首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the mechanism of activation of native cardiac thin filaments by calcium and rigor myosin. The acceleration of the rate of 2′-deoxy-3′-O-(N-methylanthraniloyl)ADP (mdADP) dissociation from cardiac myosin-S1-mdADP-Pi and cardiac myosin-S1-mdADP by native cardiac muscle thin filaments was measured using double mixing stopped-flow fluorescence. Relative to inhibited thin filaments (no bound calcium or rigor S1), fully activated thin filaments (with both calcium and rigor-S1 bound) increase the rate of product dissociation from the physiologically important pre-power stroke myosin-mdADP-Pi by a factor of ∼75. This can be compared with only an ∼6-fold increase in the rate of nucleotide diphosphate dissociation from nonphysiological myosin-mdADP by the fully activated thin filaments relative to the fully inhibited thin filaments. These results show that physiological levels of regulation are not only dependent on the state of the thin filament but also on the conformation of the myosin. Less than 2-fold regulation is due to a change in affinity of myosin-ADP-Pi for thin filaments such as would be expected by a simple “steric blocking” of the myosin-binding site of the thin filament by tropomyosin. Although maximal activation requires both calcium and rigor myosin-S1 bound to the cardiac filament, association with a single ligand produces ∼70% maximal activation. This can be contrasted with skeletal thin filaments in which calcium alone only activated the rate of product dissociation ∼20% of maximum, and rigor myosin produces ∼30% maximal activation.  相似文献   

2.
Fibrous aggregates of Tau protein are characteristic features of Alzheimer disease. We applied high resolution atomic force and EM microscopy to study fibrils assembled from different human Tau isoforms and domains. All fibrils reveal structural polymorphism; the “thin twisted” and “thin smooth” fibrils resemble flat ribbons (cross-section ∼10 × 15 nm) with diverse twist periodicities. “Thick fibrils” show periodicities of ∼65–70 nm and thicknesses of ∼9–18 nm such as routinely reported for “paired helical filaments” but structurally resemble heavily twisted ribbons. Therefore, thin and thick fibrils assembled from different human Tau isoforms challenge current structural models of paired helical filaments. Furthermore, all Tau fibrils reveal axial subperiodicities of ∼17–19 nm and, upon exposure to mechanical stress or hydrophobic surfaces, disassemble into uniform fragments that remain connected by thin thread-like structures (∼2 nm). This hydrophobically induced disassembly is inhibited at enhanced electrolyte concentrations, indicating that the fragments resemble structural building blocks and the fibril integrity depends largely on hydrophobic and electrostatic interactions. Because full-length Tau and repeat domain constructs assemble into fibrils of similar thickness, the “fuzzy coat” of Tau protein termini surrounding the fibril axis is nearly invisible for atomic force microscopy and EM, presumably because of its high flexibility.  相似文献   

3.
Heat shock protein 70 (Hsp70) is a molecular chaperone and central regulator of protein homeostasis (proteostasis). Paramount to this role is Hsp70’s binding to client proteins and co-chaperones to produce distinct complexes, such that understanding the protein–protein interactions (PPIs) of Hsp70 is foundational to describing its function and dysfunction in disease. Mounting evidence suggests that these PPIs include both “canonical” interactions, which are universally conserved, and “non-canonical” (or “secondary”) contacts that seem to have emerged in eukaryotes. These two categories of interactions involve discrete binding surfaces, such that some clients and co-chaperones engage Hsp70 with at least two points of contact. While the contributions of canonical interactions to chaperone function are becoming increasingly clear, it can be challenging to deconvolute the roles of secondary interactions. Here, we review what is known about non-canonical contacts and highlight examples where their contributions have been parsed, giving rise to a model in which Hsp70’s secondary contacts are not simply sites of additional avidity but are necessary and sufficient to impart unique functions. From this perspective, we propose that further exploration of non-canonical contacts will generate important insights into the evolution of Hsp70 systems and inspire new approaches for developing small molecules that tune Hsp70-mediated proteostasis.  相似文献   

