首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
H2O2诱发人成纤维细胞衰老样变化的基因表达谱   总被引:3,自引:0,他引:3  
以 5 0 μmol/LH2 O2 作用体外培养的人胚肺二倍体成纤维细胞 4次 ,使之出现不可逆的衰老表型 .提取年轻细胞及H2 O2 处理早老细胞的mRNA ,以荧光物Cy3标记年轻细胞cDNA ,Cy5标记H2 O2 处理的细胞cDNA ,并与点有 40 96条人类基因的芯片杂交 ,利用计算机数据处理判断基因是否存在表达差异 .结果显示 :有 12 3种基因的表达变化较显著 ,这些基因参与细胞周期进程、细胞代谢及蛋白质修饰、细胞外基质及细胞骨架蛋白的形成和调节、炎症反应、调节受体酪氨酸蛋白激酶和G蛋白耦联受体信号转导 .  相似文献   

2.
Studies of the murine DDB1 and DDB2 genes   总被引:7,自引:0,他引:7  
Zolezzi F  Linn S 《Gene》2000,245(1):151-159
  相似文献   

3.
Al Khateeb WM  Schroeder DF 《Genetics》2007,176(1):231-242
Damaged DNA-binding proteins 1 and 2 (DDB1 and DDB2) are subunits of the damaged DNA-binding protein complex (DDB). DDB1 is also found in the same complex as DE-ETIOLATED 1 (DET1), a negative regulator of light-mediated responses in plants. Arabidopsis has two DDB1 homologs, DDB1A and DDB1B. ddb1a single mutants have no visible phenotype while ddb1b mutants are lethal. We have identified a partial loss-of-function allele of DDB2. To understand the genetic interaction among DDB2, DDB1A, and DET1 during Arabidopsis light signaling, we generated single, double, and triple mutants. det1 ddb2 partially enhances the short hypocotyl and suppresses the high anthocyanin content of dark-grown det1 and suppresses the low chlorophyll content, early flowering time (days), and small rosette diameter of light-grown det1. No significant differences were observed between det1 ddb1a and det1 ddb1a ddb2 in rosette diameter, dark hypocotyl length, and anthocyanin content, suggesting that these are DDB1A-dependent phenotypes. In contrast, det1 ddb1a ddb2 showed higher chlorophyll content and later flowering time than det1 ddb1a, indicating that these are DDB1A-independent phenotypes. We propose that the DDB1A-dependent phenotypes indicate a competition between DDB2- and DET1-containing complexes for available DDB1A, while, for DDB1A-independent phenotypes, DDB1B is able to fulfill this role.  相似文献   

4.
Cellular senescence has emerged as a critical tumor suppressive mechanism in recent years, but relatively little is known about how senescence occurs. Here, we report that secreted Frizzled-related protein 1 (SFRP1), a secreted antagonist of Wnt signaling, is oversecreted upon cellular senescence caused by DNA damage or oxidative stress. SFRP1 is necessary for stress-induced senescence caused by these factors and is sufficient for the induction of senescence phenotypes. We present evidence suggesting that SFRP1 functions as a secreted mediator of senescence through inhibition of Wnt signaling and activation of the retinoblastoma (Rb) pathway and that cancer-associated SFRP1 mutants are defective for senescence induction.  相似文献   

5.
6.
Damage-specific DNA-binding protein 2 (DDB2) was first isolated as a subunit of the UV-DDB heterodimeric complex that is involved in DNA damage recognition in the nucleotide excision repair pathway (NER). DDB2 is required for efficient repair of CPDs in chromatin and is a component of the CRL4DDB2 E3 ligase that targets XPC, histones and DDB2 itself for ubiquitination. In this study, a yeast two-hybrid screening of a human cDNA library was performed to identify potential DDB2 cellular partners. We identified a deubiquitinating enzyme, USP24, as a likely DDB2-interacting partner. Interaction between DDB2 and USP24 was confirmed by co-precipitation. Importantly, knockdown of USP24 in two human cell lines decreased the steady-state levels of DDB2, indicating that USP24-mediated DDB2 deubiquitination prevents DDB2 degradation. In addition, we demonstrated that USP24 can cleave an ubiquitinated form of DDB2 in vitro. Taken together, our results suggest that the ubiquitin-specific protease USP24 is a novel regulator of DDB2 stability.  相似文献   

