首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Plasmodium salivary sporozoites are the infectious form of the malaria parasite and are dormant inside salivary glands of Anopheles mosquitoes. During dormancy, protein translation is inhibited by the kinase UIS1 that phosphorylates serine 59 in the eukaryotic initiation factor 2α (eIF2α). De-phosphorylation of eIF2α-P is required for the transformation of sporozoites into the liver stage. In mammalian cells, the de-phosphorylation of eIF2α-P is mediated by the protein phosphatase 1 (PP1). Using a series of genetically knockout parasites we showed that in malaria sporozoites, contrary to mammalian cells, the eIF2α-P phosphatase is a member of the PP2C/PPM phosphatase family termed UIS2. We found that eIF2α was highly phosphorylated in uis2 conditional knockout sporozoites. These mutant sporozoites maintained the crescent shape after delivery into mammalian host and lost their infectivity. Both uis1 and uis2 were highly transcribed in the salivary gland sporozoites but uis2 expression was inhibited by the Pumilio protein Puf2. The repression of uis2 expression was alleviated when sporozoites developed into liver stage. While most eukaryotic phosphatases interact transiently with their substrates, UIS2 stably bound to phosphorylated eIF2α, raising the possibility that high-throughput searches may identify chemicals that disrupt this interaction and prevent malaria infection.  相似文献   

5.
Borrelia burgdorferi transmission to the vertebrate host commences with growth of the spirochete in the tick gut and migration from the gut to the salivary glands. This complex process, involving intimate interactions of the spirochete with the gut epithelium, is pivotal to transmission. We utilized a yeast surface display library of tick gut proteins to perform a global screen for tick gut proteins that might interact with Borrelia membrane proteins. A putative fibronectin type III domain-containing tick gut protein (Ixofin3D) was most frequently identified from this screen and prioritized for further analysis. Immunization against Ixofin3D and RNA interference-mediated reduction in expression of Ixofin3D resulted in decreased spirochete burden in tick salivary glands and in the murine host. Microscopic examination showed decreased aggregation of spirochetes on the gut epithelium concomitant with reduced expression of Ixofin3D. Our observations suggest that the interaction between Borrelia and Ixofin3D facilitates spirochete congregation to the gut during transmission, and provides a “molecular exit” direction for spirochete egress from the gut.  相似文献   

6.

Background

Therapeutic response in infectious disease involves host as well as microbial determinants. Because the immune and inflammatory response to Leishmania (Viannia) species defines the outcome of infection and efficacy of treatment, immunomodulation is considered a promising therapeutic strategy. However, since Leishmania infection and antileishmanial drugs can themselves modulate drug transport, metabolism and/or immune responses, immunotherapeutic approaches require integrated assessment of host and parasite responses.

Methodology

To achieve an integrated assessment of current and innovative therapeutic strategies, we determined host and parasite responses to miltefosine and meglumine antimoniate alone and in combination with pentoxifylline or CpG 2006 in peripheral blood mononuclear cells (PBMCs) of cutaneous leishmaniasis patients. Parasite survival and secretion of TNF-α, IFN-γ, IL-10 and IL-13 were evaluated concomitantly in PBMCs infected with Luc-L. (V.) panamensis exposed to meglumine antimoniate (4, 8, 16, 32 and 64 μg SbV/mL) or miltefosine (2, 4, 8, 16 and 32 μM HePC). Concentrations of 4 μM of miltefosine and 8 μg SbV/mL were selected for evaluation in combination with immunomodulators based on the high but partial reduction of parasite burden by these antileishmanial concentrations without affecting cytokine secretion of infected PBMCs. Intracellular parasite survival was determined by luminometry and cytokine secretion measured by ELISA and multiplex assays.

Principal Findings

Anti- and pro-inflammatory cytokines characteristic of L. (V.) panamensis infection were evaluable concomitantly with viability of Leishmania within monocyte-derived macrophages present in PBMC cultures. Both antileishmanial drugs reduced the parasite load of macrophages; miltefosine also suppressed IL-10 and IL-13 secretion in a dose dependent manner. Pentoxifylline did not affect parasite survival or alter antileishmanial effects of miltefosine or meglumine antimoniate. However, pentoxifylline diminished secretion of TNF-α, IFN-γ and IL-13, cytokines associated with the outcome of infection by species of the Viannia subgenus. Exposure to CpG diminished the leishmanicidal effect of meglumine antimoniate, but not miltefosine, and significantly reduced secretion of IL -10, alone and in combination with either antileishmanial drug. IL-13 increased in response to CpG plus miltefosine.

