首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A series of novel indole-based oxalamide and aminoacetamide derivatives were designed, synthesized, and evaluated for antiproliferative activities. Preliminary results revealed that compound 8g exhibited significant antiproliferative effect against PC-3, HeLa and HCT-116 cell lines. Flow cytometric analysis of the cell cycle demonstrated the compound 8g induced the cell cycle arrest at G2/M phase in HeLa cell lines. Immunocytochemistry revealed loss of intact microtubule structure in cells treated with 8g and inhibition of tubulin polymerization. Additionally, molecular docking analysis suggested that 8g formed stable interactions in the colchicine-binding site of tubulin. These preliminary results demonstrated that a new class of novel indole-based oxalamide and aminoacetamide derivatives described in the investigation could be developed as potential scaffolds to new anticancer agents.  相似文献   

2.
A novel series of diaryl thiourea containing sorafenib derivatives 9a-t was designed and synthesized. The structures of all the newly synthesized compounds were determined by (1)H NMR, (13)C NMR and HRMS. Their antiproliferative activities against HCT116 and MDA-MB-231 cell lines, and their inhibitory activities against the phosphorylation of VEGFR were evaluated and described. Some of the compounds showed significant activities against both cell lines and VEGFR. Compounds 9g, 9m, 9o and 9p demonstrated competitive antiproliferative activities to sorafenib, the reference standard, while compounds 9d, 9m, and 9p showed significant inhibitory activities against the phosphorylation of VEGFR.  相似文献   

3.
Four series of novel thieno[3,2-d]pyrimidine and quinazoline derivatives containing N-acylhydrazone or semicarbazone were designed, synthesized, and evaluated for their biological activity. Of which compound 14 showed the most potent antitumor activities with IC50 values of 1.78 μM, 1.02 μM, 1.98 μM, 0.41 μM and 0.22 μM against HT-29, MDA-MB-231, U87MG, PC-3 and HCT-116 cell lines respectively. Inhibition of enzymatic assays showed that PI3Kα was very likely to be one of the drug targets of 14 with the IC50 value of 0.20 μM. According to the results of antitumor activity, the SARs were summarized, which indicated that thieno[3,2-d]pyrimidine and semicarbazone are optimal fragments. In addition, compounds with hydroxyl group at the 4-position on the terminal phenyl ring were more active. Annexin-V and propidium iodide (PI) double staining confirmed that the most active cytotoxic compound 14 can induce cell apoptosis in HCT-116 cells. Moreover, the influence of 14 on the cell cycle distribution was assessed on the HCT-116 cell line, exhibiting a cell cycle arrest at the G2/M phase. Furthermore, molecular docking analysis was also performed to determine possible binding modes between PI3Kα and the target compound. These results will guide us to further refine the structure of the thieno[3,2-d]pyrimidine and quinazoline derivatives to achieve optimal antitumor activity.  相似文献   

4.
A series of 11,12-cyclic carbonate azithromycin-4″-O-carbamoyl glycosyl derivatives were designed, synthesized, and evaluated as antibacterial agents to search for target compounds with excellent activity. The results of preliminary antibacterial tests against eight strains in vitro revealed that all of the title compounds exhibited improved activities with broad spectrum compared with the parent compound. The glycosylated side chains may be the pharmacophores responsible for the improved activity.  相似文献   

5.
Various 3-substituted 4-anilino-coumarin derivatives have been designed, synthesized and their anti-proliferative properties have been studied. The in vitro cytotoxicity screening was performed against MCF-7, HepG2, HCT116 and Panc-1 cancer cell lines by MTT assay. Most of the synthesized compounds exhibited comparable anti-proliferative activity to the positive control 5-Fluorouracil against these four tested cancer cell lines. Among the different substituents at C-3 position of coumarin scaffold, 3-trifluoroacetyl group showed the most promising results. Especially, compounds 33d (IC50 = 16.57, 5.45, 4.42 and 5.16 μM) and 33e (IC50 = 20.14, 6.71, 4.62 and 5.62 μM) showed excellent anti-proliferative activities on MCF-7, HepG2, HCT116 and Panc-1 cell lines respectively. In addition, cell cycle analysis and apoptosis activation revealed that 33d induced G2/M phase arrest and apoptosis in MCF-7 cells in a dose-dependent manner. Low toxicity of compounds 33d and 33e was observed against human umbilical vein endothelial cells (HUVECs), suggesting their acceptable safety profiles in normal cells. Furthermore, the results of in silico ADME studies indicated that both 33d and 33e exhibited good pharmacokinetic properties.  相似文献   