7.
8.
H2O2诱发人成纤维细胞衰老样变化的基因表达谱   总被引:1,自引:0,他引:1  
以50 μmol/L H2O2作用体外培养的人胚肺二倍体成纤维细胞4次,使之出现不可逆的衰老表型.提取年轻细胞及H2O2处理早老细胞的mRNA,以荧光物Cy3标记年轻细胞cDNA,Cy5标记H2O2处理的细胞cDNA,并与点有4 096条人类基因的芯片杂交,利用计算机数据处理判断基因是否存在表达差异.结果显示:有123种基因的表达变化较显著,这些基因参与细胞周期进程、细胞代谢及蛋白质修饰、细胞外基质及细胞骨架蛋白的形成和调节、炎症反应、调节受体酪氨酸蛋白激酶和G蛋白耦联受体信号转导.  相似文献   

9.
Damage-specific DNA-binding protein 2 (DDB2) was first isolated as a subunit of the UV-DDB heterodimeric complex that is involved in DNA damage recognition in the nucleotide excision repair pathway (NER). DDB2 is required for efficient repair of CPDs in chromatin and is a component of the CRL4DDB2 E3 ligase that targets XPC, histones and DDB2 itself for ubiquitination. In this study, a yeast two-hybrid screening of a human cDNA library was performed to identify potential DDB2 cellular partners. We identified a deubiquitinating enzyme, USP24, as a likely DDB2-interacting partner. Interaction between DDB2 and USP24 was confirmed by co-precipitation. Importantly, knockdown of USP24 in two human cell lines decreased the steady-state levels of DDB2, indicating that USP24-mediated DDB2 deubiquitination prevents DDB2 degradation. In addition, we demonstrated that USP24 can cleave an ubiquitinated form of DDB2 in vitro. Taken together, our results suggest that the ubiquitin-specific protease USP24 is a novel regulator of DDB2 stability.  相似文献   

10.
为探讨HMG盒转录因子1 (HBP1)在过氧化氢(H2O2)诱导的细胞衰老中所起的作用,通过慢病毒感染得到稳定表达HBP1的MDA-MB-231细胞,以H2O2处理细胞.采用Western免疫印迹杂交试验和实时PCR检测HBP1、p16和细胞周期蛋白D1(cyclinD1)表达水平的变化.用荧光免疫试验检测H2O2对HBP1表达的影响,以及HBP1在H2O2的诱导下对于p16和细胞周期蛋白D1启动子的影响.用细胞增殖试验检测H2O2对于细胞增殖的影响. 用基因敲减实验和衰老相关β半乳糖苷酶(SA-β-Gal)染色检测在H2O2诱导的细胞衰老中HBP1所起的作用.Western和免疫荧光实验结果显示,细胞经H2O2处理后,HBP1表达增高的同时促进了p16的表达,降低了细胞周期蛋白D1的表达.细胞增殖实验结果显示,H2O2显著抑制了细胞的增殖.基因敲减实验和SA-β-Gal染色实验说明,H2O2可诱导HBP1表达正常的MDA-MB-231细胞衰老,而HBP1的敲减则抑制了H2O2诱导的细胞衰老过程.本研究结果提示,在H2O2诱导的衰老中,HBP1的表达显著增加,并通过促进衰老相关基因p16的表达和抑制生长因子cyclinD1的表达来阻碍细胞增殖,促进细胞衰老.HBP1在H2O2诱导的细胞衰老过程中起着重要作用,H2O2诱导的细胞衰老必须在HBP1存在的情况下才能发生.  相似文献   

