首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of cytosolic glutamine synthetase in wheat   总被引:15,自引:1,他引:14  
The role of glutamine synthetase (GS; EC 6.3.1.2) was studied in wheat. GS isoforms were separated by HPLC and the two major leaf isoforms (cytosolic GS1 and chloroplastic GS2) were found to change in content and activity throughout plant development. GS2 dominated activity in green, rapidly photosynthesising leaves compared to GS1 which was a minor component. GS2 remained the main isoform in flag leaves at the early stages of grain filling but GS1 activity increased as the leaves aged. During senescence, there was a decrease in total GS activity which resulted largely from the loss of GS2 and thus GS 1 became a greater contributor to total GS activity. The changes in the activities of the GS isoforms were mirrored by the changes in GS proteins measured by western blotting. The changes in GS during plant development reflect major transitions in metabolism from a photosynthetic leaf (high GS2 activity) towards a senescencing leaf (relatively high GS1 activity). It is likely that, during leaf maturation and subsequently senescence, GS1 is central for the efficient reassimilation of ammonium released from catabolic reactions when photosynthesis has declined and remobilisation of nitrogen is occurring. Preliminary analysis of transgenic wheat lines with increased GS1 activity in leaves showed that they develop an enhanced capacity to accumulate nitrogen in the plant, mainly in the grain, and this is accompanied by increases in root and grain dry matter. The possibility that the manipulation of GS may provide a means of enhancing nitrogen use in wheat is discussed.  相似文献   

2.
G. Mäck  R. Tischner 《Planta》1994,194(3):353-359
In extracts from the primary leaf blade of sugar beet (Beta vulgaris L.) we separated a chloroplastic isoform (GS 2) of glutamine synthetase (GS, EC 6.3.1.2) and one or two (depending on leaf age) cytosolic isoforms (GS 1a and GS 1b). The latter were prominent in the early (GS 1a) and late stages of leaf ontogeny (GS 1a and GS 1b), whereas during leaf maturation GS 2 was the predominantly active GS isoform. The GS 1 isoforms were active exclusively in the octameric state although tetrameric GS 1 protein was detected immunologically. Their activity stayed at a relatively constant level during leaf ontogeny; an increase was observed only in the senescent leaf. The activity of GS 2, however, changed drastically during primary leaf ontogeny and was modulated by changes in the oligomeric state of the active enzyme. In the early and late stages of leaf ontogeny when GS 2 activity was low (lower than that of the GS 1 isoforms), GS 2 was active only in the octameric state. In the maturing leaf, when GS 2 activity had reached its maximum level (much higher than that of the GS 1 isoforms), 80 of total GS 2 activity was due the activity of the tetrameric form of the enzyme and 20 was due to octameric GS 2. Tetrameric GS 2 was a hetero-tetramer and thus not the unspecific dissociation product of homo-octameric GS 2. In addition, GS 2 activity was modulated by an activation/inactivation of the tetrameric GS 2 protein. Due to an activation of the GS 2 tetramer, the activity of tetrameric GS 2 increased during leaf maturation from zero level 23-fold compared with that of GS 1a and 18-fold compared with that of GS 1b. Possible activators of tetrameric GS 2 are thiol-reactive substances. During leaf senescence, GS 2 activity decreased to zero; this decrease was due to an inactivation of the tetrameric GS 2 protein probably caused by oxidation.Abbreviations FLL final lamina length - FPLC fast protein liquid chromatography - GS glutamine synthetase - GHA -glutamyl hydroxamate - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase Dr. Roger Wallsgrove's (Rothamsted Experimental Station, Harpenden, UK) generous gift of GS antiserum is greatly appreciated.  相似文献   

