首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The functional 20-hydroxyecdysone (20E) receptor is a heterodimer of two members of the nuclear hormone receptors superfamily; the product of the EcR (EcR) and of the ultraspiracle (Usp) genes. As most of the natural 20E-response elements are highly degenerated palindromes, we were interested in determining whether or not such asymmetric elements could dictate the defined orientation of the Usp/EcR complex. We have investigated interaction of EcR and Usp DNA-binding domains (EcRDBD and UspDBD, respectively) with the palindromic response element from the hsp27 gene promoter (hsp27pal). The hsp27pal half-sites contribute differently to the binding of the heterodimer components; the 5' half-site exhibits higher affinity for both DBDs than the 3' half-site. This observation, along with data demonstrating that UspDBD exhibits approximate fourfold higher affinity to the 5' half-site than EcRDBD, suggest that UspDBD locates the EcRDBD/UspDBD heterocomplex in the defined orientation (5'-UspDBD-EcRDBD-3') on the hsp27pal sequence. The binding polarity onto hsp27pal is accompanied by different contribution of the UspDBD and EcRDBD C-terminal sequences to the DNA-binding and heterocomplex formation. This is supported by finding that deletion of the C-terminal of EcRDBD region corresponding to the putative A-helix severely decreased binding of the EcRDBD to the hsp27pal. In contrast, UspDBD in which corresponding residues were deleted exhibited the same hsp27pal binding pattern as the wild type UspDBD. Additional truncation comprising the putative T-box, resulted in a reduced binding of the mutated UspDBD. This truncation however, still allowed effective EcRDBD/UspDBD heterodimer formation. Finally we demonstrated that perfect palindromes, composed of two hsp27pal 5' half-sites (or of the related sequence) contain all of the structural information necessary for the anisotropic UspDBD/EcRDBD heterocomplex formation. However, the perfect palindromes bind isolated homomeric DBDs as well as their heterocomplex with higher affinity than imperfect hsp27pal. This is the first report indicating that natural 20E response elements, which with one exception are degenerated palindromes, may act as functionally asymmetric elements in a manner similar to the action of direct repeats in vertebrates.  相似文献   

2.
The heterodimer of the ecdysone receptor (EcR) and ultraspiracle (Usp), members of the nuclear receptors superfamily, regulates gene expression associated with molting and metamorphosis in insects. The DNA binding domains (DBDs) of the Usp and EcR play an important role in their DNA-dependent heterodimerization. Analysis of the crystal structure of the UspDBD/EcRDBD heterocomplex from Drosophila melanogaster on the hsp27 gene response element, suggested an appreciable similarity between both DBDs. However, the chemical denaturation experiments showed a categorically lower stability for the EcRDBD in contrast to the UspDBD. The aim of our study was an elucidation of the molecular basis of this intriguing instability. Toward this end, we mapped the EcRDBD amino acid sequence positions which have an impact on the stability of the EcRDBD. The computational protein design and in vitro analyses of the EcRDBD mutants indicate that non-conserved residues within the α-helix 2, forming the EcRDBD hydrophobic core, represent a specific structural element that contributes to instability. In particular, the L58 appears to be a key residue which differentiates the hydrophobic cores of UspDBD and EcRDBD and is the main reason for the low stability of the EcRDBD. Our results might serve as a benchmark for further studies of the intricate nature of the EcR molecule.  相似文献   

3.
The steroid hormone, 20-hydroxyecdysone (20E), directs Drosophila metamorphosis via a heterodimeric receptor formed by two members of the nuclear hormone receptors superfamily, the product of the EcR (EcR) and of the ultraspiracle (Usp) genes. Our previous study [Niedziela-Majka, A., Kochman, M., Ozyhar, A. (2000) Eur. J. Biochem. 267, 507-519] on EcR and Usp DNA-binding domains (EcRDBD and UspDBD, respectively) suggested that UspDBD may act as a specific anchor that preferentially binds the 5' half-site of the pseudo-palindromic response element from the hsp27 gene promoter and thus locates the heterocomplex in the defined orientation. Here, we analyzed in detail the determinants of the UspDBD interaction with the hsp27 element. The roles of individual amino acids in the putative DNA recognition alpha helix and the roles of the base pairs of the UspDBD target sequence have been probed by site-directed mutagenesis. The results show how the hsp27 element specifies UspDBD binding and thus the polar assembly of the UspDBD/EcRDBD heterocomplex. It is suggested how possible nucleotide deviations within the 5' half-site of the element may be used for the fine-tuning of the 20E-response element specificity and consequently the physiological response.  相似文献   