11.
The natural polyphenolic compound resveratrol (3,4,5-trihydroxy-trans-stilbene) has broad spectrum health beneficial activities including antioxidant, anti-inflammatory, anti-aging, anti-cancer, cardioprotective, and neuroprotective effects. Remarkably, resveratrol also induces apoptosis and cellular senescence in primary and cancer cells. Resveratrol’s anti-aging effects both in vitro and in vivo attributed to activation of a (NAD)-dependent histone deacetylase family member sirtuin-1 (SIRT1) protein. In mammals seven members (SIRT1-7) of sirtuin family have been identified. Among those, SIRT1 is the most extensively studied with perceptive effects on mammalian physiology and suppression of the diseases of aging. Yet no data has specified the role of sirtuins, under conditions where resveratrol treatment induces senescence. Current study was undertaken to investigate the effects of resveratrol in human primary dermal fibroblasts (BJ) and to clarify the role of sirtuin family members in particular SIRT1 and SIRT2 that are known to be involved in cellular stress responses and cell cycle, respectively. Here, we show that resveratrol decreases proliferation of BJ cells in a time and dose dependent manner. In addition the increase in senescence associated β-galactosidase (SA-β-gal) activity and methylated H3K9-me indicate the induction of premature senescence. A significant increase in phosphorylation of γ-H2AX, a surrogate of DNA double strand breaks, as well as in levels of p53, p21CIP1 and p16INK4A is also detected. Interestingly, at concentrations where resveratrol induced premature senescence we show a significant decrease in SIRT1 and SIRT2 levels by Western Blot and quantitative RT-PCR analysis. Conversely inhibition of SIRT1 and SIRT2 via siRNA or sirtinol treatment also induced senescence in BJ fibroblasts associated with increased SA-β-gal activity, γ-H2AX phosphorylation and p53, p21CIP1 and p16INK4A levels. Interestingly DNA damaging agent doxorubicin also induced senescence in BJ fibroblasts associated with decreased SIRT1/2 levels. In conclusion our data reveal that resveratrol induced premature senescence is associated with SIRT1 and SIRT2 down regulation in human dermal fibroblasts. Here we suggest that the concomitant decline in SIRT1/2 expression in response to resveratrol treatment may be a cause for induction of senescence, which is most likely mediated by a regulatory mechanism activated by DNA damage response.  相似文献   

12.
Damaged DNA-binding protein (DDB) is a heterodimer composed of two subunits, p127 and p48, which have been designated DDB1 and DDB2, respectively. DDB2 recognizes and binds to UV-damaged DNA during nucleotide excision repair. Here, we demonstrated that DDB2 was SUMOylated in a UV-dependent manner, and its major SUMO E3 ligase was PIASy as determined by RNA interference-mediated knockdown. The UV-induced physical interaction between DDB2 and PIASy supported this notion. PIASy knockdown reduced the removal of cyclobutane pyrimidine dimers (CPDs) from total genomic DNA, but did not affect that of 6-4 pyrimidine pyrimidone photoproducts (6-4PPs). Thus, DDB2 plays an indispensable role in CPD repair, but not in 6-4PP repair, which is consistent with the observation that DDB2 was SUMOylated by PIASy. These results suggest that the SUMOylation of DDB2 facilitates CPD repair.  相似文献   

13.
小麦早衰及其相关生理性状的QTL分析   总被引:1,自引:0,他引:1  
利用RIL群体及其分子标记遗传图谱,对小麦早衰指标和与早衰相关的6个生理性状进行了QTL定位分析。小麦早衰指标中,检测到2个籽柆饱满度的加性QTL,分别位于3A和3B染色体,可解释表型变异的9.62%和18.30%。生理性状中,共检测到可溶性蛋白含量、SOD活性和POD活性3个性状的5个加性QTL,涉及2A、2B、2D、4A和6B等5条染色体,可解释表型变异的8.1%~49.56%。这些QTL间不存在连锁关系。  相似文献   

14.
Nucleotide excision repair (NER) is the principal pathway for counteracting cytotoxic and mutagenic effects of UV irradiation. To provide insight into the in vivo regulation of the DNA damage recognition step of global genome NER (GG-NER), we constructed cell lines expressing fluorescently tagged damaged DNA binding protein 1 (DDB1). DDB1 is a core subunit of a number of cullin 4-RING ubiquitin ligase complexes. UV-activated DDB1-DDB2-CUL4A-ROC1 ubiquitin ligase participates in the initiation of GG-NER and triggers the UV-dependent degradation of its subunit DDB2. We found that DDB1 rapidly accumulates on DNA damage sites. However, its binding to damaged DNA is not static, since DDB1 constantly dissociates from and binds to DNA lesions. DDB2, but not CUL4A, was indispensable for binding of DDB1 to DNA damage sites. The residence time of DDB1 on the damage site is independent of the main damage-recognizing protein of GG-NER, XPC, as well as of UV-induced proteolysis of DDB2. The amount of DDB1 that is temporally immobilized on damaged DNA critically depends on DDB2 levels in the cell. We propose a model in which UV-dependent degradation of DDB2 is important for the release of DDB1 from continuous association to unrepaired DNA and makes DDB1 available for its other DNA damage response functions.  相似文献   

