首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ELRCXC chemokine CXCL9 is characterized by a long, highly positively charged COOH-terminal region, absent in most other chemokines. Several natural leukocyte- and fibroblast-derived COOH-terminally truncated CXCL9 forms missing up to 30 amino acids were identified. To investigate the role of the COOH-terminal region of CXCL9, several COOH-terminal peptides were chemically synthesized. These peptides display high affinity for glycosaminoglycans (GAGs) and compete with functional intact chemokines for GAG binding, the longest peptide (CXCL9(74–103)) being the most potent. The COOH-terminal peptide CXCL9(74–103) does not signal through or act as an antagonist for CXCR3, the G protein-coupled CXCL9 receptor, and does not influence neutrophil chemotactic activity of CXCL8 in vitro. Based on the GAG binding data, an anti-inflammatory role for CXCL9(74–103) was further evidenced in vivo. Simultaneous intravenous injection of CXCL9(74–103) with CXCL8 injection in the joint diminished CXCL8-induced neutrophil extravasation. Analogously, monosodium urate crystal-induced neutrophil migration to the tibiofemural articulation, a murine model of gout, is highly reduced by intravenous injection of CXCL9(74–103). These data show that chemokine-derived peptides with high affinity for GAGs may be used as anti-inflammatory peptides; by competing with active chemokines for binding and immobilization on GAGs, these peptides may lower chemokine presentation on the endothelium and disrupt the generation of a chemokine gradient, thereby preventing a chemokine from properly performing its chemotactic function. The CXCL9 peptide may serve as a lead molecule for further development of inhibitors of inflammation based on interference with chemokine-GAG interactions.  相似文献   

2.
In vivo leukocyte recruitment is not fully understood and may result from interactions of chemokines with glycosaminoglycans/GAGs. We previously showed that chlorite-oxidized oxyamylose/COAM binds the neutrophil chemokine GCP-2/CXCL6. Here, mouse chemokine binding by COAM was studied systematically and binding affinities of chemokines to COAM versus GAGs were compared. COAM and heparan sulphate bound the mouse CXC chemokines KC/CXCL1, MIP-2/CXCL2, IP-10/CXCL10 and I-TAC/CXCL11 and the CC chemokine RANTES/CCL5 with affinities in the nanomolar range, whereas no binding interactions were observed for mouse MCP-1/CCL2, MIP-1α/CCL3 and MIP-1β/CCL4. The affinities of COAM-interacting chemokines were similar to or higher than those observed for heparan sulphate. Although COAM did not display chemotactic activity by itself, its co-administration with mouse GCP-2/CXCL6 and MIP-2/CXCL2 or its binding of endogenous chemokines resulted in fast and cooperative peritoneal neutrophil recruitment and in extravasation into the cremaster muscle in vivo. These local GAG mimetic features by COAM within tissues superseded systemic effects and were sufficient and applicable to reduce LPS-induced liver-specific neutrophil recruitment and activation. COAM mimics glycosaminoglycans and is a nontoxic probe for the study of leukocyte recruitment and inflammation in vivo.  相似文献   

3.
The ability to interact with cell surface glycosaminoglycans (GAGs) is essential to the cell migration properties of chemokines, but association with soluble GAGs induces the oligomerization of most chemokines including CXCL12. Monomeric CXCL12, but not dimeric CXCL12, is cardioprotective in a number of experimental models of cardiac ischemia. We found that co-administration of heparin, a common treatment for myocardial infarction, abrogated the protective effect of CXCL12 in an ex vivo rat heart model for myocardial infarction. The interaction between CXCL12 and heparin oligosaccharides has previously been analyzed through mutagenesis, in vitro binding assays, and molecular modeling. However, complications from heparin-induced CXCL12 oligomerization and studies using very short oligosaccharides have led to inconsistent conclusions as to the residues involved, the orientation of the binding site, and whether it overlaps with the CXCR4 N-terminal site. We used a constitutively dimeric variant to simplify the NMR analysis of CXCL12-binding heparin oligosaccharides of varying length. Biophysical and mutagenic analyses reveal a CXCL12/heparin interaction surface that lies perpendicular to the dimer interface, does not involve the chemokine N terminus, and partially overlaps with the CXCR4-binding site. We further demonstrate that heparin-mediated enzymatic protection results from the promotion of dimerization rather than direct heparin binding to the CXCL12 N terminus. These results clarify the structural basis for GAG recognition by CXCL12 and lend insight into the development of CXCL12-based therapeutics.  相似文献   