4.
Lysine carbamylation, a post-translational modification, facilitates metal coordination for specific enzymatic activities. We have determined structures of the vertebrate dihydropyrimidinase from Tetraodon nigroviridis (TnDhp) in various states: the apoenzyme as well as two forms of the holoenzyme with one and two metals at the catalytic site. The essential active-site structural requirements have been identified for the possible existence of four metal-mediated stages of lysine carbamylation. Only one metal is sufficient for stabilizing lysine carbamylation; however, the post-translational lysine carbamylation facilitates additional metal coordination for the regulation of specific enzymatic activities through controlling the conformations of two dynamic loops, Ala69–Arg74 and Met158–Met165, located in the tunnel for the substrate entrance. The substrate/product tunnel is in the “open form” in the apo-TnDhp, in the “intermediate state” in the monometal TnDhp, and in the “closed form” in the dimetal TnDhp structure, respectively. Structural comparison also suggests that the C-terminal tail plays a role in the enzymatic function through interactions with the Ala69–Arg74 dynamic loop. In addition, the structures of the dimetal TnDhp in complexes with hydantoin, N-carbamyl-β-alanine, and N-carbamyl-β-amino isobutyrate as well as apo-TnDhp in complex with a product analog, N-(2-acetamido)-iminodiacetic acid, have been determined. These structural results illustrate how a protein exploits unique lysines and the metal distribution to accomplish lysine carbamylation as well as subsequent enzymatic functions.  相似文献   

5.
Allosteric regulation is a ubiquitous phenomenon exploited in biological processes to control cells in a myriad of ways. It is also of emerging interest in the design of functional proteins and therapeutics. Even though allostery was proposed over 50 years ago and has been studied intensively from a structural perspective, many key details of allosteric mechanisms remain mysterious. Over the last decade significant attention has been paid to the “dynamic component” of allostery, as opposed to the analysis of rigid structures. Nuclear magnetic resonance spectroscopy and its ability to detect conformationally dynamic processes at atomic resolution have played an important role in expanding our understanding of allosteric mechanisms and opening up new questions. This article focuses on work that highlights how protein dynamics can factor into allosteric processes in distinct ways. Two cases are contrasted. The first considers the “traditionally allosteric” protein CheY, which undergoes a conformational change as a key element of its allostery. The second considers the more rarely observed “dynamic allostery” in a PDZ domain, in which allosteric behavior arises from changes in internal structural dynamics. Interestingly, the dynamic processes in these two contrasting examples occur on different timescales. In the case of the PDZ domain, subsequent experimental and computational work is reviewed to reveal a more complete picture of this interesting case of allostery.  相似文献   

6.
We examined the magnesium dependence of five class II myosins, including fast skeletal muscle myosin, smooth muscle myosin, β-cardiac myosin (CMIIB), Dictyostelium myosin II (DdMII), and nonmuscle myosin IIA, as well as myosin V. We found that the myosins examined are inhibited in a Mg2+-dependent manner (0.3–9.0 mm free Mg2+) in both ATPase and motility assays, under conditions in which the ionic strength was held constant. We found that the ADP release rate constant is reduced by Mg2+ in myosin V, smooth muscle myosin, nonmuscle myosin IIA, CMIIB, and DdMII, although the ADP affinity is fairly insensitive to Mg2+ in fast skeletal muscle myosin, CMIIB, and DdMII. Single tryptophan probes in the switch I (Trp-239) and switch II (Trp-501) region of DdMII demonstrate these conserved regions of the active site are sensitive to Mg2+ coordination. Cardiac muscle fiber mechanic studies demonstrate cross-bridge attachment time is increased at higher Mg2+ concentrations, demonstrating that the ADP release rate constant is slowed by Mg2+ in the context of an activated muscle fiber. Direct measurements of phosphate release in myosin V demonstrate that Mg2+ reduces actin affinity in the M·ADP·Pi state, although it does not change the rate of phosphate release. Therefore, the Mg2+ inhibition of the actin-activated ATPase activity observed in class II myosins is likely the result of Mg2+-dependent alterations in actin binding. Overall, our results suggest that Mg2+ reduces the ADP release rate constant and rate of attachment to actin in both high and low duty ratio myosins.  相似文献   