3.
Leaves of Pennisetum [Pennisetum glaucum (L) HHB 67] seedlings contained two isozymes of glutamine synthetase (GS, EC 6.3.1.2): cytosolic GS1 and chloroplastic GS2. Leaves of seedlings grown in light for seven days contained about twofold higher GS activity than etiolated leaves. In both light and dark grown seedlings, total GS, GS1 and GS2 activity declined with plant age with more pronounced effect in leaves of etiolated seedlings, and GS2 declined at a much faster rate than GS1. Exposure of etiolated seedlings to light markedly enhanced GS1 and GS2 activity. This increase in activity was not affected by cycloheximide, precluding light dependent de novo synthesis of the enzyme. Treatment of etiolated seedlings with photosynthetic inhibitor, dichlorophenyl dimethyl urea (DCMU) inhibited light dependent appearance of GS. Exogenous supply of sucrose to dark grown seedlings greatly increased the GS activity in dark. These results suggest that light-mediated stimulation in activity of GS in Pennisetum leaves is dependent on photosynthetic reaction.  相似文献   

4.
5.
不同氮源对小麦幼苗谷氨酰胺合成酶的影响   总被引:21,自引:0,他引:21  
利用DEAE-纤维素柱层析、酶活性测定、Northern 分子杂交等技术,研究了小麦(Triticum aestivum L.)幼苗的根、叶和离体叶在不同氮源培养条件下谷氨酰胺合成酶(GS)活性和同工酶变化, 以及不同氮源对GS基因转录-GS-m RNA 的影响. 同时与硝酸还原酶(NR)活性进行比较, 结果表明∶当以NH+4 作唯一氮源时,小麦幼苗根谷氨酰胺合成酶(GSr)和叶细胞质谷氨酰胺合成酶(GS1)活性要比以NO-3 作唯一氮源的高.当以NO-3 为唯一氮源时, NO-3 则促进完整叶片和离体叶片叶绿体谷氨酰胺合成酶(GS2)活性. 从转录水平上看,NH+4 促进根GS-m RNA 的合成,而NO-3 促进叶GS-m RNA 的合成  相似文献   

6.
应用园二色谱测定了粪产碱菌(Alcaligenesfaecalis)谷氨酰胺合成酶(GS)各构象,结果表明在Glu培养下α螺旋为28%,β折叠为22%,无规则卷曲占50%;而在NH~+_4培养下,三者相应为20%,20%,60%。荧光光谱及付立叶红外光谱也证明,两种培养条件下GS的构象存在着差异。不同氮源对粪产碱菌GS的形成有显著的影响。高浓度NH~+_4培养下GS合成受到阻遇,而Glu或低浓度NH~+_4则对GS合成无明显的影响。NH~+_4对固氮酶活性瞬间抑制可以被GS的抑制剂部分消除,但GS活性也受抑制。  相似文献   

7.
We used polyacrylamide gel electrophoresis to examine the regulation and adenylylation states of glutamine synthetases (GSs) from Escherichia coli (GS(E)) and Klebsiella aerogenes (GS(K)). In gels containing sodium dodecyl sulfate (SDS), we found that GS(K) had a mobility which differed significantly from that of GS(E). In addition, for both GS(K) and GS(E), adenylylated subunits (GS(K)-adenosine 5'-monophosphate [AMP] and GS(E)-AMP) had lesser mobilities in SDS gels than did the corresponding non-adenylylated subunits. The order of mobilities was GS(K)-AMP < GS(K) < GS(E)-AMP < GS(E). We were able to detect these mobility differences with purified and partially purified preparations of GS, crude cell extracts, and whole cell lysates. SDS gel electrophoresis thus provided a means of estimating the adenylylation state and the quantity of GS present independent of enzymatic activity measurements and of determining the strain origin. Using SDS gels, we showed that: (i) the constitutively produced GS in strains carrying the glnA4 allele was mostly adenylylated, (ii) the GS-like polypeptide produced by strains carrying the glnA51 allele was indistinguishable from wild-type GS(K), and (iii) strains carrying the glnA10 allele contained no polypeptide having the mobility of GS(K) or GS(K)-AMP. Using native polyacrylamide gels, we detected the increased amount of dodecameric GS present in cells grown under nitrogen limitation compared with cells grown under conditions of nitrogen excess. In native gels there was neither a significant difference in the mobilities of adenylylated and non-adenylylated GSs nor a GS-like protein in cells carrying the glnA10 allele.  相似文献   

