首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herein, we report a library consisting of some novel glitazones containing thiazolidinedione and its bioisosteres, rhodanine and oxadiazolidine ring structures as their basic scaffold for their antidiabetic activity. Twelve novel glitazones with diverse chemical structures were designed and synthesized by adopting appropriate synthetic schemes and analyzed. Later, subjected to in vitro glucose uptake assay in the absence and presence of insulin to confirm their antidiabetic activity using rat hemi-diaphragm. The titled compounds exhibited glucose uptake activity ranging weak to significant activity. Compounds 4, 5, 9, 11, 15, 16, 19 and 20 showed considerable glucose uptake activity apart from rosiglitazone, a standard drug. Compound 16 happens to be the candidate compound from this study to investigate further. The illustration about their design, synthesis, analysis and glucose uptake activity is reported here along with the in vitro and in silico study based structure–activity relationships.  相似文献   

2.
In this study, Complex I inhibitor R419 was firstly revealed to have significant anticancer activity against HepG2 cells (IC50?=?5.2?±?0.9?μM). Based on this finding, a series of R419 derivatives were synthesized and biologically evaluated. As results, 9 derivatives were found to have obvious anticancer activity. Among them, H20 exhibited the most potent activity (IC50?=?2.8?±?0.4?μM). Mechanism study revealed that H20 caused severe depletion of cellular ATP, dose-dependently activated AMPK, decreased Bcl-2/Bax ratio and induced necrotic cell death. Most importantly, H20 displayed definite inhibitory activity against Complex I.  相似文献   

3.
A series of 2-arylbenzothiazole derivatives have been prepared as fluorogenic enzyme substrates in order to detect aminopeptidase, esterase, phosphatase and β-galactosidase activity in clinically important Gram-negative and Gram-positive bacteria. Substrates were incorporated into an agar-based culture medium and this allowed growth of intensely fluorescent bacterial colonies based on hydrolysis by specific enzymes. Substrate 20 targeted l-alanine aminopeptidase activity and was hydrolysed exclusively by a range of Gram-negative bacteria and inhibited the growth of a range of Gram-positive bacteria. Substrate 19a targeted β-alanyl aminopeptidase activity and generated fluorescent colonies of selected Gram-negative species including Pseudomonas aeruginosa. Substrate 21b targeted C8-esterase activity and resulted in strongly fluorescent colonies of selected species known to harbour such enzyme activity (e.g., Salmonella and Pseudomonas). Most Gram-negative species produced colonies with an intense blue fluorescence due to hydrolysis of phosphatase substrates 24ac and substrate 24c was also hydrolysed by strains of Staphylococcus aureus. Compounds 26b and 26c targeted β-galactosidase activity and generated strongly fluorescent colonies with coliform bacteria that produced this enzyme (e.g., Escherichia coli).  相似文献   

4.
The azole pharmacophore is still considered a viable lead structure for the synthesis of more efficacious and broad spectrum antimicrobial agents. Potential antibacterial and antifungal activities are encountered with some tetrazoles. Therefore, this study presents the synthesis and antimicrobial evaluation of a new series of substituted tetrazoles that are structurally related to the famous antimicrobial azole pharmacophore. A detailed discussion of the structural elucidation of some of the newly synthesized compounds is also described. Antimicrobial evaluation revealed that twenty compounds were able to display variable growth inhibitory effects on the tested Gram positive and Gram negative bacteria with special efficacy against the Gram positive strains. Meanwhile, six compounds exhibited moderate antifungal activity against Candida albicans and Aspergillus fumigatus. Structurally, the antibacterial activity was encountered with tetrazoles containing a phenyl substituent, while the obtained antifungal activity was confined to the benzyl variants. Compounds 16, 18, 24 and 27 were proved to be the most active antibacterial members within this study with a considerable broad spectrum against all the Gram positive and negative strains tested. A distinctive anti-Gram positive activity was displayed by compound 18 against Staphylococcus aureus that was equipotent to ampicillin (MIC 6.25 μg/mL).On the other hand, twelve compounds were selected to be screened for their preliminary anticonvulsant activity against subcutaneous metrazole (ScMet) and maximal electroshock (MES) induced seizures in mice. The results revealed that five compounds namely; 3, 5, 13, 21, and 24 were able to display noticeable anticonvulsant activity in both tests at 100 mg/kg dose level. Compounds 5 and 21 were proved to be the most active anticonvulsant members in this study with special high activity in the ScMet assay (% protection: 100% and 80%, respectively).  相似文献   

