首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Identification of transmitted/founder simian immunodeficiency virus (SIV) envelope sequences responsible for infection may prove critical for understanding HIV/SIV mucosal transmission. We used single genome amplification and phylogenetic analyses to characterize transmitted/founder SIVs both in the inoculum and in immunized-infected rhesus monkeys. Single genome amplification of the SIVsmE660 inoculum revealed a maximum diversity of 1.4%. We also noted that the consensus sequence of the challenge stock differed from the vaccine construct in 10 amino acids including 3 changes in the V4 loop. Viral env was prepared from rhesus plasma in 3 groups of 6 immunized with vesicular stomatitis virus (VSV) vectors and boosted with Semliki forest virus (SFV) replicons expressing (a) SIVsmE660 gag-env (b) SIVsmE660 gag-env plus rhesus GM-CSF and (c) control influenza hemagglutinin protein. Macaques were immunized twice with VSV-vectors and once with SFV vector and challenged intrarectally with 4000 TCID50. Single genome amplification characterized the infections of 2 unprotected animals in the gag-env immunized group, both of which had reduced acute plasma viral loads that ended as transient infections indicating partial immune control. Four of 6 rhesus were infected in the gag-env + GM-CSF group which demonstrated that GM-CSF abrogated protection. All 6 animals from the control group were infected having high plasma viral loads. We obtained 246 full-length envelope sequences from SIVsmE660 infected macaques at the peak of infection and determined the number of transmitted/founder variants per animal. Our analysis found that 2 of 2 gag-env vaccinated but infected macaques exhibited single but distinct virus envelope lineages whereas rhesus vaccinated with gag-env-GM-CSF or HA control exhibited both single and multiple env lineages. Because there were only 2 infected animals in the gag-env vaccinated rhesus compared to 10 infected rhesus in the other 2 groups, the significance of finding single env variants in the gag-env vaccinated group could not be established.  相似文献   

2.
Simian immunodeficiency virus (SIV) infection of natural-host species, such as sooty mangabeys (SMs), is characterized by a high level of viral replication and a low level of generalized immune activation, despite evidence of an adaptive immune response. Here the ability of SIV-infected SMs to mount neutralizing antibodies (Nab) against autologous virus was compared to that of human immunodeficiency virus type 1 (HIV-1) subtype C-infected subjects. While high levels of Nab were observed in HIV-1 infection, samples obtained at comparable time points from SM exhibited relatively low titers of autologous Nab. Nevertheless, SM plasma with higher Nab titers also contained elevated peripheral CD4+ T-cell levels, suggesting a potential immunologic benefit for SMs. These data indicate that AIDS resistance in these primates is not due to high Nab titers and raise the possibility that low levels of Nab might be an inherent feature of natural-host SIV infections.More than 40 species of African nonhuman primates (NHPs) naturally harbor CD4+-tropic lentiviruses that are collectively known as simian immunodeficiency viruses (SIVs) and represent the ancestors of the human pathogens human immunodeficiency virus type 1 (HIV-1) and HIV-2. Interestingly, African NHPs infected with their cognate SIV generally do not progress to AIDS, despite high levels of sustained virus replication, with the only known exception being chimpanzee SIV (SIVcpz)-infected chimpanzees (16). Among the natural hosts for SIV infection, the sooty mangabey ([SM] Cercocebus atys) is of particular interest, because cross-species transmission of SM SIV (SIVsm) from this natural host into humans initiated the HIV-2 epidemic in West Africa (17). In addition, SIVsm (herein referred to as SIV) is the ancestor of the rhesus macaque SIV (SIVmac) viruses that are used in disease pathogenesis and vaccination studies in the rhesus macaque model (17). Both naturally infected and experimentally inoculated SMs remain healthy, maintain CD4+ T cells, and do not progress to AIDS-like disease, despite sustained high levels of virus replication (31).Nonpathogenic infection of SMs is characterized by low levels of immune activation during the chronic phase of infection, which are reached after a transient immune activation that occurs during primary infection (reviewed in reference 31). These findings have led to the hypothesis that the absence of generalized immune activation in SIV-infected SMs during the chronic phase of infection is an important feature that favors the preservation of CD4+ T-cell homeostasis, thereby avoiding disease progression (31). However, most of these earlier studies focused on T cells and innate immune cells, with a significant gap existing in our understanding of whether humoral immunity might also differ between pathogenic and nonpathogenic infections. In HIV-1-infected patients, B cells produce neutralizing antibodies against the infecting (autologous) virus, which drives viral escape, continuous de novo antibody production (26-28, 32), and B-cell dysfunction (24). The striking differences in both the clinical outcomes of infection and the levels of immune activation between SIV-infected SMs and HIV-1-infected humans prompted us to compare the neutralizing antibody (Nab) response against the autologous virus in these two populations. To this end, we utilized a pseudovirus assay that has been used extensively by our group and others to evaluate Nab against HIV-1 and SIV envelope (Env) glycoproteins (15, 19, 22, 26, 28, 32, 33; also unpublished data). All SMs were housed at the Yerkes National Primate Research Center (Atlanta, GA) and maintained in accordance with National Institutes of Health guidelines. The Emory University Animal Care and Use Committee approved these studies. Details of the Zambia Emory HIV Research Project (ZEHRP) have been described elsewhere (2, 10, 21). The Emory University Institutional Review Board and the University of Zambia School of Medicine Research Ethics Committee approved informed-consent and human subject protocols. None of the subjects received antiretroviral therapy during the evaluation period.In HIV-1 infection, autologous Nabs develop to relatively high titers against the newly transmitted virus within the first few months (15, 19, 26-28, 32). Here we sought to test whether a similar increase in Nab titer occurs during nonpathogenic SIV infection of SMs. Samples were obtained from five animals that were inoculated intravenously with plasma from a naturally infected SM as part of a previous study (30). Multiple, biologically functional Envs were cloned from plasma collected at day 14 postinoculation (Table (Table1),1), and Nab activity was evaluated in plasma collected at 6 months postinoculation. To facilitate comparison with early HIV-1 infection, Nab activity in plasma was also evaluated between 2 and 9 months against Envs that were cloned between 31 and 88 estimated days after infection from four subtype C HIV-1-infected seroconverters in Zambia (Table (Table1).1). Figure Figure1A1A demonstrates that Nab activity in plasma diluted 1:100 was readily detectable in all HIV-1-infected subjects at levels approaching 100% neutralization. However, Nab activity in the SM plasma was significantly lower than in the human subjects (median, 10% versus 93%, respectively; P = 0.02). Binding antibody was detected in all five SMs at titers greater than 1:51,200 by enzyme-linked immunosorbent assay (ELISA), demonstrating that all monkeys had seroconverted by 6 months and maintained high titers of binding antibody throughout the evaluation period (Fig. (Fig.1B).1B). Thus, the low level of Nab was not due to a diminished humoral immune response.Open in a separate windowFIG. 1.Autologous Nab activity and B-cell proliferation during experimental infection of SMs. (A) Neutralization activity levels in plasma from five SMs (filled black circles), which were experimentally inoculated with plasma from a naturally SIV-infected SM, and four HIV-1-infected Zambian subjects (half-filled squares), who were recently infected through heterosexual contact, are shown. The horizontal bars represent the median for each group. To assess neutralizing activity, pseudoviruses were created by expressing each cloned Env with an HIV-1 env-deficient backbone (ΔSG3). JC53-BL (Tzm-bl) cells were infected with each pseudovirus in the presence or absence of serially diluted autologous plasma. Each point represents the average level of neutralization at a 1:100 dilution of plasma for at least two Env clones (see Table Table11 for number of Envs tested). Each neutralization assay was performed twice independently, using duplicate wells. Statistical significance between the groups was determined by a Mann-Whitney test, using GraphPad Prism 5. Longitudinal measurements of endpoint antibody ELISA titers in plasma (filled green circles) (23) (B), autologous neutralization activity in plasma (filled blue diamonds) (C), percentages of Ki-67+ CD20+ cells in blood (filled black triangles) (D), and percentages of CD20+ cells in blood (filled red squares) (E) are shown for the five experimentally inoculated SMs combined. In panel C, each point represents average neutralization at a 1:100 dilution of plasma over time for at least two day 14 Env clones from each SM. For panels D and E, PBMCs were gated by forward and side scatter, and the CD3 CD20+ population was assessed for Ki-67 staining (D) by flow cytometry. SP34-2 was used to stain CD3, L27 was used for CD20, and B56 was used for Ki-67 (all from BD Biosciences). Error bars represent the standard errors of the means (SEMs). Plasma viral load peaked at day 14 (data not shown). Filled symbols in panels A through E indicate data generated from experimentally infected SMs.

