首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To clarify the essential structures of an opioid κ receptor selective agonist, nalfurafine, for binding to the κ receptor, we designed and synthesized some nalfurafine derivatives and the decahydro(iminoethano)phenanthrene derivatives with a cyclohexene moiety as a surrogate for the phenol ring. In addition to the 6-amide side chain and the 17-nitrogen substituted by a cyclopropylmethyl group, the 4,5-epoxy ring, phenolic hydroxy group, and angular hydroxy group played important roles in eliciting the binding properties of nalfurafine but these three moieties were not indispensable for binding to the κ receptor. Moreover, the phenol ring was also not essential for the binding to the κ receptor, and the cyclohexene moiety would play an important role in fixing the conformation of decahydro(iminoethano)phenanthrene derivatives to effectively raise the amide side chain, rendering a conformation that resembled the active one of nalfurafine.  相似文献   

2.
We have previously reported the essential structure of the opioid κ receptor agonist nalfurafine hydrochloride (TRK-820) for binding to the κ receptor. In the course of this study, we focused on the effect of the substituent at 17-N in nalfurafine on the binding affinity for the κ receptor. The exchange of the 17-N substituent in nalfurafine from cyclopropylmethyl to fluoro-substituted alkyl groups, which are strong electron withdrawing substituents, almost completely diminished the binding affinities for the μ and δ opioid receptors, but the binding affinity for the κ receptor was still maintained. As a result, nalfurafine derivatives with 17-fluoro-substituted alkyl groups showed higher selectivities for the κ receptor than did nalfurafine itself. With regard to the κ agonistic activities, the conversion of the 17-N substituent in nalfurafine from cyclopropylmethyl to fluoro-substituted alkyl groups led to the gradual decrease of the agonistic activities in the order corresponding to their binding affinities for the κ receptor. In contrast, the derivative with the bulky 17-isobutyl group showed lower affinity and agonistic activity for the κ receptor than the derivatives with the smaller functional groups. This research suggested that both the electronic property and the steric characteristics of the 17-N substituent would have a great influence on the binding property for the κ receptor.  相似文献   

3.
《Life sciences》1994,55(4):PL79-PL84
The selective δ2 receptor antagonist Naltriben (NTB) has played an important role in the identification of subtypes of the δ opioid receptor, termed δ1 and δ2, and their role in antinociception. However, the majority of these studies have been conducted in the mouse. The present study determined the opioid receptor selectivity of subcutaneously (s.c.) administered NTB in the rat. Five minute pretreatment with 1 mg/kg s.c. NTB antagonized the increase in TFL produced by i.t. administration of equieffective doses of the δ2 receptor agonist [D-Ala2, Glu4]deltorphin (DELT) or the δ1 receptor agonist [D-Pen2, D-Pen5]enkephalin (DPDPE), but did not antagonize the μ receptor agonist [D-Ala2, MePhe4, Gly-ol5]enkephalin (DAMGO). These data confirm previous reports that NTB is a selective δ opioid receptor antagonist. However, this dose of NTB antagonized DELT and DPDPE to an equivalent extent, suggesting that its selectivity for the δ2 receptor is not maintained after s.c. administration in the rat. A lower dose of NTB (0.56 mg/kg s.c.) was ineffective. When the dose of NTB was increased to 3 mg/kg s.c. the antagonism of DELT and of DPDPE was unexpectedly lost. Pretreatment with the κ receptor antagonist nor-binaltorphimine (nor-BNI) partially restored the antagonism of DELT, but not DPDPE by this dose of NTB and did not modify the antagonism of DAMGO by NTB. These data suggest that high doses of NTB have κ receptor agonist-like activity and support the proposal that κ opioid agonists diminish the actions of δ receptor antagonists. They also suggest that nor-BNI-sensitive κ opioid receptors interact with δ2, but not δ1 opioid receptors in the spinal cord.  相似文献   

4.
5.
A conformational analysis of κ opioid receptor agonists, TRK-820 and U-50,488H indicated an active conformation of TRK-820 in which the C-ring was in the boat form with the 14-OH interacting with the amide nitrogen. Based on the obtained active conformation of TRK-820, we designed and synthesized a novel κ agonist KNT-63 with oxabicyclo[2.2.2]octane skeleton. KNT-63 showed profound antinociceptive effects via the κ receptor which were as potent as that of TRK-820.  相似文献   