15.
16.
Senescence was classically defined as an irreversible cell cycle arrest in G1 phase (G1 exit) triggered by eroded telomeres in aged primary cells. The molecular basis of this G1 arrest is thought to be due to a DNA damage response, resulting in accumulation of the cyclin dependent kinase (Cdk) inhibitors p21 and p16 that block the inactivating phosphorylation of the retinoblastoma tumor suppressor pRb, thereby preventing DNA replication. More than a decade ago, several studies showed that p21 also mediates permanent DNA damage-induced cell cycle arrest in G2 (G2 exit) by inhibiting mitotic Cdk complexes and pRb phosphorylation. The idea that the senescence program can also be launched after G2 arrest has gained support from several recent publications, including evidence for its existence in vivo.  相似文献   

17.
18.
The senescence of vascular endothelial cells (EC) leads to vascular dysfunction. However, the molecular mechanisms of EC senescence and its associated pathophysiological changes have not yet been clearly studied. This study sought to inspect the Chrysanthemum coronarium L. (CC) extract’s mechanism in preventing premature senescence of EC. A senescent endothelial cell model was created in human umbilical vein endothelial cells (HUVECs) with 100 µmol/L H2O2 treatment for 24 h. The effect of CC on senescent HUVECs was elucidated by measuring the activity of β-galactosidase (SA-β-gal), which exhibits an aging-related phenotype. SA-β-gal activity increased to 13.2 ± 2.85% in H2O2-treated HUVECs, whereas this activity was attenuated in the CC group. Immunoblot analyses revealed that p21, p53, and PAI-1 levels increased in the senescent HUVECs; however, the levels decreased in the HUVECs treated with various concentrations of CC (10, 20, and 50 μg/mL). The CC extract reduced the production of reactive oxygen species and reversed the decrease in NO production. Additionally, pretreatment with an Nω-nitro-l-arginine methyl ester (eNOS inhibitor) and nicotinamide (sirtuin 1 inhibitor) inhibited the anti-senescent effect of CC extract in HUVECs. Taken together, this study validated the novel endothelial protective effect of CC extract and its prevention of senescence in HUVECs through the mechanism regulated by eNOS and SIRT1 expression.  相似文献   

19.
水稻叶片早衰成因及分子机理研究进展   总被引:1,自引:0,他引:1  
植物叶片衰老是叶片发育的最终阶段,也是植物在长期进化过程中形成的适应性机制。水稻(Oryza sativa)叶片的衰老对其产量和品质影响极大,相关研究主要集中在早衰。该文综述了水稻早衰及其调控基因的研究进展,尤其对水稻叶片早衰的形成原因、发生过程、生理变化及防治措施进行了阐述,以期为深入解析水稻早衰的分子机制奠定理论基础,同时为水稻育种提供参考。  相似文献   

20.
Resveratrol (RV) is a natural component of red wine and grapes that has been shown to be a potential chemopreventive and anticancer agent. However, the molecular mechanisms underlying RV''s anticancer and chemopreventive effects are incompletely understood. Here we show that RV treatment inhibits the clonogenic growth of non-small cell lung cancer (NSCLC) cells in a dose-dependent manner. Interestingly, the tumor-suppressive effect of low dose RV was not associated with any significant changes in the expression of cleaved PARP and activated caspase-3, suggesting that low dose RV treatment may suppress tumor cell growth via an apoptosis-independent mechanism. Subsequent studies reveal that low dose RV treatment induces a significant increase in senescence-associated β–galactosidase (SA-β-gal) staining and elevated expression of p53 and p21 in NSCLC cells. Furthermore, we show that RV-induced suppression of lung cancer cell growth is associated with a decrease in the expression of EF1A. These results suggest that RV may exert its anticancer and chemopreventive effects through the induction of premature senescence. Mechanistically, RV-induced premature senescence correlates with increased DNA double strand breaks (DSBs) and reactive oxygen species (ROS) production in lung cancer cells. Inhibition of ROS production by N-acetylcysteine (NAC) attenuates RV-induced DNA DSBs and premature senescence. Furthermore, we show that RV treatment markedly induces NAPDH oxidase-5 (Nox5) expression in both A549 and H460 cells, suggesting that RV may increase ROS generation in lung cancer cells through upregulating Nox5 expression. Together, these findings demonstrate that low dose RV treatment inhibits lung cancer cell growth via a previously unappreciated mechanism, namely the induction of premature senescence through ROS-mediated DNA damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号