4.
The ecdysone receptor (EcR) and the ultraspiracle protein (Usp) form the functional receptor for ecdysteroids that initiates metamorphosis in insects. The Usp and EcR DNA-binding domains (UspDBD and EcRDBD, respectively) form a heterodimer on the natural pseudopalindromic element from the hsp27 gene promoter. The conformational changes in the protein-DNA during the formation of the UspDBD-EcRDBD-hsp27 complex were analyzed. Recombined UspDBD and EcRDBD proteins were purified and fluorescein labeled (FL) using the intein method at the C-ends of both proteins. The changes in the distances from the respective C-ends of EcRDBD and/or UspDBD to the 5'- and/or 3'-end of the response element were measured using fluorescence resonance energy transfer (FRET) methodology. The binding of EcRDBD induced a strong conformational change in UspDBD and caused the C-terminal fragment of the UspDBD molecule to move away from both ends of the regulatory element. UspDBD also induced a significant conformational change in the EcRDBD molecule. The EcRDBD C-terminus moved away from the 5'-end of the regulatory element and moved close to the 3'-end. An analysis was also done on the effect that DHR38DBD, the Drosophila ortholog of the mammalian NGFI-B, had on the interaction of UspDBD and EcRDBD with hsp27. FRET analysis demonstrated that hsp27 bending was induced by DHR38DBD. Fluorescence data revealed that hsp27 had a shorter end-to-end distance both in the presence of EcRDBD as well as in the presence of EcRDBD together with DHR38DBD, with DNA bend angles of about 36.2° and 33.6°, respectively. A model of how DHR38DBD binds to hsp27 in the presence of EcRDBD is presented.  相似文献   

5.
The telomere repeat units of Candida species are substantially longer and more complex than those in other organisms, raising interesting questions concerning the recognition mechanisms of telomere-binding proteins. Herein we characterized the properties of Candida parapsilosis Cdc13A and Cdc13B, two paralogs that are responsible for binding and protecting the telomere G-strand tails. We found that Cdc13A and Cdc13B can each form complexes with itself and a heterodimeric complex with each other. However, only the heterodimer exhibits high-affinity and sequence-specific binding to the telomere G-tail. EMSA and crosslinking analysis revealed a combinatorial mechanism of DNA recognition, which entails the A and B subunit making contacts to the 3′ and 5′ region of the repeat unit. While both the DBD and OB4 domain of Cdc13A can bind to the equivalent domain in Cdc13B, only the OB4 complex behaves as a stable heterodimer. The unstable Cdc13ABDBD complex binds G-strand with greatly reduced affinity but the same sequence specificity. Thus the OB4 domains evidently contribute to binding by promoting dimerization of the DBDs. Our investigation reveals a rare example of combinatorial recognition of single-stranded DNA and offers insights into the co-evolution of telomere DNA and cognate binding proteins.  相似文献   

6.
The nonstandard molecular beacon described in this article consists of 2 fragments, each built of a short single-stranded oligonucleotide sequence and a double-stranded sequence. One of these hybridization probes, labeled with a fluorescence donor (fluorescein), is solid phase immobilized. The second nonimmobilized probe is labeled with a fluorescence quencher (dabcyl). Annealing of both probes via single-stranded sequences was possible only in the presence of a specific protein molecule that recognized the response element sequence initially separated between the immobilized and nonimmobilized fragments. The system was applied successfully to detect the sequence-specific interaction of a natural hsp27 response element from the promoter of the hsp27 gene with the DNA binding domains of 2 nuclear receptor proteins: ultraspiracle Usp (UspDBD) and the ecdysone receptor EcR (EcRDBD). Measured in the absence of EcRDBD, the dissociation constant, K(d) of the UspDBD-hsp27 complex, was determined to be 3.26 nM, whereas for UspDBD devoid of the A-box (UspDBDDeltaA-hsp27 ), the dissociation constant was 4.81 nM. The respective K(d) values in the presence of EcRDBD were 2.43 nM and 10.80 nM. The results obtained with the immobilized molecular beacon technology were in agreement with those obtained by conventional fluorescence titrations and by fluorescence resonance energy transfer measurements with nonimmobilized beacons.  相似文献   