6.
We introduce the term ‘silent agonists’ to describe ligands that can place the α7 nicotinic acetylcholine receptor (nAChR) into a desensitized state with little or no apparent activation of the ion channel, forming a complex that can subsequently generate currents when treated with an allosteric modulator. KC-1 (5′-phenylanabaseine) was synthesized and identified as a new silent agonist for the α7 nAChR; it binds to the receptor but does not activate α7 nAChR channel opening when applied alone, and its agonism is revealed by co-application with the type II positive allosteric modulator PNU-120596 in the Xenopus oocyte system. The concise synthesis was accomplished in three steps with the C–C bonds formed via Pd-catalyzed mono-arylation and organolithium coupling with N-Boc piperidinone. Comparative structural analyses indicate that a positive charge, an H-bond acceptor, and an aryl ring in a proper arrangement are needed to constitute one class of silent agonist for the α7 nAChR. Because silent agonists may act on signaling pathways not involving ion channel opening, this class of α7 nAChR ligands may constitute a new alternative for the development of α7 nAChR therapeutics.  相似文献   

7.
4-((1H-Imidazol-4-yl)methyl)-1-aryl-piperazine and piperidine derivatives were designed and synthesized as candidate human histamine type 3 agonists. The piperazine derivatives were found to have low (or no) affinity for human histamine H3 receptor, whereas the piperidine derivatives showed moderate to high affinity, and their agonistic activity was greatly influenced by substituents on the aromatic ring. Among the piperidine-containing compounds, 17d and 17h were potent human histamine H3 receptor agonists with high selectivity over the closely related human H4 receptor. Our results indicate that appropriate conformational restriction, that is, by the piperidine spacer moiety, favors specific binding to the human histamine H3 receptor.  相似文献   

8.
In this letter, we describe a series of 4-substituted piperidine and piperazine compounds based on tetrahydroquinoline 1, a compound that shows balanced, low nanomolar binding affinity for the mu opioid receptor (MOR) and the delta opioid receptor (DOR). We have shown that by changing the length and flexibility profile of the side chain in this position, binding affinity is improved at both receptors by a significant degree. Furthermore, several of the compounds described herein display good efficacy at MOR, while simultaneously displaying DOR antagonism. The MOR agonist/DOR antagonist has shown promise in the reduction of negative side effects displayed by selective MOR agonists, namely the development of dependence and tolerance.  相似文献   

9.
A group of novel tricyclic Δ2-isoxazolines (4b, 5b, 7ab, and 8ab) and 3-oxo-isoxazolidines (6ab and 9ab), structurally related to cytisine or norferruginine, was prepared through 1,3-dipolar cycloadditions involving suitable olefins and bromonitrile oxide. The target compounds were assayed at α4β2 and α7 neuronal acetylcholine receptors (nAChRs). The results of competition binding experiments indicated for the new derivatives a reduction of the affinity at the α4β2 subtype in comparison with the reference molecules, coupled with an overall negligible affinity at the α7 subtype. The binding mode of the bromo-Δ2-isoxazolines 4b and 7b, which were the highest affinity ligands in the series (Ki = 0.92 and 0.75 μM, respectively), was analyzed by applying a recently developed model of the α4β2 nAChRs.  相似文献   

10.
The α-iminoamide derivative, 4b was designed and synthesized as a novel agonist selective for the opioid κ receptor. The amide was constrained to an orientation horizontal to the F-ring of the azabicyclo[2.2.2]octane skeleton, which remarkably improved its affinity, selectivity, and agonistic activity for the κ receptor. This finding was newly established by chemical modification of the nitrogen atom at the 8-position in the azabicyclo[2.2.2]octane skeleton. This modification would never have been found with KNT-63, a derivation of oxabicyclo[2.2.2]octane. These results may provide valuable information for the future development of novel κ selective agonists.  相似文献   