8.
Gramicidin S (GS) containing 14C-labeled proline was synthesized by a solid-phase method, and the labeled GS dihydrochloride was obtained as crystals. The labeled GS exhibited same antibacterial activity as natural GS. Strains sensitive to GS (B. subtilis and S. aureus) and an insensitive strain (E. coli) were treated with the labeled GS, and the amount of the labeled GS adsorbed on the cells was measured. GS was adsorbed rapidly on the cells of the sensitive strains; the amount adsorbed increased linearly with GS concentration up to 1-1.5 microgram/ml, and at a lower rate at above 1.5 microgram/ml. GS molecules covered most of the cell surface at the minimum inhibitory concentration of 1.5 microgram/ml; the number of molecules adsorbed per cell was 1.3-1.4 x 10(6). No GS was adsorbed by the insensitive strain.  相似文献   

9.
We have shown that the individual members of the plant gene family for glutamine synthetase (GS) are differentially expressed in vivo, and each encode distinct GS polypeptides which are targeted to different subcellular compartments (chloroplast or cytosol). At the polypeptide level, chloroplast GS (GS2) and cytosolic GS (GS1 and GSn) are distinct and show an organ-specific distribution. We have characterized full length cDNA clones encoding chloroplast or cytosolic GS of pea. In vitro translation products encoded by three different GS cDNA clones, correspond to the mature GS2, GS1, and GSn polypeptides present in vivo. pGS185 encodes a precursor to the chloroplast GS2 polypeptide as shown by in vitro chloroplast uptake experiments. The pGS185 translation product is imported into the chloroplast stroma and processed to a polypeptide which corresponds in size and charge to that of mature chloroplast stromal GS2 (44 kDa). The 49 amino terminal amino acids encoded by pGS185 are designated as a chloroplast transit peptide by functionality in vitro, and amino acid homology to other transit peptides. The cytosolic forms of GS (GS1 and GSn) are encoded by highly homologous but distinct mRNAs. pGS299 encodes the cytosolic GS1 polypeptide (38 kDa), while pGS341 (Tingey, S. V., Walker, E. L., and Coruzzi, G. M. (1987) EMBO. J. 6, 1-9) encodes a cytosolic GSn polypeptide (37 kDa). The homologous nuclear genes for chloroplast and cytosolic GS show different patterns of expression in vivo. GS2 expression in leaves is modulated by light, at the level of steady state mRNA and protein, while the expression of cytosolic GS is unaffected by light. The light-induced expression of GS2 is due at least in part to a phytochrome mediated response. Nucleotide sequence analysis indicates that chloroplast and cytosolic GS have evolved from a common ancestor and suggest a molecular mechanism for chloroplast evolution.  相似文献   

10.
11.
Two isozymes of glutamine synthetase GS1 and GS2 were partially purified from Pennisetum glaucum leaves by ion-exchange and gel filtration chromatography and their kinetic and regulatory properties were studied using semisynthetase assay of GS. Mg2+ was the most effective cation for activity of both the isozymes; however, it could be efficiently replaced by Co2+. The pH optima for GS1 and GS2 were 7.0 and 8.0, respectively. GS1 exhibited maximum activity at 42 degrees C, with activation energy of 18 KJ mol(-1) and a Q10 of 3.0, whereas GS2 showed maximum activity at 50 degrees C, with activation energy of 40 KJ mol(-1) and Q10 of 2.25. GS1 was more thermostable than GS2. The Km value for Mg2+ of GS1 was 2-fold higher than GS2; however, these isozymes did not differ much in their affinity for other substrates. Alanine, serine and glycine lowered GS1 and GS2 activities, whereas cysteine enhanced their activities with a more pronounced effect on GS2. Serine inhibited the activity of both the isoforms in a competitive-manner, whereas alanine was a non-competitive inhibitor, with respect to glutamate. AMP and ADP were competitive inhibitor with respect to ATP for both the isozymes.  相似文献   

