pathway and apoptosis. Importantly, gadd45αa MO and p38/JNK inhibitors could partially rescue the defect of prmt6 morphants, the downstream targets of Prmt6, and the apoptosis ratios of the prmt6 morphants. Moreover, the results of ChIP quantitative real time PCR and luciferase reporter assay indicated that gadd45αa is a repressive target of Prmt6. Taken together, these results suggest that maternal Prmt6 is essential to early zebrafish development by directly repressing gadd45αa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号