5.
Over the last few decades, a growing body of studies addressed the anticancer activity of NSAIDs, particularly selective COX-2 inhibitors. However, their exact molecular mechanism is still unclear and is not fully investigated. In this regard, a novel series of compounds bearing a COXs privilege scaffold, diphenyl thiazole, was synthesized and evaluated for their anticancer activity against a panel of cancer cell lines. The most active compounds 10b, 14a,b, 16a, 17a,b and 18b were evaluated in vitro for COX-1/COX-2 inhibitory activity. These compounds were suggested to exert their anticancer activity through a multi-target mechanism based on their structural features. Thus, compounds 10b and 17b with the least IC50 values in MTT assay were tested against three known anticancer targets; EGFR, BRAF and tubulin. Compounds 10b and 17b showed remarkable activity against EGFR with IC50 values of 0.4 and 0.2 μM, respectively and good activity against BRAF with IC50 values of 1.3 and 1.7 μM, respectively. In contrast, they showed weak activity in tubulin polymerization assay. The in vivo anti-inflammatory potential was assessed and interestingly, compound 17b was the most potent compound. Together, this study offers some important insights into the correlation between COXs inhibition and cancer treatment. Additionally, the results demonstrated the promising activity of these compounds with a multi-target mechanism as good candidates for further development into potential anticancer agents.  相似文献   

6.
In the course of search for the robust analogs of 1′-acetoxychavicol acetate (ACA, 1), the Rev-export inhibitor from the medicinal plant Alpinia galanga, we clarified formation of the quinone methide intermediate ii to be essential for exerting the inhibitory activity of 1. Based on this mechanism of action, the rational design from the MO calculation of the conclusive activation energy to ii resulted in the four halogenated analogs with more potent activity than ACA (1). In particular, the difluoroanalog 20d exhibited approximately four-fold potent activity as compared with 1.  相似文献   

7.
C14 alkyl benzoate ABG001, derived from naturally occurring gentisides, was reported to exhibit neurotrophic activity which is similar to NGF (Nerve Growth Factor). In this research, ABG001 was modified by the strategy of isosteric replacement and conformational restriction with the purpose of improving the bioactivity. The cellular neurotrophic activity of those ABG001 derivatives were evaluated, among which 3-hydroxyquinolin-2-(1H)-one A3 and 4-decylphenol ester B7 displayed much better neurotrophic activity compared with ABG001, which highlights the potential of those novel scaffolds for future neurotrophic agent development.  相似文献   

8.
9.
Cinnamamide 3a, a leading compound with antidepressant-like activity, and its derivatives were synthesized and their antidepressant activity and structure–activity relationship were investigated. Most of the compounds with trifluoromethyl group in methylenedioxyphenyl moiety (3f, 4bc and 6ab) exhibited significant antidepressant activity, measured in terms of percentage decrease in immobility duration by tail suspension test. In addition, the dose-dependent antidepressant effect of the most potent compound 3f was subsequently confirmed in tail suspension test and forced swim test. The test results showed that 3f was equal to or more effective than the standard drug fluoxetine at a concentration of 10 mg/kg. Furthermore, compound 3f did not show any central nervous system stimulant properties in the open-field test and the preliminary results were promising enough to warrant further detailed antidepressant research around this scaffold.  相似文献   

10.
In this work the synthesis and antiparasitical activity of new 1,5-diaryl-3-oxo-1,4-pentadienyl derivatives are described. First, compounds 1a, 1b, 1c and 1d were prepared by acid-catalyzed aldol reaction between 2-butanone and benzaldehyde, anisaldehyde, p-N,N-dimethylaminobenzaldehyde and p-nitrobenzaldehyde. Reacting each of the methyl ketones 1a, 1b, 1c and 1d with the p-substituted benzaldehydes under basic-catalyzed aldol reaction, we further prepared compounds 2a2p. All twenty compounds were evaluated for antiproliferative activity, particularly for promastigote of Leishmania amazonensis and epimastigote of Trypanosoma cruzi. All compounds showed good activity while nitro compounds 2i and 2k showed inhibition activity at a few μM.  相似文献   