TABLE 1.

Autologous Nab activity in experimentally SIV-infected SM and acutely HIV-1-infected humans
Subject IDaVirusNo. of mo postinfection Nab activity was evaluatedNo. of days postinfection Envs were cloned from plasmaNo. of Envs tested% neutralization at a 1:100 dilution of plasma
FuvSIVsm-Fuo614416.3
FSsSIVsm-Fuo614310.6
FWvSIVsm-Fuo614510.5
FFsSIVsm-Fuo614210.3
FRsSIVsm-Fuo61439.3
185FHIV-1533494.6
153MHIV-1988594.3
221MHIV-1631691.5
205FHIV-1248587.1
Open in a separate windowaID, identification.The low level of Nab activity observed in the five experimentally inoculated SMs persisted for 16 months and did not exceed 50% at a 1:100 dilution of plasma at any time point tested (Fig. (Fig.1C).1C). In contrast, the high levels of Nab activity in the HIV-1-infected subjects persisted for over 2 years, often exceeding 50% inhibitory titers of 1:3,000 against the early virus, as is characteristic of early subtype C HIV-1 infection (15, 19, 26, 28). Figure Figure1D1D demonstrates that a transient increase in proliferating B cells, as measured by positive Ki-67 staining (12), occurred in the SMs and peaked around day 30 postinfection and then declined to a level just above baseline by day 60. Analysis using a Wilcoxon signed-rank test for paired samples showed that the percentages of Ki-67-positive (Ki-67+) B cells were higher at days 21 and 30 than at day −5, reaching borderline significance at both time points (P = 0.06). In contrast, the percentages of Ki-67+ B cells on days 60 and 475 were not significantly different from that on day −5 (P = 0.8 and 0.3, respectively). An early but transient decrease in the percentage of circulating CD20+ B cells was also observed during the initial 20 days of infection (Fig. (Fig.1E).1E). Thus, the B-cell compartment within the SM underwent changes consistent with immune activation followed by resolution. Based on these results, it does not appear that a global defect in the B-cell response in the SM can account for the low-level Nab response elicited.To investigate Nab responses during established infection, we extended this analysis to a panel of 11 naturally SIV-infected SMs in the Yerkes colony and 5 chronically HIV-1-infected subjects in Zambia. Envs were cloned from these monkeys and human subjects using peripheral blood mononuclear cell (PBMC) DNA or plasma samples, and sensitivity to Nab was evaluated. Because Nab activity against contemporaneous Env is often low or undetectable in HIV-1 infection (1, 5, 14, 25, 27, 28, 32), we evaluated plasma collected between 6 and 55 months after the Envs were cloned from each individual. Table Table22 shows that the SM Envs reflected the four SIV subtypes that circulate in the Yerkes colony (3). Figure Figure2A2A demonstrates that Nab activity in the chronically HIV-1-infected subjects was high (median, 91%), whereas in the naturally SIV-infected SMs it was again significantly lower (median, 14%; P = 0.003). Nevertheless, Nab activity in the naturally infected SMs exhibited a considerable range, from undetectable to 84% neutralization (Fig. (Fig.2A).2A). This observation prompted us to investigate whether parameters associated with disease progression in HIV-1 infection were correlated with the level of Nab activity. Figure Figure2B2B demonstrates that the number of CD4+ T cells was positively correlated with the potency of neutralization (r = 0.69; P = 0.02), while the plasma viral load showed a trend toward an inverse correlation with neutralization (Fig. (Fig.2C)2C) (r = −0.54; P = 0.08). A correlation between plasma viral load and autologous Nab titer in established HIV-1 infection has not been observed (9).Open in a separate windowFIG. 2.Autologous Nab activity and its correlation with CD4+ count and plasma viral load during established natural infection of SMs. (A) Neutralization activity levels in plasma from 11 naturally SIV-infected SMs in the Yerkes colony (open circles) and 5 chronically HIV-1-infected human subjects from Zambia (half-filled squares) are shown. Statistical significance between groups was determined by a Mann-Whitney test using GraphPad Prism 5. Correlation between Nab activity and CD3+ CD4+ T cell counts or plasma viral load in naturally infected SMs (open circles) is shown in panels (B) and (C), respectively. The percent neutralization at a 1:100 dilution of plasma (shown in panel A) is plotted along the x axis. Each CD4+ T cell count and viral load value represents the average of three measurements from samples collected from the 11 SMs approximately 1 year apart. The significance of each correlation was determined using a nonparametric Spearman test. Open circles indicate data from naturally infected SMs.