12.
Gramicidin S (GS) is a cyclic decapeptide antibiotic active against both Gram‐positive and Gram‐negative bacteria as well as against several pathogenic fungi. However, clinical application of GS is limited because of GS hemolytic activity. The large number of GS analogues with potentially attenuated hemolytic activity has been developed over the last two decades. For all new GS derivatives, the antimicrobial test is accompanied with the hemolytic activity assay. At the same time, neither GS nor its analogues were tested against other blood cells. In the present work, the effects of GS on platelets and platelet aggregates have been studied. GS interaction with platelets is concentration dependent and leads either to platelet swelling or platelet shape change. Effect of GS on platelets is independent of platelet aggregation mechanism. GS induces disaggregation of platelet aggregates formed in the presence of aggregation agonists. The rate of the GS interaction with platelet membranes depends on membrane lipid mobility and significantly increases with temperature. The interaction of GS with the platelet membranes depends strongly on the state of the membrane lipids. Factors affecting the membrane lipids (temperature, lipid peroxidation and ionising irradiation) modify GS interaction with platelets. Our results show that GS is active not only against erythrocytes but also against other blood cells (platelets). The estimated numbers of GS molecules per 1 µm2 of a blood cell required to induce erythrocyte hemolysis and disaggregation of platelet aggregates are comparable. This must be considered when developing new antimicrobial GS analogues with improved hemolytic properties. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
Two forms of glutamine synthetase (EC 6.3.1.2) can be separated in crude extracts of Chlorella kessleri on the basis of their different surface charges. The two enzyme forms (GS1 and GS2) respond differently upon transferring the cells from darkness to autotrophic growth in white light: the activity of GS2 increases, that of GS1 remains unchanged. The increase in GS2 activity is only brought about by blue light; in red light GS2 activity appears to be uninfluenced, while that of GS1 increases. There are no indications of wavelength-dependent oligomerization processes as a cause for the observed activity alterations. There is however, a strong influence of inhibitors of protein biosynthesis. Cycloheximide and lincomycin both affect the blue light-dependent increase in activity of GS2, cycloheximide preventing that of GS1 in red lgiht completely. Since literature data point to localization of GS2 in the chloroplast, and GS1 in the cytosol, the data are discussed in view of two different photoreceptors involved in the regulation of the amounts of GS1 and GS2 in different compartments of the Chlorella cell.  相似文献   

14.
15.
不同烟草中谷氨酰胺合成酶2基因的生物信息学分析   总被引:3,自引:0,他引:3  
目的:分析不同烟草中谷氨酰胺合成酶2(GS2)基因的结构特点、差异与进化的关系。方法:对NCBI已公布的皱叶烟草(Np)、渐狭叶烟草(Na)和美花烟草(Ns)及拟南芥(At)、籼稻(Os)的GS2序列,利用MEGA进行聚类分析,用ProtParam、NETPHOS 2.0 Server、TargetP1.1Server、ProtScale、Scansite和SOPMA进行肽链的理化性质、磷酸化修饰、亲水性/疏水性、前导肽、motif和二级结构的预测分析。结果:Na、Ns的GS2在磷酸化位点、二级结构和前导肽方面与At和Os的GS2非常相似;Np的GS2不具有前导肽和磷酸化位点,且不定位于叶绿体中。结论:Na和Ns的GS2具有较高的相似度,但Np的GS2与Na和Ns的差别较大,与GS1的亲缘关系更近。  相似文献   

16.
The major isoenzyme of glutamine synthetase found in leaves of angiosperms is the chloroplastic form. However, pine seedlings contain two cytosolic glutamine synthetases in green cotyledons: GS1a, the predominant isoform, and GS1b, a minor enzyme whose relative amount is increased following phosphinotricin treatment. We have cloned a GS1b cDNA, and comparison with the previously reported GS1a cDNA sequence indicated that they correspond to separate cytosolic GS genes encoding distinct protein products. Phylogenetic analysis showed that the newly reported sequence is closer to cytosolic angiosperm GS than to GS1a, suggesting therefore that GS1a could be a divergent gymnospermous GS1 gene. Gene mapping using a F2 family of maritime pine showed co-localization of both GS genes on group 2 of the genetic linkage map. This result supports the proposed origin of different members of the GS1 family by adjacent gene duplication. The implications for gymnosperm genome organization are discussed.  相似文献   