4.
MIP-2/CXCL2 is a murine chemokine related to human chemokines that possesses the Glu-Leu-Arg (ELR) activation motif and activates CXCR2 for neutrophil chemotaxis. We determined the structure of MIP-2 to 1.9 ? resolution and created a model with its murine receptor CXCR2 based on the coordinates of human CXCR4. Chemokine-induced migration of cells through specific G-protein coupled receptors is regulated by glycosaminoglycans (GAGs) that oligomerize chemokines. MIP-2 GAG-binding residues were identified that interact with heparin disaccharide I-S by NMR spectroscopy. A model GAG/MIP-2/CXCR2 complex that supports a 2:2 complex between chemokine and receptor was created. Mutants of these disaccharide-binding residues were made and tested for heparin binding, in vitro neutrophil chemotaxis, and in vivo neutrophil recruitment to the mouse peritoneum and lung. The mutants have a 10-fold decrease in neutrophil chemotaxis in vitro. There is no difference in neutrophil recruitment between wild-type MIP-2 and mutants in the peritoneum, but all activity of the mutants is lost in the lung, supporting the concept that GAG regulation of chemokines is tissue-dependent.  相似文献   

5.
All chemokines share a common structural scaffold that mediate a remarkable variety of functions from immune surveillance to organogenesis. Chemokines are classified as CXC or CC on the basis of conserved cysteines, and the two subclasses bind distinct sets of GPCR class of receptors and also have markedly different quaternary structures, suggesting that the CXC/CC motif plays a prominent role in both structure and function. For both classes, receptor activation involves interactions between chemokine N-loop and receptor N-domain residues (Site-I), and between chemokine N-terminal and receptor extracellular/transmembrane residues (Site-II). We engineered a CC variant (labeled as CC-CXCL8) of the chemokine CXCL8 by deleting residue X (CXC → CC), and found its structure is essentially similar to WT. In stark contrast, CC-CXCL8 bound poorly to its cognate receptors CXCR1 and CXCR2 (Ki > 1 μm). Further, CC-CXCL8 failed to mobilize Ca2+ in CXCR2-expressing HL-60 cells or recruit neutrophils in a mouse lung model. However, most interestingly, CC-CXCL8 mobilizes Ca2+ in neutrophils and in CXCR1-expressing HL-60 cells. Compared with the WT, CC-CXCL8 binds CXCR1 N-domain with only ∼5-fold lower affinity indicating that the weak binding to intact CXCR1 must be due to its weak binding at Site-II. Nevertheless, this level of binding is sufficient for receptor activation indicating that affinity and activity are separable functions. We propose that the CXC motif functions as a conformational switch that couples Site-I and Site-II interactions for both receptors, and that this coupling is critical for high affinity binding but differentially regulates activation.  相似文献   

6.
Chemokines are small proteins, promoting directional migration and activation of different cells through binding to specific receptors. Most chemokines also bind to heparan sulfate (HS), a family of complex and highly sulfated glycosaminoglycan (GAG) found at the cell surface and in the extracellular matrix. This class of molecules has recently emerged as critical regulators of many events involving cell response to the external environment. Binding to HS is thought to be functionally important. Current models suggested that HS ensures the correct positioning of chemokines within tissues and maintains haptotactic gradients of the proteins along cell surfaces, thus providing directional cues for migrating cells. On the chemokine surface, the GAG binding epitopes can be displayed on different areas, some of which overlap the receptor binding domain, while others are clearly separated. We review here some structural aspects of the interaction between GAGs or receptors and chemokines. In particular, we will address the case of CXCL12, a chemokine whose receptor binding site is distinct from the GAG binding site and whose different isoforms display different GAG binding abilities. This chemokine system thus offers an unprecedented opportunity to ascertain the importance of chemokine/GAG interaction in the regulation of cell migration.  相似文献   