TABLE 2.

Autologous Nab activity in naturally SIV-infected SMs and HIV-1-infected humans with established infections
Subject IDaVirusEnv subtypeNo. of mo between plasma collection and Env cloningNo. of Envs tested% neutralization at 1:100 dilution of plasma
FWkSIVsm228584.4
FNnSIVsm131463.5
FFvSIVsm150459.7
FFmSIVsm130442.0
FNgSIVsm548428.0
FBnSIVsm349213.9
FDoSIVsm36512.0
FZoSIVsm12838.8
FOhSIVsm1624.7
FPnSIVsm13250.6
FFjSIVsm15420.0
109MHIV-1C6591.4
55MHIV-1C15891.3
135FHIV-1C16497.4
106MHIV-1C17579.4
153FHIV-1C55599.0
Open in a separate windowaID, identification.This study is the first to directly compare the Nab response against the autologous virus in nonpathogenic SIV versus HIV-1 infection, including evaluation of both the early, developing Nab response in acute infection and the mature response in chronic infection. A significant difference in the magnitude of Nab activity was apparent during both early and later time points, with relatively strong but ultimately ineffective neutralization activity developing and persisting into chronic infection in humans but not in SMs. Although the SIV and HIV-1 samples were obtained during similar stages of infection, the disparity in the magnitude of autologous Nab activity during early infection could in part reflect differences such as the route of infection (intravenous versus mucosal) or the complexity of the founder virus (a single variant in HIV-1 versus multiple variants in SIV). In addition, the production of SIV Env pseudoviruses in human 293T cells could have altered the glycosylation pattern or the proteins that are embedded within the virion, decreasing the neutralization susceptibility of the SIV Env pseudoviruses. However, production of a subset of these pseudoviruses in an African green monkey-derived cell line (COS-1) did not alter their Nab sensitivity (data not shown).Despite the lack of potent autologous Nab, both naturally and experimentally SIV-infected SMs produce antibodies that bind Env in ELISAs or Western blotting (4, 6, 13, 18, 23). It is possible that the SIV Env glycoproteins elicit a different profile of Nab than does HIV-1 Env. The potential for structural and biological differences between SIV and HIV-1 Envs has not been thoroughly investigated, although they would not be unexpected due to the low level of amino acid sequence conservation between them. SIVsm/HIV-2 lineage-derived Envs (i.e., the SIVmac series) show a “wide evolutionary distance” and lack of cross-reactivity with SIVcpz/HIV-1-derived Envs, with an overall sequence identity in gp120 of ∼25% across HIV-1, HIV-2, and SIVsm (7, 8). Clear biological differences in immunogenicity have been described for HIV-1 group M subtypes, which all derive from a common SIV ancestor (reviewed in reference 20). Furthermore, SM IgG antibody molecules have less flexibility in the hinge region than human IgG, which could lead to a failure of the SM antibodies to recognize recessed neutralization targets such as the receptor binding domains (29). Thus, HIV-1 Env could elicit neutralizing antibodies that are qualitatively different from those induced by SIV Env.Early resolution of immune activation could be a key feature that distinguishes nonpathogenic from pathogenic infection (12, 31). The data presented here are consistent with that hypothesis, in that signs of early B-cell proliferation were present in the experimentally infected SMs but were resolved and did not result in potent neutralizing activity. However, later in infection, the naturally infected SMs did develop low-to-moderate levels of Nab activity, and these levels were positively correlated with the number of peripheral CD4+ T cells. This finding suggests that synergy between CD4+ T cells and B cells is maintained in this nonpathogenic setting. Other biologic factors could contribute to this correlation; however, differences in age and viral subtype in this cohort of SMs could not explain this finding (data not shown).Taken together, these results indicate that a low level of autologous Nab activity is a novel and previously unappreciated feature of nonpathogenic SIV infection of SMs. The fact that high-titer Nabs are not necessary to avoid disease progression during SIV infection of SMs is consistent with the notion that the apathogenicity of natural SIV infections is not the result of particularly effective adaptive immune responses against the virus (11). It is possible that this low level of autologous Nab activity in SMs stems in part from antibody recognition of targets that are poorly exposed on the native SIV Env glycoproteins. A low level of neutralizing activity in SM may therefore have a protective effect because it does not drive viral escape or induce chronic immune activation in the B-cell compartment. Moreover, a low level of immune activation in B cells and/or preservation of CD4+ T cells could enhance the quality of the neutralizing antibody response. It will be important, in future work, to assess how this low level of autologous Nab activity in SIV-infected SMs meshes with the lower levels of immune activation and dysregulation observed in these animals. Understanding the qualitative and quantitative differences in the Nab response during pathogenic versus nonpathogenic infection could provide critical information regarding protection from AIDS.  相似文献   