11.
The structure–activity relationship (SAR) for three series of lactam-fused chroman derivatives possessing 3-amino substituents was evaluated. Many compounds exhibited affinities for both the 5-HT1A receptor and the 5-HT transporter. Compounds 45 and 53 demonstrated 5-HT1A antagonist activities in the in vitro cAMP turnover model.  相似文献   

12.
There is strong evidence to indicate that a positively charged nitrogen of endogenous and exogenous opioid ligands forms a salt bridge with the Asp residue in the third transmembrane helix of opioid receptors. To further examine the role of this electrostatic interaction in opioid receptor binding and activation, we synthesized ‘carba’-analogues of the highly potent μ opioid analgesic carfentanil (3), in which the piperidine nitrogen was replaced with a carbon. The resulting trans isomer (8b) showed reduced, but still significant MOR binding affinity (Kiμ = 95.2 nM) with no MOR versus DOR binding selectivity and was a MOR partial agonist. The cis isomer (8a) was essentially inactive. A MOR docking study indicated that 8b bound to the same binding pocket as parent 3, but its binding mode was somewhat different. A re-evaluation of the uncharged morphine derivative N-formylnormorphine (9) indicated that it was a weak MOR antagonist showing no preference for MOR over KOR. Taken together, the results indicate that deletion of the positively charged nitrogen in μ opioid analgesics reduces MOR binding affinity by 2–3 orders of magnitude and may have pronounced effects on the intrinsic efficacy and on the opioid receptor selectivity profile.  相似文献   

13.
We investigated the structure–activity relationship of KNT-127 (opioid δ agonist) derivatives with various 17-substituents which are different in length and size. The 17-substituent in KNT-127 derivatives exerted a great influence on the affinity and agonistic activity for the δ receptor. While the compounds with electron-donating 17-substituents showed higher affinities for the δ receptor than those with electron-withdrawing groups, KNT-127 derivatives with 17-fluoroalkyl groups (the high electron-withdrawing groups) showed high selectivities for the δ receptor among evaluated compounds. In addition, the basicity of nitrogen as well as the structure of the 17-N substituent such as the length and configuration at an asymmetric carbon atom contributed to agonist properties for the δ receptor. Thus, the analog with a 17-(3-ethoxypropyl) group showed the best selectively and potent agonistic activity for the δ receptor among KNT-127 derivatives. These findings should be useful for designing novel δ selective agonists.  相似文献   

14.
Vitamin K is an essential cofactor of γ-glutamylcarboxylase as related to blood coagulation and bone formation. Menaquinone-4, one of the vitamin K homologues, is biosynthesized in the body and has various biological activities such as being a ligand for steroid and xenobiotic receptors, protection of neuronal cells from oxidative stress, and so on. From this background, we focused on the role of menaquinone in the differentiation activity of progenitor cells into neuronal cells and we synthesized novel vitamin K derivatives with modification of the ω-terminal side chain. We report here new vitamin K analogues, which introduced an alkylated phenyl group at the ω-terminal side chain. These compounds exhibited potent differentiation activity as compared to control.  相似文献   

15.
Starting from two carbocyclic analogs, a series of 3,3-dimethylpiperidine derivatives was prepared and tested in radioligand binding assays at σ1 and σ2 receptors, and at Δ8–Δ7 sterol isomerase (SI) site. The novel compounds mostly bear heterocyclic rings or bicyclic nucleus of differing lipophilicities. Compounds 18a and 19a,b demonstrated the highest σ1 affinity (Ki = 0.14–0.38 nM) with a good selectivity versus σ2 binding. Among them, 18a had the lowest C log D value (3.01) and only 19b was selective versus SI too. Generally, it was observed that more planar and hydrophilic heteronuclei conferred a decrease in affinity for both σ receptor subtypes.  相似文献   