7.
Ecdysteroids control molting and metamorphosis in insects via a heterodimeric complex of two nuclear receptors, the ecdysone receptor (EcR) and ultraspiracle protein (Usp). We used fluorescence resonance energy transfer (FRET) to study the topology of the natural pseudopalindromic element from the hsp27 gene (hsp27pal) in complex with the DNA-binding domains of Usp and EcR (UspDBD and EcRDBD, respectively). Steady-state data revealed shortening of the end-to-end distance of the hsp27pal-derived probe. For the 70.8 +/- 0.6 A distance obtained for the UspDBD-complexed DNA a bend of about 23.1 +/- 2.9 degrees was measured. Nearly the same value (23.0 +/- 3.4 degrees) was obtained for the DNA complexed with the UspDBD/EcRDBD heterodimer. The respective bend angles estimated using fluorescence decay measurements were 19.0 +/- 2.1 degrees and 20.9 +/- 3.6 degrees . Thus, the FRET data suggest for the first time that the UspDBD defines the architecture of the UspDBD/EcRDBD heterocomplex due to the significant deformation of the hsp27pal. This suggestion has been further reinforced using gel retardation experiments, which, in conjunction with high-resolution DNase I footprinting, indicate that the main contribution to the observed bend is given by the UspDBD itself, while binding of the EcRDBD molecule brings on a slight additional change of the preformed structure.  相似文献   

8.
Binding of the Bacillus subtilis LexA protein to the SOS operator   总被引:3,自引:0,他引:3       下载免费PDF全文
The Bacillus subtilis LexA protein represses the SOS response to DNA damage by binding as a dimer to the consensus operator sequence 5′-CGAACN4GTTCG-3′. To characterize the requirements for LexA binding to SOS operators, we determined the operator bases needed for site-specific binding as well as the LexA amino acids required for operator recognition. Using mobility shift assays to determine equilibrium constants for B.subtilis LexA binding to recA operator mutants, we found that several single base substitutions within the 14 bp recA operator sequence destabilized binding enough to abolish site-specific binding. Our results show that the AT base pairs at the third and fourth positions from the 5′ end of a 7 bp half-site are essential and that the preferred binding site for a LexA dimer is 5′-CGAACATATGTTCG-3′. Binding studies with LexA mutants, in which the solvent accessible amino acid residues in the putative DNA binding domain were mutated, indicate that Arg-49 and His-46 are essential for binding and that Lys-53 and Ala-48 are also involved in operator recognition. Guided by our mutational analyses as well as hydroxyl radical footprinting studies of the dinC and recA operators we docked a computer model of B.subtilis LexA on the preferred operator sequence in silico. Our model suggests that binding by a LexA dimer involves bending of the DNA helix within the internal 4 bp of the operator.  相似文献   

9.
The human nuclear single-stranded (ss) DNA- binding protein, replication protein A (RPA), is a heterotrimer consisting of three subunits: p70, p32 and p14. The protein–DNA interaction is mediated by several DNA-binding domains (DBDs): two major (A and B, also known as p70A and p70B) and several minor (C and D, also known as p70C and p32D, and, presumably, by p70N). Here, using crosslinking experiments, we investigated an interaction of RPA deletion mutants containing a subset of the DBDs with partial DNA duplexes containing 5′-protruding ssDNA tails of 10, 20 and 30 nt. The crosslinks were generated using either a ‘zero-length’ photoreactive group (4-thio-2′-deoxyuridine-5′-monophosphate) embedded in the 3′ end of the DNA primer, or a group connected to the 3′ end by a lengthy linker (5-{N-[N-(4-azido-2,5-difluoro-3- chloropyridine-6-yl)-3-aminopropionyl]-trans-3-aminopropenyl-1}-2′-deoxyuridine-5′-monophosphate). In the absence of two major DBDs, p70A and p70B, the RPA trimerization core (p70C·p32D·p14) was capable of correctly recognizing the primer– template junction and adopting an orientation similar to that in native RPA. Both p70C and p32D contributed to this recognition. However, the domain contribution differed depending on the size of the ssDNA. In contrast with the trimerization core, the RPA dimerization core (p32D·p14) was incapable of detectably recognizing the DNA- junction structures, suggesting an orchestrating role for p70C in this process.  相似文献   