7.
The super-relaxed (SRX) state of myosin was only recently reported in striated muscle. It is characterised by a sub-population of myosin heads with a highly inhibited rate of ATP turnover. Myosin heads in the SRX state are bound to each other along the thick filament core producing a highly ordered arrangement. Upon activation, these heads project into the interfilament space where they can bind to the actin filaments. Thus far, the population and lifetimes of myosin heads in the SRX state have been characterised in rabbit cardiac, and fast and slow skeletal muscle, as well as in the skeletal muscle of the tarantula. These studies suggest that the role of SRX in cardiac and skeletal muscle regulation is tailored to their specific functions. In skeletal muscle, the SRX modulates the resting metabolic rate. Cardiac SRX represents a “reserve” of inactive myosin heads that may protect the heart during times of stress, e.g. hypoxia and ischaemia. These heads may also be called up when there is a sustained demand for increased power. The SRX in cardiac muscle provides a potential target for novel therapies.  相似文献   

8.
9.
The α-helix is a ubiquitous secondary structural element that is almost exclusively observed in proteins when stabilized by tertiary or quaternary interactions. However, beginning with the unexpected observations of α-helix formation in the isolated C-peptide in ribonuclease A, there is growing evidence that a significant percentage (0.2%) of all proteins contain isolated stable single α-helical domains (SAH). These SAH domains provide unique structural features essential for normal protein function. A subset of SAH domains contain a characteristic ER/K motif, composed of a repeating sequence of ∼4 consecutive glutamic acids followed by ∼4 consecutive basic arginine or lysine (R/K) residues. The ER/K α-helix, also termed the ER/K linker, has been extensively characterized in the context of the myosin family of molecular motors and is emerging as a versatile structural element for protein and cellular engineering applications. Here, we review the structure and function of SAH domains, as well as the tools to identify them in natural proteins. We conclude with a discussion of recent studies that have successfully used the modular ER/K linker for engineering chimeric myosin proteins with altered mechanical properties, as well as synthetic polypeptides that can be used to monitor and systematically modulate protein interactions within cells.  相似文献   

10.
The ryanodine receptor/Ca2+-release channels (RyRs) of skeletal and cardiac muscle are essential for Ca2+ release from the sarcoplasmic reticulum that mediates excitation-contraction coupling. It has been shown that RyR activity is regulated by dynamic post-translational modifications of Cys residues, in particular S-nitrosylation and S-oxidation. Here we show that the predominant form of RyR in skeletal muscle, RyR1, is subject to Cys-directed modification by S-palmitoylation. S-Palmitoylation targets 18 Cys within the N-terminal, cytoplasmic region of RyR1, which are clustered in multiple functional domains including those implicated in the activity-governing protein-protein interactions of RyR1 with the L-type Ca2+ channel CaV1.1, calmodulin, and the FK506-binding protein FKBP12, as well as in “hot spot” regions containing sites of mutations implicated in malignant hyperthermia and central core disease. Eight of these Cys have been identified previously as subject to physiological S-nitrosylation or S-oxidation. Diminishing S-palmitoylation directly suppresses RyR1 activity as well as stimulus-coupled Ca2+ release through RyR1. These findings demonstrate functional regulation of RyR1 by a previously unreported post-translational modification and indicate the potential for extensive Cys-based signaling cross-talk. In addition, we identify the sarco/endoplasmic reticular Ca2+-ATPase 1A and the α1S subunit of the L-type Ca2+ channel CaV1.1 as S-palmitoylated proteins, indicating that S-palmitoylation may regulate all principal governors of Ca2+ flux in skeletal muscle that mediates excitation-contraction coupling.  相似文献   

11.
Protein-protein interactions are among today’s most exciting and promising targets for therapeutic intervention. To date, identifying small-molecules that selectively disrupt these interactions has proven particularly challenging for virtual screening tools, since these have typically been optimized to perform well on more “traditional” drug discovery targets. Here, we test the performance of the Rosetta energy function for identifying compounds that inhibit protein interactions, when these active compounds have been hidden amongst pools of “decoys.” Through this virtual screening benchmark, we gauge the effect of two recent enhancements to the functional form of the Rosetta energy function: the new “Talaris” update and the “pwSHO” solvation model. Finally, we conclude by developing and validating a new weight set that maximizes Rosetta’s ability to pick out the active compounds in this test set. Looking collectively over the course of these enhancements, we find a marked improvement in Rosetta’s ability to identify small-molecule inhibitors of protein-protein interactions.  相似文献   