Conclusions and Significance

Human PBMCs allow integrated ex vivo assessment of antileishmanial treatments, providing information on host and parasite determinants of therapeutic response that may be used to tailor therapeutic strategies to optimize clinical resolution.  相似文献   

7.
Antimicrobial peptides play an important role in host defense against pathogens. Recently, phenol-soluble modulins (PSMs) from Staphylococcus epidermidis (S. epidermidis) were shown to interact with lipid membranes, form complexes, and exert antimicrobial activity. Based on the abundance and innocuity of the cutaneous resident S. epidermidis, we hypothesized that their PSMs contribute to host defense. Here we show that S. epidermidis δ-toxin (PSMγ) is normally present in the epidermis and sparsely in the dermis of human skin using immunohistochemistry. Synthetic δ-toxin interacted with neutrophil extracellular traps (NETs) and colocalized with cathelicidin while also inducing NET formation in human neutrophils. In antimicrobial assays against Group A Streptococcus (GAS), δ-toxin cooperated with CRAMP, hBD2, and hBD3. In whole blood, addition of δ-toxin exerted a bacteriostatic effect on GAS, and in NETs, δ-toxin increased their killing capacity against this pathogen. Coimmunoprecipitation and tryptophan spectroscopy demonstrated direct binding of δ-toxin to host antimicrobial peptides LL-37, CRAMP, hBD2, and hBD3. Finally, in a mouse wound model, GAS survival was reduced (along with Mip-2 cytokine levels) when the wounds were pretreated with δ-toxin. Thus, these data suggest that S. epidermidis–derived δ-toxin cooperates with the host-derived antimicrobial peptides in the innate immune system to reduce survival of an important human bacterial pathogen.  相似文献   

8.
Approximately 500,000 people are hospitalized with severe dengue illness annually. Antibody-dependent enhancement (ADE) of dengue virus (DENV) infection is believed to contribute to the pathogenic cytokine storm described in severe dengue patients, but the precise signaling pathways contributing to elevated cytokine production are not elucidated. IL-1β is a potent inflammatory cytokine that is frequently elevated during severe dengue, and the unique dual regulation of IL-1β provides an informative model to study ADE-induced cytokines. This work utilizes patient-derived anti-DENV mAbs and primary human monocytes to study ADE-induced IL-1β and other cytokines. ADE of DENV serotype 2 (DENV-2) elevates mature IL-1β secretion by monocytes independent of DENV replication by 4 h postinoculation (hpi). Prior to this, DENV immune complexes activate spleen tyrosine kinase (Syk) within 1 hpi. Syk induces elevated IL1B, TNF, and IL6 mRNA by 2 hpi. Syk mediates elevated IL-1β secretion by activating ERK1/2, and both Syk and ERK1/2 inhibitors ablated ADE-induced IL-1β secretion. Maturation of pro-IL-1β during ADE requires caspase-1 and NLRP3, but caspase-1 is suboptimally increased by ADE and can be significantly enhanced by a typical inflammasome agonist, ATP. Importantly, this inflammatory Syk-ERK signaling axis requires DENV immune complexes, because DENV-2 in the presence of serotype-matched anti-DENV-2 mAb, but not anti-DENV-1 mAb, activates Syk, ERK, and IL-1β secretion. This study provides evidence that DENV-2 immune complexes activate Syk to mediate elevated expression of inflammatory cytokines. Syk and ERK may serve as new therapeutic targets for interfering with ADE-induced cytokine expression during severe dengue.  相似文献   