3.
The evolution of envelope mutations by replicating primate immunodeficiency viruses allows these viruses to escape from the immune pressure mediated by neutralizing antibodies. Vaccine-induced anti-envelope antibody responses may accelerate and/or alter the specificity of the antibodies, thus shaping the evolution of envelope mutations in the replicating virus. To explore this possibility, we studied the neutralizing antibody response and the envelope sequences in rhesus monkeys vaccinated with either gag-pol-nef immunogens or gag-pol-nef immunogens in combination with env and then infected with simian immunodeficiency virus (SIV). Using a pseudovirion neutralization assay, we demonstrate that envelope vaccination primed for an accelerated neutralizing antibody response following virus challenge. To monitor viral envelope evolution in these two cohorts of monkeys, full-length envelopes from plasma virus isolated at weeks 37 and 62 postchallenge were sequenced by single genome amplification to identify sites of envelope mutations. We show that env vaccination was associated with a change in the pattern of envelope mutations. Prevalent mutations in sequences from gag-pol-nef vaccinees included deletions in both variable regions 1 and 4 (V1 and V4), whereas deletions in the env vaccinees occurred only in V1. These data show that env vaccination altered the focus of the antibody-mediated selection pressure on the evolution of envelope following SIV challenge.Immune containment of human immunodeficiency virus (HIV-1) is complicated by the continuous genetic evolution of the virus. The evolution of the HIV-1 envelope is shaped, in part, by selective pressure of neutralizing antibodies (6, 12, 27, 34-36, 40). Changes in envelope sequence and glycosylation patterns following infection can allow the virus to escape neutralization. If the rate and extent of envelope sequence evolution following infection can be decreased, immune containment of HIV-1 may be improved.One possible strategy for modifying envelope evolution is vaccination prior to infection. A vaccine-elicited memory immune response could focus and potentiate the humoral immune response that develops following infection. The possible consequence of vaccination has not been assessed, however, because of the limited number of human volunteers who have received highly immunogenic envelope immunogens and subsequently became infected with HIV-1.Simian immunodeficiency virus (SIV) infection of rhesus monkeys provides a powerful model to study the effect of vaccination on envelope evolution. Like HIV-1, SIV employs both the CD4 molecule and the chemokine receptor CCR5 to enter a target cell and cause an AIDS-like disease in macaques (16, 22). Both SIV and HIV-1 envelopes are heavily glycosylated, with approximately 50% of their mass derived from carbohydrates (14, 21). SIV and HIV-1 envelopes share approximately 40% amino acid homology (10, 11) and have overlapping variable and constant regions, although the variable region 3 (V3) of HIV-1 envelope does not align with the homologous region of SIV envelope (7). Following SIV infection in rhesus monkeys, SIV envelope evolves most rapidly in variable regions 1 and 4 (V1 and V4, respectively), leading to nucleotide additions, deletions, and/or mutations that can potentially translate to changes in glycosylation (7, 9, 13, 15, 19, 29, 30).Studies done to characterize SIV neutralization suggest that it occurs through mechanisms similar to those seen in HIV-1 neutralization. Amino acid mutations in the envelope of both viruses contribute to the evasion of antibody binding directly by changing recognition sequences and/or envelope conformation. In addition, the glycosylation of envelope serves as a further obstacle to antibody recognition (20, 33, 40). Considerable effort has been devoted to defining neutralizing epitopes of the HIV and SIV envelopes. The known neutralizing human monoclonal antibodies elicited during natural infection are directed against HIV-1 envelope target sites on both gp120 and gp41, including the V3 region, the CD4 binding site, oligomannose residues of gp120, and gp41 (17, 31). The neutralizing epitope profile of SIV envelope includes the CD4 binding site and gp41 but not the V3 region. There is conflicting evidence as to whether V1, V2, and/or V4 of SIV are targets for antibody neutralization (15, 18, 19). The present study addresses whether vaccine-induced immune responses accelerate the generation of autologous neutralizing antibodies following SIV challenge in rhesus monkeys and how this humoral immune response can potentially shape viral sequence evolution.  相似文献   

4.
5.
Coinfection with human T-cell lymphotropic virus type 2 (HTLV-2) and human immunodeficiency virus type 1 (HIV-1) has been reported to have either a slowed disease course or to have no effect on progression to AIDS. In this study, we generated a coinfection animal model and investigated whether HTLV-2 could persistently infect macaques, induce a T-cell response, and impact simian immunodeficiency virus SIVmac251-induced disease. We found that inoculation of irradiated HTLV-2-infected T cells into Indian rhesus macaques elicited humoral and T-cell responses to HTLV-2 antigens at both systemic and mucosal sites. Low levels of HTLV-2 provirus DNA were detected in the blood, lymphoid tissues, and gastrointestinal tracts of infected animals. Exposure of HTLV-2-infected or naïve macaques to SIVmac251 demonstrated comparable levels of SIVmac251 viral replication, similar rates of mucosal and peripheral CD4+ T-cell loss, and increased T-cell proliferation. Additionally, neither the magnitude nor the functional capacity of the SIV-specific T-cell-mediated immune response was different in HTLV-2/SIVmac251 coinfected animals versus SIVmac251 singly infected controls. Thus, HTLV-2 targets mucosal sites, persists, and importantly does not exacerbate SIVmac251 infection. These data provide the impetus for the development of an attenuated HTLV-2-based vectored vaccine for HIV-1; this approach could elicit persistent mucosal immunity that may prevent HIV-1/SIVmac251 infection.Human T-cell lymphotropic virus type 2 (HTLV-2) was discovered in 1982 and recognized as the second human retrovirus found (29). HTLV-2 is closely related to the first human retrovirus discovered, HTLV-1 (49, 50), a pathogenic virus that causes adult T-cell leukemia/lymphoma (ATLL) and an inflammatory neurologic disorder called HTLV-1-associated myelopathy or tropical spastic paraparesis (HAM/TSP) (22, 45).HTLV-2 is prevalent in Amerindian populations of North and South America and in Africa (57). The prevalence of HTLV-2 is generally low; however, in the past 20 years, an epidemic of HTLV-2 infection has occurred among intravenous drug users (8, 24, 54, 57). HTLV-2 establishes a lifelong infection and replicates at low levels in most infected individuals. While anecdotal cases of TSP/HAM-like neurological manifestations (1, 44) and hematopoietic diseases, such as large granular lymphoma (LGL), in HTLV-2-infected individuals have been reported (3, 37-39, 46), the extent to which HTLV-2 can induce disease in humans remains unclear. Indeed, even in the condition of immune deficiency, such as infection with human immunodeficiency virus type 1 (HIV-1), HTLV-2 coinfection has not been reported to be associated with cancer or neurological diseases. However, more studies are necessary to fully understand the role of HTLV-2 in human disease. While HTLV-1 infection has been connected with an accelerated course of disease in HIV-1 coinfected patients (2, 34), HTLV-2 has been reported to either have no effect (26) or suggested to exert a potential protective role during HIV-1 infection (12, 23). This protective role is thought to be due to a maintenance of CD4+ T cells, lowering immune activation, and delayed progression to AIDS (4, 5). In addition, modulation of cytokine and chemokine networks by HTLV-2 has been suggested to contribute to the control of HIV-1 infection (12, 36, 47). Since studies on the immunological interactions between HIV-1 and HTLV-2 have been performed in patients coinfected with HIV-1 and HTLV-2 in the chronic phase of HIV-1 disease, little is known about the effects of HTLV-2 infection during acute HIV-1 replication, mucosal CD4+ T-cell depletion, or HIV-1-specific immune responses. Furthermore, the potential protective effect of an HTLV-2 vector that would target both CD4+ and CD8+ T cells and induce a low-grade persistent infection makes HTLV-2 an interesting potential vaccine platform for an HIV-1 vaccine.Current HIV-1 vaccine strategies have focused on viral vectors delivering HIV-1 antigens. These vectors stimulate strong, systemic antigen-specific responses but are unable to protect from infection, since they generate only limited mucosal responses and do not persist. The only vaccine approach that has conferred protection in the simian immunodeficiency virus SIVmac251 macaque model is a live attenuated virus (17), suggesting that persistent expression of viral antigens in mucosal and lymphoid tissues may be necessary. An HTLV-2 vector expressing HIV-1 antigens at mucosal sites that stimulates and maintains T-cell responses in the gut may confer protection from infection by quickly eliminating cells infected by the founder virus at the portal of entry. This study establishes that the Indian rhesus macaque model for HTLV-2 infection is a suitable model to test this hypothesis, as it demonstrates that HTLV-2 targets systemic, lymphoid, as well as mucosal tissues of rhesus macaques. HTLV-2 infection induces humoral as well as cell-mediated immune responses, and importantly, T-cell responses can be found at both systemic and mucosal sites. In this study, we demonstrate that the viral and T-cell dynamics of macaques dually infected with HTLV-2 and SIVmac251 are similar to those of macaques singly infected with SIVmac251.  相似文献   