11.
In this Letter, we report the structure–activity relationship (SAR) studies on series of positional isomers of 5(6)-bromo-1-[(phenyl)sulfonyl]-2-[(4-nitrophenoxy)methyl]-1H-benzimidazoles derivatives 7(aj) and 8(aj) synthesized in good yields and characterized by 1H NMR, 13C NMR and mass spectral analyses. The crystal structure of 7a was evidenced by X-ray diffraction study. The newly synthesized compounds were evaluated for their in vitro antibacterial activity against Staphylococcus aureus, (Gram-positive), Escherichia coli and Klebsiella pneumoniae (Gram-negative), antifungal activity against Candida albicans, Aspergillus flavus and Rhizopus sp. and antitubercular activity against Mycobacterium tuberculosis H37Rv, Mycobacterium smegmatis, Mycobacterium fortuitum and MDR-TB strains. The synthesized compounds displayed interesting antimicrobial activity. The compounds 7b, 7e and 7h displayed significant activity against Mycobacterium tuberculosis H37Rv strain.  相似文献   

12.
The new pentacyclic triterpenoids friedel-1-en-3,16-dione (1), 1α,29-dihydroxyfriedelan-3-one (2) and 16β,28,29-trihydroxyfriedelan-3-one (3) were isolated from Maytenus robusta branches in addition to the known, but new for this species, triterpenoid 12α,29-dihydroxyfriedelan-3-one (4). The structures and stereochemistry of the novel triterpenoids were established by IR, 1D/2D NMR and HR-APCIMS spectral data. In addition, the biological activity of compound 2 and the previously isolated friedelanes 58 (friedelan-3,16-dione, 29-hydroxyfriedelan-3-one, 29-hydroxyfriedelan-3,16-dione and 16β,29-dihydroxyfriedelan-3-one) was investigated. Compounds 2 and 8 were tested for their acetylcholinesterase properties and antimicrobial activity against the bacteria Staphylococcus aureus, Pseudomonas aeruginosa, Listeria monocytogenes, Citrobacter freundii, and the fungus Candida albicans. Compound 2 was the most active compound for both assays, with values of 32.3% acetylcholinesterase inhibition, 42% activity against the fungus Candida albicans and 34% against the bacterium Pseudomonas aeruginosa. Compounds 5–8 were assayed for their antiedematogenic activity using the carrageenan-induced paw edema assay. At maximum inflammation after three hours, compounds 6 and 8 showed 42% and 57% activity, respectively. After four hours, compounds 5 and 7 showed activity of 71% and 75% compared to 79% of the control indomethacin.  相似文献   

13.
The systematic isolation of the EtOAc extract from Schisandra sphenanthera fruit was performed during a search for HSV-2 and adenovirus inhibitors. Sixteen lignans were obtained, with compound 1 representing a new and rare type of lignan in the genus Schisandra. Their structures were elucidated by spectroscopy and comparison with literature data. Among all the lignans tested for their antiviral activities, compound 14 was the most active against HSV-2 with a selectivity index value up to 29.83. Moreover, the new compound 1, and the known ones (4, 6, 7, 10 and 14) also exhibited moderate inhibition of HSV-2 and adenovirus. To the best of our knowledge, this is the first report that these lignans from Schisandra genus were shown to have modest activity against HSV-2 and adenovirus. Meanwhile, structure–activity relationships of some lignans for the inhibitory activity against HSV-2 and adenovirus were discussed in this study.  相似文献   

14.
The dichloromethane extract obtained from the aerial parts of Salvia buchananii Hedge was investigated for its antimicrobial properties following a bioassay-oriented fractionation approach. The extract displayed a clear inhibitory activity against several Gram-positive multidrug-resistant clinical strains including Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus agalactiae, Enterococcus faecium and Enterococcus faecalis. No activity was observed on Gram-negative strains and on Candida species. Phytochemical investigation of this extract led to the isolation of three new clerodane diterpenes (5, 6 and 8) and eight known clerodane diterpenes (1-4, 7, 9-11) as well as ursolic (UA) and oleanolic (OA) acids. Their structures were established by extensive 1D, 2D NMR and HR-MS spectroscopic methods. The mixture UA/OA manifested a broad and powerful activity on several Gram-positive species, while diterpenes 3, 6, 8 and 9 showed moderate inhibitory activity on the Enterococcus species.  相似文献   

15.
The flavonolignans silybin (1) and 2,3-dehydrosilybin (2) are important natural compounds with multiple biological activities operating at various cell levels. Many of these effects are connected with their radical-scavenging activities. The molecular mechanisms of the antioxidant activity of these compounds and even the functional groups responsible for this activity are not yet well known. Their mechanism can be inferred from the structures of the dimeric products obtained from radical-mediated reactions of selectively methylated derivatives of 1 and 2. The radical oxidation of 1 methylated at 7-OH and 2 methylated at both 3-OH and 7-OH yields C–C and C–O dimers that enable the molecular mechanism of their E-ring interaction with radicals to be elucidated and shows the importance of the 20-OH group in this respect. The pivotal role of the 3-OH group in the radical-scavenging activity of 2 was confirmed through the formation of another type of dimer from its selectively methylated derivative.  相似文献   