9.
A bioassay using mice was developed to compare the toxin content of extracts of salivary glands of I. holocyclus at various stages of feeding. The quantity of toxin increased rapidly from the third day of feeding. Toxin production continued and increased in ticks removed after 3–5 days on mice and held at 30°C at 92% RH for 24 h, whereas no toxin was detected in the salivary glands of ticks fed for 3 days and treated similarly. It is suggested that major physiological changes occur in the salivary glands of I. holocyclus on the third day, which once stimulated continue independently of feeding. Toxin production in ticks was not suppressed by passively immunizing mice with anti-tick toxin but was in ticks fed upon hosts with a previous experience of tick feeding.Thus, to obtain salivary glands containing high concentrations of toxin for chemical analysis, it is necessary for salivary glands to develop 5 days from the initial attachment of the tick to a host with no previous experience of tick feeding. This can be achieved by passively immunizing mice against toxin, thus enabling the tick to feed 5 days without killing the mouse or by keeping the tick for 24 h at 30°C at 92% RH following the death of the mouse on the fourth day.  相似文献   

10.
Ticks are one of the most important blood-sucking vectors for infectious microorganisms in humans and animals. When feeding they inject saliva, containing microbes, into the host to facilitate the uptake of blood. An understanding of the microbial populations within their salivary glands would provide a valuable insight when evaluating the vectorial capacity of ticks. Three tick species (Ixodes ovatus, I. persulcatus and Haemaphysalis flava) were collected in Shizuoka Prefecture of Japan between 2008 and 2011. Each tick was dissected and the salivary glands removed. Bacterial communities in each salivary gland were characterized by 16S amplicon pyrosequencing using a 454 GS-Junior Next Generation Sequencer. The Ribosomal Database Project (RDP) Classifier was used to classify sequence reads at the genus level. The composition of the microbial populations of each tick species were assessed by principal component analysis (PCA) using the Metagenomics RAST (MG-RAST) metagenomic analysis tool. Rickettsia-specific PCR was used for the characterization of rickettsial species. Almost full length of 16S rDNA was amplified in order to characterize unclassified bacterial sequences obtained in I. persulcatus female samples. The numbers of bacterial genera identified for the tick species were 71 (I. ovatus), 127 (I. persulcatus) and 59 (H. flava). Eighteen bacterial genera were commonly detected in all tick species. The predominant bacterial genus observed in all tick species was Coxiella. Spiroplasma was detected in Ixodes, and not in H. flava. PCA revealed that microbial populations in tick salivary glands were different between tick species, indicating that host specificities may play an important role in determining the microbial complement. Four female I. persulcatus samples contained a high abundance of several sequences belonging to Alphaproteobacteria symbionts. This study revealed the microbial populations within the salivary glands of three species of ticks, and the results will contribute to the knowledge and prediction of emerging tick-borne diseases.  相似文献   

11.
12.
Oxidized low-density lipoprotein (oxLDL)-regulated secretion of inflammatory cytokines in smooth muscle cells (SMCs) is regarded as an important step in the progression of atherosclerosis; however, its underlying mechanism remains unclear. This study investigated the role of toll-like receptor 4 (TLR4) in oxLDL-induced expression of inflammatory cytokines in SMCs both in vivo and in vitro. We found that the levels of TLR4, interleukin 1-β (IL1-β), tumor necrosis factor-α (TNFα), monocyte chemoattractant protein 1 (MCP-1) and matrix metalloproteinase-2 (MMP-2) expression were increased in the SMCs of atherosclerotic plaques in patients with femoral artery stenosis. In cultured primary arterial SMCs from wild type mice, oxLDL caused dose- and time-dependent increase in the expression levels of TLR4 and cytokines. These effects were significantly weakened in arterial SMCs derived from TLR4 knockout mice (TLR4−/−). Moreover, the secretion of inflammatory cytokines was blocked by TLR4-specific antibodies in primary SMCs. Ox-LDL induced activation of p38 and NFκB was also inhibited in TLR4−/− primary SMCs or when treated with TLR4-specific antibodies. These results demonstrated that TLR4 is a crucial mediator in oxLDL-induced inflammatory cytokine expression and secretion, and p38 and NFκB activation.  相似文献   