6.
7.
The ability of recombinant rhesus interleukin-12 (rMamu-IL-12) administration during acute simian immunodeficiency virus SIVmac251 infection to influence the quality of the antiviral immune responses was assessed in rhesus macaques. Group I (n = 4) was the virus-only control group. Group II and III received a conditioning regimen of rMamu-IL-12 (10 and 20 microg/kg, respectively, subcutaneously [s.c.]) on days -2 and 0. Thereafter, group II received 2 microg of IL-12 per kg and group III received 10 microg/kg s.c. twice a week for 8 weeks. On day 0 all animals were infected with SIVmac251 intravenously. While all four group I animals and three of four group II animals died by 8 and 10 months post infection (p.i.), all four group III animals remained alive for >20 months p.i. The higher IL-12 dose led to lower plasma viral loads and markedly lower peripheral blood mononuclear cell and lymph node proviral DNA loads. During the acute viremia phase, the high-IL-12-dose monkeys showed an increase in CD3(-) CD8 alpha/alpha(+) and CD3(+) CD8 alpha/alpha(+) cells and, unlike the control and low-IL-12-dose animals, did not demonstrate an increase in CD4(+) CD45RA(+) CD62L(+) naive cells. The high-IL-12-dose animals also demonstrated that both CD8 alpha/alpha(+) and CD8 alpha/beta(+) cells produced antiviral factors early p.i., whereas only CD8 alpha/beta(+) cells retained this function late p.i. Long-term survival correlated with sustained high levels of SIV gag/pol and SIV env cytotoxic T lymphocytes and retention of high memory responses against nominal antigens. This is the first study to demonstrate the capacity of IL-12 to significantly protect macaques from SIV-induced disease, and it provides a useful model to more precisely identify correlates of virus-specific disease-protective responses.  相似文献   

8.
Sooty mangabeys naturally infected with simian immunodeficiency virus (SIV) do not develop immunodeficiency despite the presence of viral loads of 105 to 107 RNA copies/ml. To investigate the basis of apathogenic SIV infection in sooty mangabeys, three sooty mangabeys and three rhesus macaques were inoculated intravenously with SIVmac239 and evaluated longitudinally for 1 year. SIVmac239 infection of sooty mangabeys resulted in 2- to 4-log-lower viral loads than in macaques and did not reproduce the high viral loads observed in natural SIVsmm infection. During acute SIV infection, polyclonal cytotoxic T-lymphocyte (CTL) activity coincident with decline in peak plasma viremia was observed in both macaques and mangabeys; 8 to 20 weeks later, CTL activity declined in the macaques but was sustained and broadly directed in the mangabeys. Neutralizing antibodies to SIVmac239 were detected in the macaques but not the mangabeys. Differences in expression of CD38 on CD8+ T lymphocytes or in the percentage of naive phenotype T cells expressing CD45RA and CD62L-selection did not correlate with development of AIDS in rhesus macaques. In macaques, the proportion of CD4+ T lymphocytes expressing CD25 declined during SIV infection, while in mangabeys, CD25-expressing CD4+ T lymphocytes increased. Longitudinal evaluation of cytokine secretion by flow cytometric analysis of unstimulated lymphocytes revealed elevation of interleukin-2 and gamma interferon in a macaque and only interleukin-10 in a concurrently infected mangabey during acute SIV infection. Differences in host responses following experimental SIVmac239 infection may be associated with the divergent outcome in sooty mangabeys and rhesus macaques.  相似文献   

9.
The efficacy of oral, intestinal, nasal, and vaginal vaccinations with DNA simian immunodeficiency virus (SIV)/interleukin-2 (IL-2)/IL-15, SIV Gag/Pol/Env recombinant modified vaccinia virus Ankara (rMVA), and AT-2 SIVmac239 inactivated particles was compared in rhesus macaques after low-dose vaginal challenge with SIVmac251. Intestinal immunization provided better protection from infection, as a significantly greater median number of challenges was necessary in this group than in the others. Oral and nasal vaccinations provided the most significant control of disease progression. Fifty percent of the orally and nasally vaccinated animals suppressed viremia to undetectable levels, while this occurred to a significantly lower degree in intestinally and vaginally vaccinated animals and in controls. Viremia remained undetectable after CD8+ T-cell depletion in seven vaccinated animals that had suppressed viremia after infection, and tissue analysis for SIV DNA and RNA was negative, a result consistent with a significant reduction of viral activity. Regardless of the route of vaccination, mucosal vaccinations prevented loss of CD4+ central memory and CD4+/α4β7+ T-cell populations and reduced immune activation to different degrees. None of the orally vaccinated animals and only one of the nasally vaccinated animals developed AIDS after 72 to 84 weeks of infection, when the trial was closed. The levels of anti-SIV gamma interferon-positive, CD4+, and CD8+ T cells at the time of first challenge inversely correlated with viremia and directly correlated with protection from infection and longer survival.  相似文献   