12.
To gain success in the evolutionary “arms race,” venomous animals such as scorpions produce diverse neurotoxins selected to hit targets in the nervous system of prey. Scorpion α-toxins affect insect and/or mammalian voltage-gated sodium channels (Navs) and thereby modify the excitability of muscle and nerve cells. Although more than 100 α-toxins are known and a number of them have been studied into detail, the molecular mechanism of their interaction with Navs is still poorly understood. Here, we employ extensive molecular dynamics simulations and spatial mapping of hydrophobic/hydrophilic properties distributed over the molecular surface of α-toxins. It is revealed that despite the small size and relatively rigid structure, these toxins possess modular organization from structural, functional, and evolutionary perspectives. The more conserved and rigid “core module” is supplemented with the “specificity module” (SM) that is comparatively flexible and variable and determines the taxon (mammal versus insect) specificity of α-toxin activity. We further show that SMs in mammal toxins are more flexible and hydrophilic than in insect toxins. Concomitant sequence-based analysis of the extracellular loops of Navs suggests that α-toxins recognize the channels using both modules. We propose that the core module binds to the voltage-sensing domain IV, whereas the more versatile SM interacts with the pore domain in repeat I of Navs. These findings corroborate and expand the hypothesis on different functional epitopes of toxins that has been reported previously. In effect, we propose that the modular structure in toxins evolved to match the domain architecture of Navs.  相似文献   

13.
The endosomal sorting complex required for transport (ESCRT) pathway remodels membranes during multivesicular body biogenesis, the abscission stage of cytokinesis, and enveloped virus budding. The ESCRT-III and VPS4 ATPase complexes catalyze the membrane fission events associated with these processes, and the LIP5 protein helps regulate their interactions by binding directly to a subset of ESCRT-III proteins and to VPS4. We have investigated the biochemical and structural basis for different LIP5-ligand interactions and show that the first microtubule-interacting and trafficking (MIT) module of the tandem LIP5 MIT domain binds CHMP1B (and other ESCRT-III proteins) through canonical type 1 MIT-interacting motif (MIM1) interactions. In contrast, the second LIP5 MIT module binds with unusually high affinity to a novel MIM element within the ESCRT-III protein CHMP5. A solution structure of the relevant LIP5-CHMP5 complex reveals that CHMP5 helices 5 and 6 and adjacent linkers form an amphipathic “leucine collar” that wraps almost completely around the second LIP5 MIT module but makes only limited contacts with the first MIT module. LIP5 binds MIM1-containing ESCRT-III proteins and CHMP5 and VPS4 ligands independently in vitro, but these interactions are coupled within cells because formation of stable VPS4 complexes with both LIP5 and CHMP5 requires LIP5 to bind both a MIM1-containing ESCRT-III protein and CHMP5. Our studies thus reveal how the tandem MIT domain of LIP5 binds different types of ESCRT-III proteins, promoting assembly of active VPS4 enzymes on the polymeric ESCRT-III substrate.  相似文献   

14.
Difficulties in emotion regulation have been implicated as a potential mechanism underlying anxiety and mood disorders. It is possible that sex differences in emotion regulation may contribute towards the heightened female prevalence for these disorders. Previous fMRI studies of sex differences in emotion regulation have shown mixed results, possibly due to difficulties in discriminating the component processes of early emotional reactivity and emotion regulation. The present study used event-related potentials (ERPs) to examine sex differences in N1 and N2 components (reflecting early emotional reactivity) and P3 and LPP components (reflecting emotion regulation). N1, N2, P3, and LPP were recorded from 20 men and 23 women who were instructed to “increase,” “decrease,” and “maintain” their emotional response during passive viewing of negative images. Results indicated that women had significantly greater N1 and N2 amplitudes (reflecting early emotional reactivity) to negative stimuli than men, supporting a female negativity bias. LPP amplitudes increased to the “increase” instruction, and women displayed greater LPP amplitudes than men to the “increase” instruction. There were no differences to the “decrease” instruction in women or men. These findings confirm predictions of the female negativity bias hypothesis and suggest that women have greater up-regulation of emotional responses to negative stimuli. This finding is highly significant in light of the female vulnerability for developing anxiety disorders.  相似文献   