7.
Leukocyte adhesion and transmigration are central features governing immune surveillance and inflammatory reactions in body tissues. Within the liver sinusoids, chemokines initiate the first crucial step of T-cell migration into the hepatic tissue. We studied molecular mechanisms involved in endothelial chemokine supply during hepatic immune surveillance and liver inflammation and their impact on the recruitment of CD4+ T cells into the liver. In the murine model of Concanavalin A-induced T cell-mediated hepatitis, we showed that hepatic expression of the inflammatory CXC chemokine ligands (CXCL)9 and CXCL10 strongly increased whereas homeostatic CXCL12 significantly decreased. Consistently, CD4+ T cells expressing the CXC chemokine receptor (CXCR)3 accumulated within the inflamed liver tissue. In histology, CXCL9 was associated with liver sinusoidal endothelial cells (LSEC) which represent the first contact site for T-cell immigration into the liver. LSEC actively transferred basolaterally internalized CXCL12, CXCL9 and CXCL10 via clathrin-coated vesicles to CD4+ T cells leading to enhanced transmigration of CXCR4+ total CD4+ T cells and CXCR3+ effector/memory CD4+ T cells, respectively in vitro. LSEC-expressed CXCR4 mediated CXCL12 transport and blockage of endothelial CXCR4 inhibited CXCL12-dependent CD4+ T-cell transmigration. In contrast, CXCR3 was not involved in the endothelial transport of its ligands CXCL9 and CXCL10. The clathrin-specific inhibitor chlorpromazine blocked endothelial chemokine internalization and CD4+ T-cell transmigration in vitro as well as migration of CD4+ T cells into the inflamed liver in vivo. Moreover, hepatic accumulation of CXCR3+ CD4+ T cells during T cell-mediated hepatitis was strongly reduced after administration of chlorpromazine. These data demonstrate that LSEC actively provide perivascularly expressed homeostatic and inflammatory chemokines by CXCR4- and clathrin-dependent intracellular transport mechanisms thereby contributing to the hepatic recruitment of CD4+ T-cell populations during immune surveillance and liver inflammation.  相似文献   

8.
IL (interleukin)-8 [CXCL8 (CXC chemokine ligand 8)] exerts its role in inflammation by triggering neutrophils via its specific GPCRs (G-protein-coupled receptors), CXCR1 (CXC chemokine receptor 1) and CXCR2, for which additional binding to endothelial HS-GAGs (heparan sulphate-glycosaminoglycans) is required. We present here a novel approach for blocking the CXCL8-related inflammatory cascade by generating dominant-negative CXCL8 mutants with improved GAG-binding affinity and knocked-out CXCR1/CXCR2 activity. These non-signalling CXCL8 decoy proteins are able to displace WT (wild-type) CXCL8 and to prevent CXCR1/CXCR2 signalling thereby interfering with the inflammatory response. We have designed 14 CXCL8 mutants that we subdivided into three classes according to number and site of mutations. The decoys were characterized by IFTs (isothermal fluorescence titrations) and SPR (surface plasmon resonance) to determine GAG affinity. Protein stability and structural changes were evaluated by far-UV CD spectroscopy and knocked-out GPCR response was shown by Boyden chamber and Ca2+ release assays. From these experiments, CXCL8(Δ6F17KF21KE70KN71K) emerged with the most promising in vitro characteristics. This mutant was therefore further investigated in a murine model of mBSA (methylated BSA)-induced arthritis in mice where it showed strong anti-inflammatory activity. Based on these results, we propose that dominant-negative CXCL8 decoy proteins are a promising class of novel biopharmaceuticals with high therapeutic potential in inflammatory diseases.  相似文献   