6.
A series of novel pazopanib derivatives, 7am, were designed and synthesized by modification of terminal benzene and indazole rings in pazopanib. The structures of all the synthesized compounds were confirmed by 1H NMR and MS. Their inhibitory activity against VEGFR-2, PDGFR-α and c-kit tyrosine kinases were evaluated. All the compounds exhibited definite kinase inhibition, in which compound 7l was most potent with IC50 values of 12 nM against VEGFR-2. Furthermore, compounds 7c, 7d and 7m demonstrated comparable inhibitory activity against three tyrosine kinases to pazopanib, and compound 7f showed superior inhibitory effects than that of pazopanib.  相似文献   

7.
A series of 2-substituted-4-phenoxypyridine derivatives were designed, synthesized, and evaluated for their antiproliferative activity against 4 cancer cell lines (A549, HT-29, H460, and U87MG) in vitro. Most compounds showed moderate to excellent potency. Nine tyrosine kinases (c-Met, Flt-3, ALK, VEGFR-2, VEGFR-3, PDGFR-α, PDGFR-β, c-Kit, and EGFR) were used to evaluate the inhibitory activities with the most promising analogue 39, which showed the Flt-3/c-Met IC50 values of 2.18/2.61?nM. Structure-activity relationship studies indicated that n-Pr served as R1 group showed a higher preference, and stronger mono-EWGs on the phenyl ring (such as R2?=?4-F) was benefited to the potency.  相似文献   

8.
In this research, a series of 4-(1,2,3-triazol-1-yl)coumarin conjugates were synthesized and their anticancer activities were evaluated in vitro against three human cancer cell lines, including human breast carcinoma MCF-7 cell, colon carcinoma SW480 cell and lung carcinoma A549 cell. To increase the biological potency, structural optimization campaign was conducted focusing on the C-4 position of 1,2,3-triazole and the C-6, C-7 positions of coumarin. In addition, to further evaluate the role of 1,2,3-triazole and coumarin for antiproliferative activity, 9 compounds possessing 4-(piperazin-1-yl)coumarin framework and 3 derivatives baring quinoline core were also synthesized. By MTT assay in vitro, most of the compounds display attractive antitumor activities, especially 23. Further flow cytometry assays demonstrate that compound 23 exerts the antiproliferative role through arresting G2/M cell-cycle and inducing apoptosis.  相似文献   

9.
As restricted CA-4 analogues, a novel series of [1,2,4]triazolo[1,5-a]pyrimidines possessing 3,4,5-trimethoxylphenyl groups has been achieved successfully via an efficient one-pot three-component reaction of 3-(3,4,5-trimethoxyphenyl)-1H-1,2,4-triazol-5-amine, 1,3-dicarbonyl compounds and aldehydes. Initial biological evaluation demonstrated some of target compounds displayed potent antitumor activity in vitro against three cancer cell lines. Among them, the most highly active analogue 26 inhibited the growth of HeLa, and A549 cell lines with IC50 values at 0.75, and 1.02 μM, respectively, indicating excellent selectivity over non-tumoural cell line HEK-293 (IC50 = 29.94 μM) which suggested that the target compounds might possess a high safety index. Moreover, cell cycle analysis illustrated that the analogue 26 significantly induced HeLa cells arrest in G2/M phase, meanwhile the compound could dramatically affect cell morphology and microtubule networks. In addition, compound 28 exhibited potent anti-tubulin activity with IC50 values of 9.90 μM, and molecular docking studies revealed the analogue occupied the colchicine-binding site of tubulin. These observations suggest that [1,2,4]triazolo[1,5-a]pyrimidines represent a new class of tubulin polymerization inhibitors and well worth further investigation aiming to generate potential anticancer agents.  相似文献   

10.
A novel class of Nilotinib derivatives, B1B20, were synthesized in high yields using various substituted anilines. All the title compounds were evaluated for their inhibitory activities against Bcr–Abl and antiproliferative effects on human leukemia cell (K562). The pharmacological results indicated that some compounds exhibited promising anticancer activity. In particular, compound B14 containing tertiary amine side chain exhibited Bcr–Abl inhibitory activity similar to that of Nilotinib. It was suggested that the introduction of the tertiary amine moiety could improve Bcr–Abl inhibitory activity and antitumor effects.  相似文献   