15.
Actin filament cytoskeletal and muscle functions are regulated by actin binding proteins using a variety of mechanisms. A universal actin filament regulator is the protein tropomyosin, which binds end-to-end along the length of the filament. The actin-tropomyosin filament structure is unknown, but there are atomic models in different regulatory states based on electron microscopy reconstructions, computational modeling of actin-tropomyosin, and docking of atomic resolution structures of tropomyosin to actin filament models. Here, we have tested models of the actin-tropomyosin interface in the “closed state” where tropomyosin binds to actin in the absence of myosin or troponin. Using mutagenesis coupled with functional analyses, we determined residues of actin and tropomyosin required for complex formation. The sites of mutations in tropomyosin were based on an evolutionary analysis and revealed a pattern of basic and acidic residues in the first halves of the periodic repeats (periods) in tropomyosin. In periods P1, P4, and P6, basic residues are most important for actin affinity, in contrast to periods P2, P3, P5, and P7, where both basic and acidic residues or predominantly acidic residues contribute to actin affinity. Hydrophobic interactions were found to be relatively less important for actin binding. We mutated actin residues in subdomains 1 and 3 (Asp25-Glu334-Lys326-Lys328) that are poised to make electrostatic interactions with the residues in the repeating motif on tropomyosin in the models. Tropomyosin failed to bind mutant actin filaments. Our mutagenesis studies provide the first experimental support for the atomic models of the actin-tropomyosin interface.  相似文献   

16.
The periplasmic binding protein (PBP) FepB plays a key role in transporting the catecholate siderophore ferric enterobactin from the outer to the inner membrane in Gram-negative bacteria. The solution structures of the 34-kDa apo- and holo-FepB from Escherichia coli, solved by NMR, represent the first solution structures determined for the type III class of PBPs. Unlike type I and II PBPs, which undergo large “Venus flytrap” conformational changes upon ligand binding, both forms of FepB maintain similar overall folds; however, binding of the ligand is accompanied by significant loop movements. Reverse methyl cross-saturation experiments corroborated chemical shift perturbation results and uniquely defined the binding pocket for gallium enterobactin (GaEnt). NMR relaxation experiments indicated that a flexible loop (residues 225–250) adopted a more rigid and extended conformation upon ligand binding, which positioned residues for optimal interactions with the ligand and the cytoplasmic membrane ABC transporter (FepCD), respectively. In conclusion, this work highlights the pivotal role that structural dynamics plays in ligand binding and transporter interactions in type III PBPs.  相似文献   

17.
Myosin filament–based regulation supplements actin filament–based regulation to control the strength and speed of contraction in heart muscle. In diastole, myosin motors form a folded helical array that inhibits actin interaction; during contraction, they are released from that array. A similar structural transition has been observed in mammalian skeletal muscle, in which cooling below physiological temperature has been shown to reproduce some of the structural features of the activation of myosin filaments during active contraction. Here, we used small-angle x-ray diffraction to characterize the structural changes in the myosin filaments associated with cooling of resting and relaxed trabeculae from the right ventricle of rat hearts from 39°C to 7°C. In intact quiescent trabeculae, cooling disrupted the folded helical conformation of the myosin motors and induced extension of the filament backbone, as observed in the transition from diastole to peak systolic force at 27°C. Demembranation of trabeculae in relaxing conditions induced expansion of the filament lattice, but the structure of the myosin filaments was mostly preserved at 39°C. Cooling of relaxed demembranated trabeculae induced changes in motor conformation and filament structure similar to those observed in intact quiescent trabeculae. Osmotic compression of the filament lattice to restore its spacing to that of intact trabeculae at 39°C stabilized the helical folded state against disruption by cooling. The myosin filament structure and motor conformation of intact trabeculae at 39°C were largely preserved in demembranated trabeculae at 27°C or above in the presence of Dextran, allowing the physiological mechanisms of myosin filament–based regulation to be studied in those conditions.  相似文献   