9.
The CXCR3 chemokine receptor regulates the migration of Th1 lymphocytes and responds to three ligands: CXCL9/MIG, CXCL10/IP-10, and CXCL11/I-TAC. We screened for potential regulation of T cell responses by matrix metalloproteinase (MMP) processing of these important chemokines. The most potent of the CXCR3 ligands, CXCL11, was identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry as a substrate of the PMN-specific MMP-8, macrophage-specific MMP-12, and the general leukocyte MMP-9. The 73-amino acid residue CXCL11 is processed at both the amino and carboxyl termini to generate CXCL11-(5-73), -(5-63), and -(5-58) forms. NH2-terminal truncation results in loss of agonistic properties, as shown in calcium mobilization and chemotaxis experiments using CXCR3 transfectants and human T lymphocytes. Moreover, CXCL11-(5-73) is a CXCR3 antagonist and interestingly shows enhanced affinity to heparin. However, upon COOH-terminal truncation to position 58 there is loss of antagonist activity and heparin binding. Together this highlights an unexpected site for receptor interaction and that the carboxyl terminus is critical for glycosaminoglycan binding, an essential function for the formation of chemokine gradients in vivo. Hence, MMP activity might regulate CXCL11 tissue gradients in two ways. First, the potential of CXCL11-(5-73) to compete active CXCL11 from glycosaminoglycans might lead to the formation of an antagonistic haptotactic chemokine gradient. Second, upon further truncation, MMPs disperse the CXCL11 gradients in a novel way by proteolytic loss of a COOH-terminal GAG binding site. Hence, these results reveal potential new roles in down-regulating Th1 lymphocyte chemoattraction through MMP processing of CXCL11.  相似文献   

10.
Interferon-gamma-inducible protein-10 (IP-10)/CXCL10 is a CXC chemokine that attracts T lymphocytes and NK cells through activation of CXCR3, the only chemokine receptor identified to date that binds IP-10/CXCL10. We have found that several nonhemopoietic cell types, including epithelial and endothelial cells, have abundant levels of a receptor that binds IP-10/CXCL10 with a Kd of 1-6 nM. Surprisingly, these cells expressed no detectable CXCR3 mRNA. Furthermore, no cell surface expression of CXCR3 was detectable by flow cytometry, and the binding of 125I-labeled IP-10/CXCL10 to these cells was not competed by the other high affinity ligands for CXCR3, monokine induced by IFN-gamma/CXCL9, and I-TAC/CXCL11. Although IP-10/CXCL10 binds to cell surface heparan sulfate glycosaminoglycan (GAG), the receptor expressed by these cells is not GAG, since the affinity of IP-10/CXCL10 for this receptor is much higher than it is for GAG, its binding is not competed by platelet factor 4/CXCL4, and it is present on cells that are genetically incapable of synthesizing GAG. Furthermore, in contrast to IP-10/CXCL10 binding to GAG, IP-10/CXCL10 binding to these cells induces new gene expression and chemotaxis, indicating the ability of this receptor to transduce a signal. These high affinity IP-10/CXCL10-specific receptors on epithelial cells may be involved in cell migration and, perhaps, in the spread of metastatic cells as they exit from the vasculature. (All of the lung cancer cells we examined also expressed CXCR4, which has been shown to play a role in breast cancer metastasis.) CXCR3-negative endothelial cells may also use this receptor to mediate the angiostatic activity of IP-10/CXCL10, which is also expressed by these cells in an autocrine manner.  相似文献   

11.
Glycosaminoglycan (GAG)-bound and soluble chemokine gradients in the vasculature and extracellular matrix mediate neutrophil recruitment to the site of microbial infection and sterile injury in the host tissue. However, the molecular principles by which chemokine-GAG interactions orchestrate these gradients are poorly understood. This, in part, can be directly attributed to the complex interrelationship between the chemokine monomer-dimer equilibrium and binding geometry and affinities that are also intimately linked to GAG length. To address some of this missing knowledge, we have characterized the structural basis of heparin binding to the murine CXCL1 dimer. CXCL1 is a neutrophil-activating chemokine and exists as both monomers and dimers (Kd = 36 μm). To avoid interference from monomer-GAG interactions, we designed a trapped dimer (dCXCL1) by introducing a disulfide bridge across the dimer interface. We characterized the binding of GAG heparin octasaccharide to dCXCL1 using solution NMR spectroscopy. Our studies show that octasaccharide binds orthogonally to the interhelical axis and spans the dimer interface and that heparin binding enhances the structural integrity of the C-terminal helical residues and stability of the dimer. We generated a quadruple mutant (H20A/K22A/K62A/K66A) on the basis of the binding data and observed that this mutant failed to bind heparin octasaccharide, validating our structural model. We propose that the stability enhancement of dimers upon GAG binding regulates in vivo neutrophil trafficking by increasing the lifetime of “active” chemokines, and that this structural knowledge could be exploited for designing inhibitors that disrupt chemokine-GAG interactions and neutrophil homing to the target tissue.  相似文献   