16.
A series of bridged piperazine derivatives was prepared and the affinity toward σ1 and σ2 receptors by means of radioligand binding assays as well as the inhibition of the growth of six human tumor cell lines was investigated. All possible stereoisomers of the 2-hydroxy, 2-methoxy, 2,2-dimethoxy, 2-oxo, and 2-unsubstituted 6,8-diazabicyclo[3.2.2]nonanes were prepared in a chiral pool synthesis starting with (S)- and (R)-glutamate. A Dieckmann analogous cyclization was the key step in the synthesis of the bicyclic framework. The configuration in position 2 was established by a diastereoselective LiBH4 reduction and subsequent Mitsunobu inversion. Structure–affinity relationships demonstrate that substituents in position 2 decrease σ1 receptor affinity which might be due to unfavorable interactions with the σ1 receptor protein. Without a substituent in position 2 high σ1 affinity was obtained (23a ((+)-(1S,5S)-6-allyl-8-(4-methoxybenzyl)-6,8-diazabicyclo[3.2.2]nonane): Ki = 11 nM). Experiments with six human tumor cell lines showed a weak but selective growth inhibition of the human small cell lung cancer cell line A-427 by the methyl ethers ent-16b (IC50 = 18.9 μM), 21a (IC50 = 16.4 μM), ent-21a (IC50 = 20.4 μM), and 21b (IC50 = 27.1 μM) and the unsubstituted compounds 23a and 23b (42% inhibition at 20 μM).  相似文献   

17.
18.
Analgesic activities of morphiceptin, β-casomorphins, [D-Ala2, D-Leu5] enkephalin and Sandoz peptide, FK 33–824, were examined by intracerebroventricular administration in rats. Their relative potencies in vivo were compared with their receptor binding activities. The receptor binding affinities were determined from the competition curves against [3H]naloxone binding in the absence and presence of sodium ions for morphine (μ) receptors and against 125I-[D-Ala2, D-Leu5] enkephalin binding for enkephalin (δ) receptors. A good correlation between analgesic activity and morphine (μ) receptor but not enkephin (δ) receptor binding affinity was obtained. These data extend the hypothesis that morphine (δ) receptors mediate the major portion of the analgesic activity of opioids.  相似文献   

19.
Substituted diphenyl sulfones (10an) were synthesised, and the structures were confirmed by NMR, LC–MS and X-ray crystallography. Their antagonistic activities towards 5-HT6 receptor were assessed in a cell-based functional assay. Diphenyl sulfone 10a, in spite of being the smallest and simplest known sulfonyl-containing 5-HT6R antagonist, showed a strong potency (Ki = 1.6 μM). Its derivative with a methylamine substituent, 10g (N-methyl-2-(phenylsulfonyl)aniline), was ~66-times as active as diphenyl sulfone (Ki = 24.3 nM). Addition of a piperazinyl moiety in the para-position relative to the sulfonyl group in compound 10m (N-methyl-2-(phenylsulfonyl)-5-piperazin-1-ylaniline) led to a further 150-fold increase in potency (Ki = 0.16 nM) to block the serotonin-induced response of HEK-293 cells that were stably transfected with the human recombinant 5-HT6 receptor.  相似文献   

20.
We have carried out a pharmacological evaluation of arylmethylene quinuclidine derivatives interactions with human α3β4 nAChRs subtype, using cell-based receptor binding, calcium-influx, electrophysiological patch-clamp assays and molecular modeling techniques. We have found that the compounds bind competitively to the α3β4 receptor with micromolar affinities and some of the compounds behave as non-competitive antagonists (compounds 1, 2 and 3), displaying submicromolar IC50 values. These evidences suggest a mixed mode of action for these compounds, having interactions at the orthosteric site and more pronounced interactions at an allosteric site to block agonist effects. One of the compounds, 1-benzyl-3-(diphenylmethylene)-1-azoniabicyclo[2.2.2]octane chloride (compound 3), exhibited poorly reversible use-dependent block of α3β4 channels. We also found that removal of a phenyl group from compound 1 confers a partial agonism to the derived analog (compound 6). Introducing a hydrogen-bond acceptor into the 3-benzylidene quinuclidine derivative (compound 7) increases agonism potency at the α3β4 receptor subtype. Docking into the orthosteric binding site of a α3β4 protein structure derived by comparative modeling accurately predicted the experimentally-observed trend in binding affinity. Results supported the notion that binding requires a hydrogen bond formation between the ligand basic nitrogen and the backbone carbonyl oxygen atom of the conserved Trp-149.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号