18.
The small heat shock protein (sHSP) αB-crystallin is a new oncoprotein in breast carcinoma that predicts poor clinical outcome in breast cancer. However, although several reports have demonstrated that phosphorylation of sHSPs modify their structural and functional properties, the significance of αB-crystallin phosphorylation in cancer cells has not yet been investigated. In this study, we have characterized the phosphorylation status of αB-crystallin in breast epithelial carcinoma cells line MCF7 submitted to anti-cancer agents like vinblastine. We have showed that the main phosphorylation site of αB-crystallin in response to vinblastine is serine 59 and determined a correlation between this post-translational modification and higher apoptosis level. The overexpression of the serine 59 “pseudophosphorylated” mutant (S59E) induces a significant increase in the apoptosis level of vinblastine-treated MCF7 cells. In contrast, overexpression of wild-type αB-crystallin or “nonphosphorylatable” mutant (S59A) result in a resistance to this microtubule-depolymerizing agent, while inhibition of endogenous levels of αB-crystallin by expression of shRNA lowers it. Analyzing further the molecular mechanism of this phenomenon, we report for the first time that phosphorylated αB-crystallin preferentially interacts with Bcl-2, an anti-apoptotic protein, and this interaction prevents the translocation of Bcl-2 to mitochondria. Hence, this study identifies serine 59 phosphorylation as an important key in the down-regulation of αB-crystallin anti-apoptotic function in breast cancer and suggests new strategies to improve anti-cancer treatments.  相似文献   

19.
RegIIIβ is a member of the C-type lectin family called RegIII. It is known to bind peptidoglycan, and its bactericidal activity shapes the interactions with commensal and pathogenic gut bacteria. However, little is known about its carbohydrate recognition specificity and the bactericidal mechanism, particularly against Gram-negative bacteria. Here, we show that RegIIIβ can bind directly to LPS by recognizing the carbohydrate moiety of lipid A via a novel motif that is indispensable for its bactericidal activity. This bactericidal activity of RegIIIβ could be inhibited by preincubation with LPS, lipid A, or gentiobiose. The latter is a disaccharide composed of two units of β-(1→6)-linked d-glucose and resembles the carbohydrate moiety of lipid A. Therefore, this structural element may form a key target site recognized by RegIIIβ. Using point-mutated RegIIIβ proteins, we found that amino acid residues in two structural motifs termed “loop 1” and “loop 2,” are important for peptidoglycan and lipid A binding (Arg-135, Asp-142) and for the bactericidal activity (Glu-134, Asn-136, Asp-142). Thus, the ERN motif and residue Asp-142 in the loop 2 are of critical importance for RegIIIβ function. This provides novel insights into the carbohydrate recognition specificity of RegIIIβ and explains its bactericidal activity against Gram-negative bacteria.  相似文献   

20.
We have applied small angle x-ray scattering and protein cross-linking coupled with mass spectrometry to determine the architectures of full-length HIV integrase (IN) dimers in solution. By blocking interactions that stabilize either a core-core domain interface or N-terminal domain intermolecular contacts, we show that full-length HIV IN can form two dimer types. One is an expected dimer, characterized by interactions between two catalytic core domains. The other dimer is stabilized by interactions of the N-terminal domain of one monomer with the C-terminal domain and catalytic core domain of the second monomer as well as direct interactions between the two C-terminal domains. This organization is similar to the “reaching dimer” previously described for wild type ASV apoIN and resembles the inner, substrate binding dimer in the crystal structure of the PFV intasome. Results from our small angle x-ray scattering and modeling studies indicate that in the absence of its DNA substrate, the HIV IN tetramer assembles as two stacked reaching dimers that are stabilized by core-core interactions. These models of full-length HIV IN provide new insight into multimer assembly and suggest additional approaches for enzyme inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号