11.
Based on our previous work, a series of novel 2-amino-7,8-dihydropteridin-6(5H)-one derivatives were designed and synthesized via a ring-closing strategy. Biological evaluation with four human cancer cell lines (BT549, T47D, MDA-MB-468, and MDA-MB-231) showed that most of these compounds possessed moderate to potent antiproliferative activities. The most promising compound 8-benzyl-2-(phenethylamino)-7,8-dihydropteridin-6(5H)-one (6q) possessing IC50 values of 7.75, 6.37, and 10.73 μM against MDA-MB-468, T47D, and BT549, respectively, which were 49, 11, and 8 folds more active than the positive control fluorouracil. Moreover, fluorescence-activated cell sorting analysis revealed that compound 6q displayed a significant effect on G1 cell-cycle arrest in a concentration-dependent manner in T47D cells. The initial structure–activity relationship studies indicated that linker-length of amine chain in C-2 position of pyrimidine ring played a crucial role in modulating the antitumor activity, which could be of help in the rational design of dihydropteridin-6(5H)-ones as novel anticancer drugs.  相似文献   

12.
Ras is a small family of GTPases that control numerous cellular functions like cell proliferation, growth, survival, gene expression, and is closely engaged in cancer pathogenesis. The ras-targeted methodology entails a holy grail in oncology. Nevertheless, there are no specific molecules reported targeting the same, although it is a known oncogene for more than three decades. In this study, we have designed and synthesized new phosphate derivatives of Myo-inositol to inhibit the oncogenic KRAS pathway in breast cancer cells, which has been validated by cellular and theoretical studies. The synthesized compound 1b (C2-O-phosphate derivative of Myo-inositol 1,3,5-orthobenzoate) inhibited the downstream signaling pathway of oncogenic KRAS, RAF/MEK/ERK. Furthermore, we also found that this compound induced necrosis/apoptosis and causes cell cycle arrest. This class of molecules may work as a potential inhibitor of breast cancer caused by a mutation in KRAS and its downstream proteins. Though the efficacy of the molecules is in the micromolar scale, they have not been explored previously for RAS inhibition. Impressive preliminary results are presented in this article which could be further explored for its detailed biological studies to get better candidates as RAS inhibitors.  相似文献   

13.
Sphingomyelins and glycerophospholipids are structurally related phospholipids. Nevertheless, glycerophospholipids analogs are known as antitumor agents while sphingomyelin analogs were reported as cytoprotective agents. Herein, we have addressed the development of 3-deoxysphingomyelin analogs as cytotoxic agents possessing modified sphingobases. Thus, pyrrolidine-based 3-deoxysphingomyelin analogs were synthesized and evaluated against a panel of cell lines representing four major types of cancers. Compounds 3d, 4d and 6d elicited better GI50 values than the FDA approved drug miltefosine. Investigation of their impact on Akt phosphorylation as a possible mechanism for the antiproliferative activity of this class of compounds revealed that these compounds might elicit a concentration-dependent mechanism via inhibition of Akt phosphorylation at the lower concentration. Molecular docking predicted their binding modes to Akt to involve polar head binding to the Pleckstrin homology domain and hydrophobic tail extension into a hydrophobic pocket connecting the Pleckstrin homology domain and the kinase domain. As a whole, the described work suggests compounds 3d, 4d and 6d as promising pyrrolidine-based 3-deoxysphingomyelin analogs for development of novel cancer therapies.  相似文献   

14.
A series of novel 7-(N-substituted-methyl)-camptothecin derivatives was designed, synthesized, and evaluated for in vitro cytotoxicity against four human tumor cell lines, A-549, MDA-MB-231, KB, and KBvin. All of the derivatives showed promising in vitro cytotoxic activity against the tested tumor cell lines, with IC50 values ranging from 0.0023 to 1.11 μM, and were as or more potent than topotecan. Compounds 9d, 9e, and 9r exhibited the highest antiproliferative activity among all prepared derivatives. Furthermore, all of the compounds were more potent than paclitaxel against the multidrug-resistant (MDR) KBvin subline. With a concise efficient synthesis and potent cytotoxic profiles, especially significant activity towards KBvin, compounds 9d, 9e, and 9r merit further development as a new generation of camptothecin-derived anticancer clinical trial candidates.  相似文献   