17.
18.
Previous studies [Dautry-Varsat, A., Cohen, G. N., & Stadtman, E.R. (1979) J. Biol. Chem. 254, 3124-3128; Lei, M., Aebi, U., Heidner, E. G., & Eisenberg, D. (1979) J. Biol. Chem. 254, 3129-3134] have shown that Escherichia coli glutamine synthetase (GS) can be cleaved by proteases to form a limited digestion species called nicked glutamine synthetase (GS). The present study gives the amino acid sequence of the protease-sensitive region of glutamine synthetase. The present study also shows that GS is enzymatically active, but this activity is low compared to the activity of GS. The apparent Michaelis constant value for glutamate was 90 mM for GS as compared to 3 mM for GS, while the Michaelis constant values for ATP were similar for GS and GS*. The dissociation constant values for ATP, as determined by intrinsic fluorescence measurements, were similar for GS and GS*. Glutamate decreased the dissociation constant value of ATP for GS because of synergism between the two binding sites; glutamate did not decrease the dissociation constant value of ATP for GS*. The glutamate analogue methionine sulfoximine bound very tightly to GS and inactivated the enzyme in the presence of ATP. Methionine sulfoximine did not appear to bind to GS* and did not inactivate GS* in the presence of ATP. The ATP analogue 5'-[p-(fluorosulfonyl)benzoyl]adenosine bound to GS and inactivated the enzyme by forming a covalent bond with it. Glutamate accelerated this inactivation because of the synergism between the ATP and glutamate binding sites of GS.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
20.
We have examined the effects of three ring-size analogs of the cyclic beta-sheet antimicrobial peptide gramicidin S (GS) on the thermotropic phase behavior and permeability of phospholipid model membranes and on the growth of the cell wall-less Gram-positive bacteria Acholeplasma laidlawii B. These three analogs have ring sizes of 10 (GS10), 12 (GS12) or 14 (GS14) amino acids, respectively. Our high-sensitivity differential scanning calorimetric studies indicate that all three of these GS analogs perturb the gel/liquid-crystalline phase transition of zwitterionic phosphatidylcholine (PtdCho) vesicles to a greater extent than of zwitterionic phosphatidylethanolamine (PtdEtn) or of anionic phosphatidylglycerol (PtdGro) vesicles, in contrast to GS itself, which interacts more strongly with PtdGro than with PtdCho and PtdEtn bilayers. However, the relative potency of the perturbation of phospholipid phase behavior varies markedly between the three peptides, generally decreasing in the order GS14 > GS10 > GS12. Similarly, these three GS ring-size analogs also differ considerably in their ability to cause fluorescence dye leakage from phospholipid vesicles, with the potency of permeabilization also generally decreasing in the order GS14 > GS10 > GS12. Finally, these GS ring-size analogs also differentially inhibit the growth of A. laidlawii with growth inhibition also decreasing in the order GS14 > GS10 > GS12. These results indicate that the relative potencies of GS and its ring-size analogs in perturbing the organization and increasing the permeability of phospholipid bilayer model membranes, and of inhibiting the growth of A. laidlawii B cells, are at least qualitatively correlated, and provide further support for the hypothesis that the primary target of these antimicrobial peptides is the lipid bilayer of the bacterial membrane. The very high antimicrobial activity of GS14 against the cell wall-less bacteria A. laidlawii as compared to various conventional bacteria confirms our earlier suggestion that the avid binding of this peptide to the bacterial cell wall is primarily responsible for its reduced antimicrobial activity against such organisms. The relative magnitude of the effects of GS itself, and of the three ring-size GS analogs, on phospholipid bilayer organization and cell growth correlate relatively well with the effective hydrophobicities and amphiphilicities of these peptides but less well with their relative charge density, intrinsic hydrophobicities or conformational flexibilities. Nevertheless, all of these parameters, as well as others, may influence the antimicrobial potency and hemolytic activity of GS analogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号