13.
Phthalates are a group of endocrine disrupting chemicals, suspected to influence the immune system. The aim of this study was to investigate the influence of phthalates on cytokine secretion from human peripheral blood mononuclear cells. Escherichia coli lipopolysaccharide and phytohemagglutinin-P were used for stimulation of monocytes/macrophages and T cells, respectively. Cells were exposed for 20 to 22 hours to either di-ethyl, di-n-butyl or mono-n-butyl phthalate at two different concentrations. Both diesters were metabolised to their respective monoester and influenced cytokine secretion from both monocytes/macrophages and T cells in a similar pattern: the secretion of interleukin (IL)-6, IL-10 and the chemokine CXCL8 by monocytes/macrophages was enhanced, while tumour necrosis factor (TNF)-α secretion by monocytes/macrophages was impaired, as was the secretion of IL-2 and IL-4, TNF-α and interferon-γ by T cells. The investigated phthalate monoester also influenced cytokine secretion from monocytes/macrophages similar to that of the diesters. In T cells, however, the effect of the monoester was different compared to the diesters. The influence of the phthalates on the cytokine secretion did not seem to be a result of cell death. Thus, results indicate that both human innate and adaptive immunity is influenced in vitro by phthalates, and that phthalates therefore may affect cell differentiation and regenerative and inflammatory processes in vivo.  相似文献   

14.

Background

Phospholipase Cε (PLCε) is an effector of Ras and Rap small GTPases and expressed in non-immune cells. It is well established that PLCε plays an important role in skin inflammation, such as that elicited by phorbol ester painting or ultraviolet irradiation and contact dermatitis that is mediated by T helper (Th) 1 cells, through upregulating inflammatory cytokine production by keratinocytes and dermal fibroblasts. However, little is known about whether PLCε is involved in regulation of inflammation in the respiratory system, such as Th2-cells-mediated allergic asthma.

Methods

We prepared a mouse model of allergic asthma using PLCε +/+ mice and PLCε ΔX/ΔX mutant mice in which PLCε was catalytically-inactive. Mice with different PLCε genotypes were immunized with ovalbumin (OVA) followed by the challenge with an OVA-containing aerosol to induce asthmatic response, which was assessed by analyzing airway hyper-responsiveness, bronchoalveolar lavage fluids, inflammatory cytokine levels, and OVA-specific immunoglobulin (Ig) levels. Effects of PLCε genotype on cytokine production were also examined with primary-cultured bronchial epithelial cells.

Results

After OVA challenge, the OVA-immunized PLCε ΔX/ΔX mice exhibited substantially attenuated airway hyper-responsiveness and broncial inflammation, which were accompanied by reduced Th2 cytokine content in the bronchoalveolar lavage fluids. In contrast, the serum levels of OVA-specific IgGs and IgE were not affected by the PLCε genotype, suggesting that sensitization was PLCε-independent. In the challenged mice, PLCε deficiency reduced proinflammatory cytokine production in the bronchial epithelial cells. Primary-cultured bronchial epithelial cells prepared from PLCε ΔX/ΔX mice showed attenuated pro-inflammatory cytokine production when stimulated with tumor necrosis factor-α, suggesting that reduced cytokine production in PLCε ΔX/ΔX mice was due to cell-autonomous effect of PLCε deficiency.

Conclusions

PLCε plays an important role in the pathogenesis of bronchial asthma through upregulating inflammatory cytokine production by the bronchial epithelial cells.  相似文献   

15.
16.
17.
Molecular tools of the intracellular protozoan pathogens Apicomplexa and Kinetoplastida for manipulation of host cell machinery have been the focus of investigation for approximately two decades. Microsporidia, fungi-related microorganisms forming another large group of obligate intracellular parasites, are characterized by development in direct contact with host cytoplasm (the majority of species), strong minimization of cell machinery, and acquisition of unique transporters to exploit host metabolic system. All the aforementioned features are suggestive of the ability of microsporidia to modify host metabolic and regulatory pathways. Seven proteins of the microsporidium Antonospora (Paranosema) locustae with predicted signal peptides but without transmembrane domains were overexpressed in Escherichia coli. Western-blot analysis with antibodies against recombinant products showed secretion of parasite proteins from different functional categories into the infected host cell. Secretion of parasite hexokinase and α/β-hydrolase was confirmed by immunofluorescence microscopy. In addition, this method showed specific accumulation of A. locustae hexokinase in host nuclei. Expression of hexokinase, trehalase, and two leucine-rich repeat proteins without any exogenous signal peptide led to their secretion in the yeast Pichia pastoris. In contrast, α/β-hydrolase was not found in the culture medium, though a significant amount of this enzyme accumulated in the yeast membrane fraction. These results suggest that microsporidia possess a broad set of enzymes and regulatory proteins secreted into infected cells to control host metabolic processes and molecular programs.  相似文献   