15.
A series of hydroxamic acid-based HDACIs with 4-aminoquinazolinyl moieties as capping groups was profiled. Most compounds showed more potent HDACs inhibition activity than clinically used drug SAHA. Among them, compounds 5f and 5h selectively inhibited HDAC 1,2 over HDAC8, and showed strong activity in several cellular assays, not possessing significant toxicity to primary human cells and hERG inhibition. Strikingly, 5f possessed acceptable pharmacokinetic characteristics and exhibited significant antitumor activity in an A549 xenograft model study at well tolerated doses.  相似文献   

16.
Series of 1,2,4-triazole Schiff bases (2a-2d, 2f-2h and 3a-3h) have been designed and synthesized. The structure of title compounds was confirmed on the basis of their spectral data and elemental analysis. All the target compounds were screened for their in vitro antifungal activity and antibacterial activity. Two of the tested compounds (2a and 2b) exhibited significant antifungal activity against most fungi, especially compound 2a showed better antifungal activity than triadimefon. Meanwhile, the antibacterial activity assay also indicated compound 2a exhibited excellent antibacterial activities comparable to chloramphenicol. The SAR manifested no substitution at position 5 of the triazole ring caused an increase in activity, and 3-phenoxy phenyl group introduced in 1,2,4-triazole scaffold can enhance the antibacterial activity. The DFT calculation indicated triazole ring, S atom and benzene ring in both of the 2a and 3a make a major contribution to the activity.  相似文献   

17.
The isolation and modification of natural products is always a very important resources to anti-tumor drugs. Therefore, a novel series of tetrandrine and fangchinoline derivatives were designed and synthesized, and their antiproliferative activities against HepG2, MCF-7 cells were evaluated and described. From the activity result obtained, high to very high activity in vitro has been found, one of the tested compounds (compound 5d) exhibited the most significant cytotoxic effects. Compound 5d increased 29.2, 7.37 times anti-proliferative activity for HepG2 cells and MCF-7 cells compared to sunitinib (IC50 = 16.06 μM and 25.41 μM). Finally flow cytometry determined that compound 5d could indeed inhibit the proliferation of HepG2 cells via inducing apoptosis.  相似文献   

18.
A series of novel 4(1H)-quinolone derivatives was synthesized and evaluated for antiproliferative activity in vitro. The results showed that these compounds exhibited more potent antiproliferative effect against a panel of human tumor cell lines than the lead compound 7-chloro-4(1H)-quinolone 1. Compound 7e was found to be the most potent antiproliferative agent and to exhibit selective cytotoxic activity against HepG2 cell lines with IC50 value lower than 1.0 μM. Annexin V/FITC-PI assay showed that compound 7e induced apoptosis in HepG2 cells with a dose-dependent manner. Western blotting analysis indicated that compound 7e induced cell cycle arrest in G2/M phase by p53-depedent pathway.  相似文献   

19.
Acridine derivatives have been explored as DNA-binding anticancer agents. Some derivatives show undesired pharmacokinetic properties and new derivatives need to be explored. In this work, a series of novel acridine analogues were synthesized by modifying previously unexplored linkers between the acridine and benzene groups and their antiproliferative activity and the DNA-binding ability were evaluated. Among these derivatives, compound 5c demonstrated DNA-binding capability and topoisomerase I inhibitory activity. In K562 cell lines, 5c induced apoptosis through mitochondria-dependent intrinsic pathways. These data suggested that compound 5c and other acridine derivatives with modified linkers between the acridine and benzene groups might be potent DNA-binding agents.  相似文献   

20.
Baicalein (5,6,7-trihydroxy-2-phenyl-4H-chromen-4-one), a major flavonoid extracted from the root of Scutellaria baicalensis Georgi (Chinese name: Huangqin), showed potent anti-proliferative activity against a broad panel of human cancer cell lines both in vitro and in vivo. A novel series of baicalein derivatives were synthesized by introducing a group to C6-OH and a nitrogen-containing hydrophilic heterocyclic ring to C7-OH via a length of 3 or 4-carbon chain in this study. The in vitro antiproliferative activities of the 30 derivatives against HepG2, A549, BCG-823 cancer cell lines were evaluated. Among them, 10 compounds exhibit more potent cytotoxicity than baicalein against the three cancer cell lines. The most potent compound 9b possesses highest anti-proliferative potency against HepG2, A549, and BCG-823 with an IC50 value of 2.0 μM, 0.8 μM and 3.2 μM, respectively. Preliminary mechanism studies with compound 9b using Annexin V/PI double-staining assay and DAPI staining assay indicated that 9b inhibits tumor cell proliferation potentially through inducing apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号