10.
DdrA protein binds to and protects 3′ DNA ends and is essential for preserving the genome integrity of Deinococcus radiodurans following treatment by gamma radiation in an environment lacking nutrients. Limited proteolysis was used to identify a stable and functional protein core, designated DdrA157, consisting of the first 157 residues of the protein. In vitro, the biochemical differences between wild-type and mutant proteins were modest. DdrA exhibits a strong bias in binding DNA with 3′ extensions but not with 5′ extensions. The mutant DdrA157 exhibited a greater affinity for 5′ DNA ends but still bound to 3′ ends more readily. However, when we replaced the wild-type ddrA gene with the mutant gene for ddrA157, the resulting D. radiodurans strain became almost as sensitive to gamma radiation as the ddrA knockout strain. These results suggest that while the stable protein core DdrA157 is functional for DNA binding and protection assays in vitro, the carboxyl terminus is required for important functions in vivo. The C terminus may therefore be required for protein or DNA interactions or possibly as a regulatory region for DNA binding or activities not yet identified.  相似文献   

11.
How p53 binds DNA as a tetramer.   总被引:8,自引:1,他引:7       下载免费PDF全文
K G McLure  P W Lee 《The EMBO journal》1998,17(12):3342-3350
The p53 tumor suppressor protein is a tetramer that binds sequence-specifically to a DNA consensus sequence consisting of two consecutive half-sites, with each half-site being formed by two head-to-head quarter-sites (--><-- --><--). Each p53 subunit binds to one quarter-site, resulting in all four DNA quarter-sites being occupied by one p53 tetramer. The tetramerization domain forms a symmetric dimer of dimers, and two contrasting models have the two DNA-binding domains of each dimer bound to either consecutive or alternating quarter-sites. We show here that the two monomers within a dimer bind to a half-site (two consecutive quarter-sites), but not to separated (alternating) quarter-sites. Tetramers bind similarly, with the two dimers within each tetramer binding to pairs of half-sites. Although one dimer within the tetramer is sufficient for binding to one half-site in DNA, concurrent interaction of the second dimer with a second half-site in DNA drastically enhances binding affinity (at least 50-fold). This cooperative dimer-dimer interaction occurs independently of tetramerization and is a primary mechanism responsible for the stabilization of p53 DNA binding. Based on these findings, we present a model of p53 binding to the consensus sequence, with the tetramer binding DNA as a pair of clamps.  相似文献   

12.
Protein binding to DNA is a fundamental process in gene regulation. Methodologies such as ChIP-Seq and mapping of DNase I hypersensitive sites provide global information on this regulation in vivo. In vitro methodologies provide valuable complementary information on protein–DNA specificities. However, current methods still do not measure absolute binding affinities. There is a real need for large-scale quantitative protein–DNA affinity measurements. We developed QPID, a microfluidic application for measuring protein–DNA affinities. A single run is equivalent to 4096 gel-shift experiments. Using QPID, we characterized the different affinities of ATF1, c-Jun, c-Fos and AP-1 to the CRE consensus motif and CRE half-site in two different genomic sequences on a single device. We discovered that binding of ATF1, but not of AP-1, to the CRE half-site is highly affected by its genomic context. This effect was highly correlated with ATF1 ChIP-seq and PBM experiments. Next, we characterized the affinities of ATF1 and ATF3 to 128 genomic CRE and CRE half-site sequences. Our affinity measurements explained that in vivo binding differences between ATF1 and ATF3 to CRE and CRE half-sites are partially mediated by differences in the minor groove width. We believe that QPID would become a central tool for quantitative characterization of biophysical aspects affecting protein–DNA binding.  相似文献   