12.
CXCL11 (ITAC) is one of three chemokines known to bind the receptor CXCR3, the two others being CXCL9 (Mig) and CXCL10 (IP-10). CXCL11 differs from the other CXCR3 ligands in both the strength and the particularities of its receptor interactions: It has a higher affinity, is a stronger agonist, and behaves differently when critical N-terminal residues are deleted. The structure of CXCL11 was determined using solution NMR to allow comparison with that of CXCL10 and help elucidate the source of the differences. CXCL11 takes on the canonical chemokine fold but exhibits greater conformational flexibility than has been observed for related chemokines under the same sample conditions. Unlike related chemokines such as IP-10 and IL-8, ITAC does not appear to form dimers at millimolar concentrations. The origin for this behavior can be found in the solution structure, which indicates a beta-bulge in beta-strand 1 that distorts the dimerization interface used by other CXC chemokines.  相似文献   

13.
Glycosaminoglycans (GAGs), such as heparin or heparan sulfate, are required for the in vivo function of chemokines. Chemokines play a crucial role in the recruitment of leukocyte subsets to sites of inflammation and lymphocytes trafficking. GAG-chemokine interactions mediate cell migration and determine which leukocyte subsets enter tissues. Identifying the exact GAC sequences that bind to particular chemokines is key to understand chemokine function at the molecular level and develop strategies to interfere with chemokine-mediated processes. Here, we characterize the heparin binding profiles of eight chemokines (CCL21, IL-8, CXCL12, CXCL13, CCL19, CCL25, CCL28, and CXCL16) by employing heparin microarrays containing a small library of synthetic heparin oligosaccharides. The chemokines differ significantly in their interactions with heparin oligosaccharides: While some chemokines, (e.g., CCL21) strongly bind to a hexasaccharide containing the GlcNSO3(6-OSO3)-IdoA(2-OSO3) repeating unit, CCL19 does not bind and CXCL12 binds only weakly. The carbohydrate microarray binding results were validated by surface plasmon resonance experiments. In vitro chemotaxis assays revealed that dendrimers coated with the fully sulfated heparin hexasaccharide inhibit lymphocyte migration toward CCL21. Migration toward CXCL12 or CCL19 was not affected. These in vitro homing assays indicate that multivalent synthetic heparin dendrimers inhibit the migration of lymphocytes toward certain chemokine gradients by blocking the formation of a chemokine concentration gradient on GAG endothelial chains. These findings are in agreement with preliminary in vivo measurements of circulating lymphocytes. The results presented here contribute to the understanding of GAG-chemokine interactions, a first step toward the design of novel drugs that modulate chemokine activity.  相似文献   

14.
CXCR3 is a G-protein-coupled seven-transmembrane domain chemokine receptor that plays an important role in effector T-cell and NK cell trafficking. Three gamma interferon-inducible chemokines activate CXCR3: CXCL9 (Mig), CXCL10 (IP-10), and CXCL11 (I-TAC). Here, we identify extracellular domains of CXCR3 that are required for ligand binding and activation. We found that CXCR3 is sulfated on its N terminus and that sulfation is required for binding and activation by all three ligands. We also found that the proximal 16 amino acid residues of the N terminus are required for CXCL10 and CXCL11 binding and activation but not CXCL9 activation. In addition, we found that residue R216 in the second extracellular loop is required for CXCR3-mediated chemotaxis and calcium mobilization but is not required for ligand binding or ligand-induced CXCR3 internalization. Finally, charged residues in the extracellular loops contribute to the receptor-ligand interaction. These findings demonstrate that chemokine activation of CXCR3 involves both high-affinity ligand-binding interactions with negatively charged residues in the extracellular domains of CXCR3 and a lower-affinity receptor-activating interaction in the second extracellular loop. This lower-affinity interaction is necessary to induce chemotaxis but not ligand-induced CXCR3 internalization, further suggesting that different domains of CXCR3 mediate distinct functions.  相似文献   