18.
19.
NK cells are important immune effectors for preventing microbial invasion and dissemination, through natural cytotoxicity and cytokine secretion. Bacillus anthracis spores can efficiently drive IFN-γ production by NK cells. The present study provides insights into the mechanisms of cytokine and cellular signaling that underlie the process of NK-cell activation by B. anthracis and the bacterial strategies to subvert and evade this response. Infection with non-toxigenic encapsulated B. anthracis induced recruitment of NK cells and macrophages into the mouse draining lymph node. Production of edema (ET) or lethal (LT) toxin during infection impaired this cellular recruitment. NK cell depletion led to accelerated systemic bacterial dissemination. IFN-γ production by NK cells in response to B. anthracis spores was: i) contact-dependent through RAE-1-NKG2D interaction with macrophages; ii) IL-12, IL-18, and IL-15-dependent, where IL-12 played a key role and regulated both NK cell and macrophage activation; and iii) required IL-18 for only an initial short time window. B. anthracis toxins subverted both NK cell essential functions. ET and LT disrupted IFN-γ production through different mechanisms. LT acted both on macrophages and NK cells, whereas ET mainly affected macrophages and did not alter NK cell capacity of IFN-γ secretion. In contrast, ET and LT inhibited the natural cytotoxicity function of NK cells, both in vitro and in vivo. The subverting action of ET thus led to dissociation in NK cell function and blocked natural cytotoxicity without affecting IFN-γ secretion. The high efficiency of this process stresses the impact that this toxin may exert in anthrax pathogenesis, and highlights a potential usefulness for controlling excessive cytotoxic responses in immunopathological diseases. Our findings therefore exemplify the delicate balance between bacterial stimulation and evasion strategies. This highlights the potential implication of the crosstalk between host innate defences and B. anthracis in initial anthrax control mechanisms.  相似文献   

20.
Cell-cell interaction via the gap junction regulates cell growth and differentiation, leading to formation of organs of appropriate size and quality. To determine the role of connexin43 in salivary gland development, we analyzed its expression in developing submandibular glands (SMGs). Connexin43 (Cx43) was found to be expressed in salivary gland epithelium. In ex vivo organ cultures of SMGs, addition of the gap junctional inhibitors 18α-glycyrrhetinic acid (18α-GA) and oleamide inhibited SMG branching morphogenesis, suggesting that gap junctional communication contributes to salivary gland development. In Cx43−/− salivary glands, submandibular and sublingual gland size was reduced as compared with those from heterozygotes. The expression of Pdgfa, Pdgfb, Fgf7, and Fgf10, which induced branching of SMGs in Cx43−/− samples, were not changed as compared with those from heterozygotes. Furthermore, the blocking peptide for the hemichannel and gap junction channel showed inhibition of terminal bud branching. FGF10 induced branching morphogenesis, while it did not rescue the Cx43−/− phenotype, thus Cx43 may regulate FGF10 signaling during salivary gland development. FGF10 is expressed in salivary gland mesenchyme and regulates epithelial proliferation, and was shown to induce ERK1/2 phosphorylation in salivary epithelial cells, while ERK1/2 phosphorylation in HSY cells was dramatically inhibited by 18α-GA, a Cx43 peptide or siRNA. On the other hand, PDGF-AA and PDGF-BB separately induced ERK1/2 phosphorylation in primary cultured salivary mesenchymal cells regardless of the presence of 18α-GA. Together, our results suggest that Cx43 regulates FGF10-induced ERK1/2 phosphorylation in salivary epithelium but not in mesenchyme during the process of SMG branching morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号