13.
We have examined binding of the CREB B-ZIP protein domain to double-stranded DNA containing a consensus CRE sequence (5′-TGACGTCA-3′), the related PAR, C/EBP and AP-1 sequences and the unrelated SP1 sequence. DNA binding was assayed in the presence or absence of MgCl2 and/or KCl using two methods: circular dichroism (CD) spectroscopy and electrophoretic mobility shift assay (EMSA). The CD assay allows us to measure equilibrium binding in solution. Thermal denaturation in 150 mM KCl indicates that the CREB B-ZIP domain binds all the DNA sequences, with highest affinity for the CRE site, followed by the PAR (5′-TAACGTTA-3′), C/EBP (5′-TTGCGCAA-3′) and AP-1 (5′-TGAGTCA-3′) sites. The addition of 10 mM MgCl2 diminished DNA binding to the CRE and PAR DNA sequences and abolished binding to the C/EBP and AP-1 DNA sequences, resulting in more sequence-specific DNA binding. Using ‘standard’ EMSA conditions (0.25× TBE), CREB bound all the DNA sequences examined. The CREB–CRE complex had an apparent Kd of ~300 pM, PAR of ~1 nM, C/EBP and AP-1 of ~3 nM and SP1 of ~30 nM. The addition of 10 mM MgCl2 to the polyacrylamide gel dramatically altered sequence-specific DNA binding. CREB binding affinity for CRE DNA decreased 3-fold, but binding to the other DNA sequences decreased >1000-fold. In the EMSA, addition of 150 mM KCl to the gels had an effect similar to MgCl2. The magnesium concentration needed to prevent non-specific electrostatic interactions between CREB and DNA in solution is in the physiological range and thus changes in magnesium concentration may be a cellular signal that regulates gene expression.  相似文献   

14.
15.
One of the problems that hamper the use of antisense DNAs as effective drugs is the non-specific binding of chemically-modified oligonucleotides to cellular proteins. We previously showed that the affinity of a model ssDNA-binding protein, the Ff gene 5 protein (g5p), was >300-fold higher for phosphorothioate-modified DNA (S-DNA) than for unmodified dA36, consistent with the propensity of S-DNA to bind indiscriminately to proteins. The current work shows that g5p binding is also sensitive to sugar and pyrimidine modifications used in antisense oligomers. Binding affinities of g5p for 10 36mer oligomers were quantitated using solution circular dichroism measurements. The oligomers contained C-5-propyne (prC), 2′-O-methyl (2′-O-Me) or 2′-OH (RNA) groups, alone or combined with the phosphorothioate modification. In agreement with reported increases in antisense activity, the addition of prC or 2′-O-Me modifications substantially reduced the affinity of oligomers for g5p by ~2-fold compared with the same DNA oligomer sequences containing only phosphorothioate linkages. That is, such modifications moderated the propensity of the phosphorothioate group to bind tightly to the g5p. The Ff g5p could be a useful model protein for assessing non-specific binding effects of antisense oligomer modifications.  相似文献   

16.
17.
The heterodimer of the ecdysone receptor (EcR) and ultraspiracle (Usp), members of the nuclear receptors superfamily, is considered as the functional receptor for ecdysteroids initiating molting and metamorphosis in insects. Here we report the 1.95Å structure of the complex formed by the DNA-binding domains (DBDs) the EcR and the Usp, bound to the natural pseudopalindromic response element. Comparison of the structure with that obtained previously, using an idealized response element, shows how the EcRDBD, which has been previously reported to possess extraordinary flexibility, accommodates DNA-induced structural changes. Part of the C-terminal extension (CTE) of the EcRDBD folds into an α-helix whose location in the minor groove does not match any of the locations previously observed for nuclear receptors. Mutational analyses suggest that the α-helix is a component of EcR-box, a novel element indispensable for DNA-binding and located within the nuclear receptor CTE. This element seems to be a general feature of all known EcRs.  相似文献   

18.
19.
20.
A gel-filtration assay has been developed with which the specific interaction between Drosophila melanogaster ecdysteroid receptor and the 20-hydroxy-ecdysone responsive element of the hsp27 gene promoter region was characterized in terms of complex formation, saturation of DNA binding and the apparent molecular mass of the complex. The hsp27 DNA-binding sequence for ecdysteroid receptor in vitro was delimited by footprinting and mutational analysis. The combined results show that ecdysteroid receptor binds as a dimer to an imperfect palindromic sequence (GGTTCAATGCACT) closely resembling the structures of the different vertebrate steroid-hormone-responsive elements reported so far.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号