10.
A nef gene is present in all primate lentiviruses, including human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus of macaque monkeys (SIVmac). However, the nef genes of HIV-1 and SIVmac exhibit minimal sequence identity, and not all properties are shared by the two. Nef sequences of SIVmac239 were replaced by four independent nef alleles of HIV-1 in a context that was optimal for expression. The sources of the HIV-1 nef sequences included NL 4-3, a variant NL 4-3 gene derived from a recombinant-infected rhesus monkey, a patient nef allele, and a nef consensus sequence. Of 16 rhesus monkeys infected with these SHIVnef chimeras, 9 maintained high viral loads for prolonged periods, as observed with the parental SIVmac239, and 6 have died with AIDS 52 to 110 weeks postinfection. Persistent high loads were observed at similar frequencies with the four different SIV recombinants that expressed these independent HIV-1 nef alleles. Infection with other recombinant SHIVnef constructions resulted in sequence changes in infected monkeys that either created an open nef reading frame or optimized the HIV-1 nef translational context. The HIV-1 nef gene was uniformly retained in all SHIVnef-infected monkeys. These results demonstrate that HIV-1 nef can substitute for SIVmac nef in vivo to produce a pathogenic infection. However, the model suffers from an inability to consistently obtain persisting high viral loads in 100% of the infected animals, as is observed with the parental SIVmac239.  相似文献   

11.
12.
Monoclonal antibodies (MAbs) that neutralize human immunodeficiency virus type 1 (HIV-1) have been isolated from HIV-1-infected individuals or animals immunized with recombinant HIV-1 envelope (Env) glycoprotein constructs. The epitopes of these neutralizing antibodies (NAbs) were shown to be located on either the variable or conserved regions of the HIV-1 Env and to be linear or conformational. However, one neutralizing MAb, 2909, which was isolated from an HIV-1-infected subject, recognizes a more complex, quaternary epitope that is present on the virion-associated functional trimeric Env spike of the SF162 HIV-1 isolate. Here, we discuss the isolation of 11 anti-HIV NAbs that were isolated from three rhesus macaques infected with the simian/human immunodeficiency virus SHIVSF162P4 and that also recognize quaternary epitopes. A detailed epitope mapping analysis of three of these rhesus antibodies revealed that their epitopes overlap that of the human MAb 2909. Despite this overall similarity in binding, however, differences in specific amino acid and glycosylation pattern requirements for MAb 2909 and the rhesus MAbs were identified. These results highlight similarities in the B-cell responses of humans and macaques to structurally complex neutralization epitopes on related viruses, HIV-1 and SHIV.HIV-1 infection typically elicits high levels of antibodies directed against the viral surface envelope (Env) glycoprotein, gp160. The initial anti-Env antibody response is nonneutralizing (28), but within 1 or 2 months after infection, neutralizing antibodies (NAbs) emerge which tend to be highly strain specific for the autologous virus and exhibit little or no neutralizing activity against heterologous HIV-1 strains (10, 22). However, several recent reports have indicated that approximately 25% of HIV-1-infected, antiretroviral-naïve patients develop broad cross-neutralizing antibody responses (5, 23, 26). In some cases, these broad neutralizing antibody responses can be mapped to the CD4-binding site of Env while in most cases a single epitope specificity cannot be identified to recapitulate the neutralizing breadth of the corresponding plasma (1, 4, 14, 15, 23, 25). Detailed analyses of the epitope specificities of broad plasma neutralizing antibody responses performed by several groups revealed the presence in HIV-positive (HIV+) plasmas of NAbs with as yet undefined epitope specificities (1, 15, 18, 23). It is possible that these undefined specificities include quaternary neutralizing epitopes (QNEs) and/or sugar molecules which coat the HIV Env spike expressed on the surface of viral particles.The human monoclonal antibody (MAb) 2909 recognizes a QNE present on the oligomeric Env spike present on the surface of HIV-1 SF162 virions (8). MAb 2909 can bind and neutralize SF162 virions but does not bind to the corresponding soluble SF162 Env. The binding of MAb 2909 to its QNE depends on the presence of the second and third variable regions of gp120 (the V2 and V3 loops, respectively). One particular amino acid at the amino terminal side of the V2 loop (K at position 158, based on the SF162 numbering, or position 160, based on the strain HxB2 numbering) appears to be critical for its binding (11). MAb 2909 was isolated from a person who was not infected with SF162, but a virus isolated from the donor of MAb 2909 bears a V2 loop with similarities to that of SF162 and, in particular, possesses the same K158 residue (M. K. Gorny, unpublished data). More recently, two additional human MAbs, PG9 and PG16, were isolated from a subject infected with clade A HIV-1 and were shown to bind to a QNE that also includes the V2 and V3 loops (30). In contrast, however, to the narrow neutralizing potential of MAb 2909, MAbs PG9 and PG16 display far broader neutralizing abilities.Similar to the infection of humans by HIV-1, chronic infection of rhesus macaques by simian/human immunodeficiency viruses (SHIVs) or chimpanzees by HIV-1 also results in the elicitation of potent NAbs against the autologous virus and, to a much lesser extent, against heterologous SHIV isolates or HIV-1 viruses (3, 6, 12, 17). Here, we describe a panel of MAbs from SHIVSF162P4-infected rhesus macaques that demonstrates extremely potent neutralization against the homologous virus (that expresses the same Env as HIV-1 SF162) and that recognizes QNEs present on the surface of intact virions. Similar to the human MAbs 2909, PG9, and PG16, these rhesus macaque monoclonal antibodies (RhMAbs) recognize QNEs that include the V2 and V3 loops. Also, similar to MAb 2909, the RhMAbs neutralize only viruses expressing the SF162 Env. Consequently, we compared the fine epitope specificities of these RhMAbs to the epitope specificity of the human MAb 2909. Our detailed epitope mapping analysis reveals that although the human MAb 2909 and the RhMAbs recognize that same overall Env complex region, their specific requirements for binding differ. Thus, these studies of human and rhesus MAbs indicate that infection of humans and rhesus macaques with viruses expressing distinct Envs can result in the elicitation of antibodies that bind to overlapping conserved quaternary epitopes.  相似文献   

13.
To clarify the change in the viral population during passage from the vaginal cavity to blood circulation and vice versa, we examined the viral clones detected in cells in vaginal washes (VWCs) early after inoculation and after systemic infection with polyclonal SIV. In two intravaginally inoculated monkeys, the viral clones found in VWCs at 18 days p.i. were shown to be some of those contained in the inoculum, whereas the viral population in the peripheral blood mononuclear cells (PBMCs) was a monotype. This gradual decrease of viral clones suggested the possible existence of two barriers, one at the genital tract and the other between the genital tract and the blood. Later, at one month p.i., the viral clones in VWCs became rather restricted, whereas those in PBMCs diverged from a single clone to several clones. This suggested that different mechanisms affect the viral populations in PBMCs and VWCs. In order to examine how the viral population was affected by passage from the blood to the vaginal cavity, a monkey was intravenously inoculated and the viral clones in VWCs were analyzed at 14 days p.i., at a time of the heterogeneous population in PBMCs. The viral population in VWCs was found to be a single clone and this clone was a minor type in PBMCs, suggesting that the major clone in PBMCs was not always secreted to the vaginal cavity.  相似文献   