15.
16.
Engineered biomatrices offer the potential to recapitulate the regenerative microenvironment, with important implications in tissue repair. In this context, investigation of the molecular interactions occurring between growth factors, cytokines and extracellular matrix (ECM) has gained increasing interest. Here, we sought to investigate the possible interactions between the ECM proteins fibronectin (FN) and fibrinogen (Fg) with the CXCR3 ligands CXCL9, CXCL10 and CXCL11, which are expressed during wound healing. New binding interactions were observed and characterized. Heparin-binding domains within Fg (residues 15-66 of the β chain, Fg β15-66) and FN (FNI1-5, but not FNIII12-14) were involved in binding to CXCL10 and CXCL11 but not CXCL9. To investigate a possible influence of FN and Fg interactions with CXCL11 in mediating its role during re-epithelialization, we investigated human keratinocyte migration in vitro and wound healing in vivo in diabetic db/db mice. A synergistic effect on CXCL11-induced keratinocyte migration was observed when cells were treated with CXCL11 in combination with FN in a transmigration assay. Moreover, wound healing was enhanced in full thickness excisional wounds treated with fibrin matrices functionalized with FN and containing CXCL11. These findings highlight the importance of the interactions occurring between cytokines and ECM and point to design concepts to develop functional matrices for regenerative medicine.  相似文献   

17.
Chemokines selectively recruit and activate a variety of cells during inflammation. Interactions between cell surface glycosaminoglycans (GAGs) and chemokines drive the formation of haptotactic or immobilized gradients of chemokines at the site of inflammation, directing this recruitment. Chemokines bind to glycosaminoglycans on human umbilical vein endothelial cells (HUVECs) with affinities in the micromolar range: RANTES > MCP-1 > IL-8 > MIP-1alpha. This binding can be competed with by soluble glycosaminoglycans: heparin, heparin sulfate, chondroitin sulfate, and dermatan sulfate. RANTES binding showed the widest discrimination between glycosaminoglycans (700-fold), whereas MIP-1alpha was the least selective. Almost identical results were obtained in an assay using heparin sulfate beads as the source of immobilized glycosaminoglycan. The binding of chemokines to glycosaminoglycan fragments has a strong length dependence, and optimally requires both N- and O-sulfation. Isothermal titration calorimetry data confirm these results; IL-8 binds heparin fragments with a K(d) of 0.39-2.63 microM, and requires five saccharide units to bind each monomer of chemokine. In membranes from cells expressing the G-protein-coupled chemokine receptors CXCR1, CXCR2, and CCR1, soluble GAGs inhibit the binding of chemokine ligands to their receptors. Consistent with this, heparin and heparin sulfate could inhibit IL-8-induced neutrophil calcium flux. Chemokines can therefore form complexes with both cell surface and soluble GAGs; these interactions have different functions. Soluble GAG chemokines complexes are unable to bind the receptor, resulting in a block of the biological activity. Previously, we have shown that cell surface GAGs present chemokines to the G-protein-coupled receptors, by increasing the local concentration of protein. A model is presented which brings together all of these data. The selectivity in the chemokine-GAG interaction suggests selective disruption of the haptotactic gradient may be an achievable therapeutic approach in inflammatory disease.  相似文献   

18.
《Cytokine》2014,65(1):79-87
Viral chemokine modulating proteins provide new and extensive sources for therapeutics. Purified M-T7, a poxvirus-derived secreted immunomodulatory protein, reduces mononuclear cell invasion and atheroma in rodent models of angioplasty injury as well as aortic and renal transplant, improving renal allograft survival. M-T7 is a rabbit species-specific interferon gamma receptor (IFNγR) homolog, but also inhibits chemokine/glycosaminoglycan (GAG) interactions for C, CC and CXC chemokines, with cross-species specific inhibitory activity. M-T7 anti-atheroma activity is blunted in GAG deficient mouse aortic transplants, but not in CC chemokine receptor deficient transplants, supporting M-T7 interference in chemokine/GAG interactions as the basis of the atheroma-inhibitory activity. We have assessed point mutants of M-T7 both in vivo in a mouse angioplasty model and in vitro in tissue culture and binding assays, in order to better define the primary mechanism of anti-atheroma activity. Of these M-T7 mutants, the R171E and E209I M-T7 mutants lost inhibitory activity for plaque growth in hyperlipidemic ApoE−/− mice after angioplasty injury and R171E, moreover, greatly exacerbated plaque growth and inflammation. F137D retained some inhibitory activity for plaque growth. In contrast, for cell migration assays, M-T7-His6X, F137D, R171E, and E209I all inhibited CC chemokine (RANTES) mediated cell migration. For the ligand binding assays, R171E and E209I had significantly reduced binding to RANTES and IFNγ, whereas F137D retained wild-type binding activity. Heparin treatment further reduced RANTES binding of all three M-T7 mutants. In summary, point mutations of M-T7, R171E and E209I, exhibited reduced anti-inflammatory properties in vivo after mouse angioplasty with a loss of in vitro binding to RANTES and IFNγ, indicating these point mutations partially disrupt M-T7 ligand-binding activities. Unexpectedly, the M-T7 mutants all retained inhibitory activity for human monocyte THP-1 cell migration ex vivo, suggesting additional inhibitory properties against human monocyte THP-1 cells that are independent of chemokine inhibition.  相似文献   

19.
McCornack MA  Boren DM  LiWang PJ 《Biochemistry》2004,43(31):10090-10101
Chemokines are immune system proteins that recruit and activate leukocytes to sites of infection. This recruitment is believed to involve the establishment of a chemokine concentration gradient by the binding of chemokines to glycosaminoglycans (GAGs). In previous studies, we elucidated the GAG binding site of the chemokine MIP-1beta and implicated the involvement of the chemokine dimer in GAG binding through residues across the dimer interface. In the present studies, nuclear magnetic resonance spectroscopy was used to investigate the effect of GAG binding on MIP-1beta dimerization. Using several dimerization-impaired variants of MIP-1beta (F13Y, F13L, L34W, and L34K), these studies indicate that the addition of disaccharide to the mutants increases their dimerization affinities. For MIP-1beta F13Y, the presence of the disaccharide increases the chemokine dimerization affinity about 9-fold as evidenced by a decrease in the dimer dissociation constant from 610 to 66 microM. Even more dramatically, the dimerization affinity of MIP-1beta L34W also increases upon addition of disaccharide, with the dimer dissociation constant decreasing from 97 to 6.5 microM. After this effect for the mutants of MIP-1beta was shown, similar experiments were conducted with the CC chemokine RANTES, and it was demonstrated that the presence of disaccharide increases its dimerization affinity by almost 7-fold. These findings provide further evidence of the importance of the dimer in chemokine function and provide the first quantitative investigation of the role of GAGs in the manipulation of the MIP-1beta quaternary structure.  相似文献   

20.
The CXCL12γ chemokine arises by alternative splicing from Cxcl12, an essential gene during development. This protein binds CXCR4 and displays an exceptional degree of conservation (99%) in mammals. CXCL12γ is formed by a protein core shared by all CXCL12 isoforms, extended by a highly cationic carboxy-terminal (C-ter) domain that encompass four overlapped BBXB heparan sulfate (HS)-binding motifs. We hypothesize that this unusual domain could critically determine the biological properties of CXCL12γ through its interaction to, and regulation by extracellular glycosaminoglycans (GAG) and HS in particular. By both RT-PCR and immunohistochemistry, we mapped the localization of CXCL12γ both in mouse and human tissues, where it showed discrete differential expression. As an unprecedented feature among chemokines, the secreted CXCL12γ strongly interacted with cell membrane GAG, thus remaining mostly adsorbed on the plasmatic membrane upon secretion. Affinity chromatography and surface plasmon resonance allowed us to determine for CXCL12γ one of the higher affinity for HS (Kd = 0.9 nM) ever reported for a protein. This property relies in the presence of four canonical HS-binding sites located at the C-ter domain but requires the collaboration of a HS-binding site located in the core of the protein. Interestingly, and despite reduced agonist potency on CXCR4, the sustained binding of CXCL12γ to HS enabled it to promote in vivo intraperitoneal leukocyte accumulation and angiogenesis in matrigel plugs with much higher efficiency than CXCL12α. In good agreement, mutant CXCL12γ chemokines selectively devoid of HS-binding capacity failed to promote in vivo significant cell recruitment. We conclude that CXCL12γ features unique structural and functional properties among chemokines which rely on the presence of a distinctive C-ter domain. The unsurpassed capacity to bind to HS on the extracellular matrix would make CXCL12γ the paradigm of haptotactic proteins, which regulate essential homeostatic functions by promoting directional migration and selective tissue homing of cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号