14.
Understanding the genetic, antigenic and structural changes that occur during HIV-1 infection in response to pre-existing immunity will facilitate current efforts to develop an HIV-1 vaccine. Much is known about HIV-1 variation at the population level but little with regard to specific changes occurring in the envelope glycoprotein within a host in response to immune pressure elicited by antibodies. The aim of this study was to track and map specific early genetic changes occurring in the viral envelope gene following vaccination using a highly controlled viral challenge setting in the SHIV macaque model. We generated 449 full-length env sequences from vaccinees, and 63 from the virus inoculum. Analysis revealed a different pattern in the distribution and frequency of mutations in the regions of the envelope gene targeted by the vaccine as well as different patterns of diversification between animals in the naïve control group and vaccinees. Given the high stringency of the model it is remarkable that we were able to identify genetic changes associated with the vaccination. This work provides insight into the characterization of breakthrough viral populations in less than fully efficacious vaccines and illustrates the value of HIV-1 Env SHIV challenge model in macaques to unravel the mechanisms driving HIV-1 envelope genetic diversity in the presence of vaccine induced-responses.  相似文献   

15.
Neutralizing antibodies may have critical importance in immunity against human immunodeficiency virus type 1 (HIV-1) infection. However, the amount of protective antibody needed at mucosal surfaces has not been fully established. Here, we evaluated systemic and mucosal pharmacokinetics (PK) and pharmacodynamics (PD) of 2F5 IgG and 2F5 Fab fragments with respect to protection against vaginal challenge with simian-human immunodeficiency virus-BaL in macaques. Antibody assessment demonstrated that 2F5 IgG was more potent than polymeric forms (IgM and IgA) across a range of cellular and tissue models. Vaginal challenge studies demonstrated a dose-dependent protection for 2F5 IgG and no protection with 2F5 Fab despite higher vaginal Fab levels at the time of challenge. Animals receiving 50 or 25 mg/kg of body weight 2F5 IgG were completely protected, while 3/5 animals receiving 5 mg/kg were protected. In the control animals, infection was established by a minimum of 1 to 4 transmitted/founder (T/F) variants, similar to natural human infection by this mucosal route; in the two infected animals that had received 5 mg 2F5 IgG, infection was established by a single T/F variant. Serum levels of 2F5 IgG were more predictive of sterilizing protection than measured vaginal levels. Fc-mediated antiviral activity did not appear to influence infection of primary target cells in cervical explants. However, PK studies highlighted the importance of the Fc portion in tissue biodistribution. Data presented in this study may be important in modeling serum levels of neutralizing antibodies that need to be achieved by either vaccination or passive infusion to prevent mucosal acquisition of HIV-1 infection in humans.  相似文献   

16.
We characterized human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein epitopes recognized by neutralizing antibodies from monkeys recently infected by molecularly cloned simian-human immunodeficiency virus (SHIV) variants. The early neutralizing antibody response in each infected animal was directed mainly against a single epitope. This primary neutralizing epitope, however, differed among individual monkeys infected by identical viruses. Two such neutralization epitopes were determined by sequences in the V2 and V3 loops of the gp120 envelope glycoprotein, while a third neutralization epitope, apparently discontinuous, was determined by both V2 and V3 sequences. These results indicate that the early neutralizing antibody response in SHIV-infected monkeys is monospecific and directed against epitopes composed of the gp120 V2 and V3 variable loops.  相似文献   

17.
Breast milk transmission of human immunodeficiency virus (HIV) remains an important mode of infant HIV acquisition. Interestingly, the majority of infants remain uninfected during prolonged virus exposure via breastfeeding, raising the possibility that immune components in milk prevent mucosal virus transmission. HIV-specific antibody responses are detectable in the milk of HIV-infected women and simian immunodeficiency virus (SIV)-infected monkeys; however, the role of these humoral responses in virus neutralization and local virus quasispecies evolution has not been characterized. In this study, four lactating rhesus monkeys were inoculated with SIVmac251 and monitored for SIV envelope-specific humoral responses and virus evolution in milk and plasma throughout infection. While the kinetics and breadth of the SIV-specific IgG and IgA responses in milk were similar to those in plasma, the magnitude of the milk responses was considerably lower than that of the plasma responses. Furthermore, a neutralizing antibody response against the inoculation virus was not detected in milk samples at 1 year after infection, despite a measurable autologous neutralizing antibody response in plasma samples obtained from three of four monkeys. Interestingly, while IgA is the predominant immunoglobulin in milk, the milk SIV envelope-specific IgA response was lower in magnitude and demonstrated more limited neutralizing capacity against a T-cell line-adapted SIV compared to those of the milk IgG response. Finally, amino acid mutations in the envelope gene product of SIV variants in milk and plasma samples occurred in similar numbers and at similar positions, indicating that the humoral immune pressure in milk does not drive distinct virus evolution in the breast milk compartment.Breastfeeding is an important component of the maternal-infant immune system, providing the infant with passive maternal immunity and protection against infectious pathogens. In fact, non-breast-fed infants in developing nations experience higher mortality due to respiratory and diarrheal illnesses (45). However, breastfeeding is also a mode of infant human immunodeficiency virus (HIV) acquisition, contributing to a large proportion of infant HIV infections in areas of high HIV prevalence. Therefore, development of feeding strategies that promote HIV-free survival of infants born to HIV-infected mothers in developing nations poses a major public health challenge.Interestingly, in the absence of antiretroviral prophylaxis, HIV is transmitted via breast milk to only 10% of infants chronically exposed to the virus via breastfeeding (19, 25). This low rate of HIV transmission suggests that antiviral immune factors in milk may protect the majority of infants from mucosal HIV acquisition. HIV envelope-specific antibody responses have been identified in milk, but the magnitude of these responses is similar in women who transmit the virus via breast milk and women whose infants remain uninfected throughout breastfeeding (3, 11, 23). Likewise, the magnitude of simian immunodeficiency virus (SIV) envelope-specific antibody responses in the milk of SIV-infected, lactating rhesus monkeys did not differ in those mothers that did and did not transmit the virus to their suckling infant (1, 42). Proposed mechanisms for HIV-specific breast milk antibody function include virus neutralization and impairment of virus transcytosis through an epithelial cell layer (3, 7, 17). Therefore, the function, rather than the magnitude, of the HIV-specific breast milk antibody response may be the critical feature in protection against infant mucosal transmission. Importantly, passive transfer of broadly neutralizing HIV-specific antibody to neonatal monkeys protected the infants against oral simian-human immunodeficiency virus (SHIV) challenge, indicating that passively transferred humoral immunity can protect infants from virus transmission through breastfeeding (18, 41).Vertically transmitted HIV variants, including those transmitted via breast milk, have been reported to be resistant to neutralization by systemic maternal antibody responses (9, 38). However, HIV-specific neutralizing antibody responses in breast milk have not been characterized. In fact, the ability of mucosal IgA to neutralize HIV remains an important question in the HIV field. While an HIV-specific mucosal IgA response in the genital tracts of exposed-uninfected individuals has been described, the role of mucosal IgA in protection against mucosal transmission of HIV is unclear and controversial (5, 8-10). Furthermore, the contribution of locally replicating virus at mucosal surfaces to the divergence of the systemic and mucosal antibody responses is unknown. Similarly, the role of mucosal antibody in the shaping of mucosal virus quasispecies evolution is not well characterized. Delineation of the function and role of mucosal antibody responses in defining the pool of transmitted virus will be crucial for the design of immunologic interventions to reduce breast milk transmission of HIV.SIV infection of lactating rhesus monkeys provides an excellent model to characterize virus-specific immune responses and virus evolution in milk, as the sequence of the virus inoculum, the timing of the infection, and the virus-specific immunodominant responses are well defined in this model. Furthermore, SIV-infected, lactating rhesus monkeys transmit the virus to their suckling infants via breastfeeding (1). We have developed a pharmacologic protocol to induce lactation in nonpregnant rhesus monkeys, facilitating these studies without reliance on breeder monkeys. Moreover, the milk produced by hormone-induced, lactating monkeys has immunoglobulin content and a lymphocyte phenotype similar to that produced by naturally lactating monkeys (35). In this study, we characterized the neutralizing potency of the SIV envelope-specific IgG and IgA responses in milk and their role in shaping the SIV envelope gene evolution of local virus variants.  相似文献   

18.
Vaccine protection from infection and/or disease induced by highly pathogenic simian immunodeficiency virus (SIV) strain SIVmac251 in the rhesus macaque model is a challenging task. Thus far, the only approach that has been reported to protect a fraction of macaques from infection following intravenous challenge with SIVmac251 was the use of a live attenuated SIV vaccine. In the present study, the gag, pol, and env genes of SIVK6W were expressed in the NYVAC vector, a genetically engineered derivative of the vaccinia virus Copenhagen strain that displays a highly attenuated phenotype in humans. In addition, the genes for the α and β chains of interleukin-12 (IL-12), as well as the IL-2 gene, were expressed in separate NYVAC vectors and inoculated intramuscularly, in conjunction with or separate from the NYVAC-SIV vaccine, in 40 macaques. The overall cytotoxic T-lymphocyte (CTL) response was greater, at the expense of proliferative and humoral responses, in animals immunized with NYVAC-SIV and NYVAC–IL-12 than in animals immunized with the NYVAC-SIV vaccine alone. At the end of the immunization regimen, half of the animals were challenged with SIVmac251 by the intravenous route and the other half were exposed to SIVmac251 intrarectally. Significantly, five of the eleven vaccinees exposed mucosally to SIVmac251 showed a transient peak of viremia 1 week after viral challenge and subsequently appeared to clear viral infection. In contrast, all 12 animals inoculated intravenously became infected, but 5 to 6 months after viral challenge, 4 animals were able to control viral expression and appeared to progress to disease more slowly than control animals. Protection did not appear to be associated with any of the measured immunological parameters. Further modulation of immune responses by coadministration of NYVAC-cytokine recombinants did not appear to influence the outcome of viral challenge. The fact that the NYVAC-SIV recombinant vaccine appears to be effective per se in the animal model that best mirrors human AIDS supports the idea that the development of a highly attenuated poxvirus-based vaccine candidate can be a valuable approach to significantly decrease the spread of human immunodeficiency virus (HIV) infection by the mucosal route.  相似文献   

19.
Most human immunodeficiency virus (HIV) type 1 infections occur by the mucosal route. Thus, it is important to assess the immune responses to HIV in the vaginal, cervical, and rectal compartments. Here we quantitated the virus-specific CD8+ T-cell response and characterized the phenotype of lymphocytes in the genital tracts of naive macaques, macaques acutely or chronically infected with simian immunodeficiency virus SIVmac251, and macaques chronically infected with chimeric simian/human immunodeficiency virus SHIV(KU2.) Vaginal biopsy samples or samples obtained at the time of euthanasia were used in this analysis. The percentage of Gag-specific, tetramer-positive T cells was as high as 13 to 14% of the CD3+ CD8+ T-cell population in the vaginal and cervical laminae propriae of both SIVmac251 and SHIV(KU2) chronically infected macaques. In most cases, the frequency of this response in the cervicovaginal compartment far exceeded the frequency in the blood or the draining iliac lymph node. Vaginal laminae propriae of naive macaques contained 55 to 65% CD3+ CD8+ cells and 28 to 34% CD3+ CD4+ cells, while the majority of intraepithelial cells were CD8+ T cells (75 to 85%). For the same cells, the surface expression of CD62L was low whereas that of alphaEbeta7 was high. No difference in the expression of CD45RA on CD8+ T cells was observed in the chronic stage of SIVmac251 infection. Although no decrease in the percentage of CD4+ cells in the genital tract was observed within the first 12 days of infection, by 6 weeks from SIVmac251 infection and thereafter the percentage of CD4+ T cells was decreased in the laminae propriae of the vagina and cervix. Expression of CD45RA did not differ in naive and acutely SIVmac251 infected macaques. Information on the quality and quantity of local immune responses may help in the design of vaccine strategies aimed at containing viral replication at the site of viral encounter.  相似文献   

20.
To evaluate antibody specificities induced by simian immunodeficiency virus (SIV) versus human immunodeficiency virus type 1 (HIV-1) envelope antigens in nonhuman primate (NHP), we profiled binding antibody responses to linear epitopes in NHP studies with HIV-1 or SIV immunogens. We found that, overall, HIV-1 Env IgG responses were dominated by V3, with the notable exception of the responses to the vaccine strain A244 Env that were dominated by V2, whereas the anti-SIVmac239 Env responses were dominated by V2 regardless of the vaccine regimen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号