16.
In this work, the benzimidazole-pyrrole conjugates 6ah and benzimidazole-tetracycles conjugates 1214 were prepared. The cytotoxicity of the compounds 3, 4ah, 6ah, 8, 10 and 1214 was tested against lung cancer cell line A549. Compound 6b exhibited higher activity than the bis-benzoxazole natural product (UK-1), the standard. The tested 4g,h, 6ah, 10 and 1214 exhibited remarkable cytotoxicity activity against breast cancer cell line MCF-7 with higher activity than tamoxifen. Furthermore, compound 4h was found to be also more potent than doxurubicin. The antitumor promotion activity of synthesized compounds 4g,h, 6ah, 10 and 1214 has been estimated by studying their possible inhibitory effects on EBV-EA activation induced by 12-O-tetradecanoylphorbol-13-acetate (TPA). Among the studied compounds, the inhibitory activities of compounds 8, 13 and 14 demonstrated strong inhibitory effects on the Epstein–Barr virus early antigen (EBV-EA) activation without showing any cytotoxicity on the Raji cells and their effects being stronger than that of a representative control, oleanolic acid.Moreover, the molecular docking of the new compounds into plasminogen activator (uPA) receptor has been in correlation with the antitumor activity. All synthesized compounds 3, 4ah, 6ah, 8, 10 and 1214 were docked into same groove of the binding site of the native co-crystalized (4-iodobenzo[b]thiophene-2-carboxamidine) ligand (PDB code:1c5x) for activity explaination. Compounds 4h, 6b and 13, giving the best docking results, were further studied to estimate their effect on the level of uPA using AssayMax human urokinase (uPA) ELISA kit. In case of A549 cell line, compound 6 exhibited similar activity to MMC, and for MCF-7 cell line, compound 4h exhibited similar activity to doxorubicin, in inhibiting the expression of uPA.  相似文献   

17.
We isolated 18 polyphenols with neuraminidase inhibitory activity from methanol extracts of the roots of Glycyrrhiza uralensis. These polyphenols consisted of four chalcones (14), nine flavonoids (513), four coumarins (1417), and one phenylbenzofuran (18). When we tested the effects of these individual compounds and analogs thereof on neuraminidase activation, we found that isoliquiritigenin (1, IC50 = 9.0 μM) and glycyrol (14, IC50 = 3.1 μM) had strong inhibitory activity. Structure–activity analysis showed that the furan rings of the polyphenols were essential for neuraminidase inhibitory activity, and that this activity was enhanced by the apioside group on the chalcone and flavanone backbone. In addition, the presence of a five-membered ring between C-4 and C-2′ in coumestan was critical for neuraminidase inhibition. All neuraminidase inhibitors screened were found to be reversible noncompetitive inhibitors.  相似文献   

18.
A series of 1,3,6-trisubstituted 1,4-diazepan-7-ones were prepared as kallikrein 7 (KLK7, stratum corneum chymotryptic enzyme) inhibitors. Previously reported compounds 13 were potent human KLK7 inhibitors; however, they did not exhibit inhibitory activity against mouse KLK7. Comparison of the human and mouse KLK7 structures reveals the cause of this species differences; therefore, compounds that could inhibit both KLK7s were designed, synthesized, and evaluated. Through this structure-based drug design, compound 22g was identified as an inhibitor against human and mouse KLK7, and only one of the enantiomers, (–)–22g, exhibited potent inhibitory activity. Furthermore, the crystal structure of mouse KLK7 complexed with 22g enabled the elucidation of structure–activity relationships and justified 22g as a valuable compound to overcome the species differences.  相似文献   

19.
Structural modifications of the left-hand side of compound 1 were identified which retained or improved potent binding to Bcl-2 and Bcl-xL in in vitro biochemical assays and had strong activity in an RS4;11 apoptotic cellular assay. For example, sulfoxide diastereomer 13 maintained good binding affinity and comparable cellular potency to 1 while improving aqueous solubility. The corresponding diastereomer (14) was significantly less potent in the cell, and docking studies suggest that this is due to a stereochemical preference for the RS versus SS sulfoxide. Appending a dimethylaminoethoxy side chain (27) adjacent to the benzylic position of the biphenyl moiety of 1 improved cellular activity by approximately three-fold, and this activity was corroborated in cell lines overexpressing Bcl-2 and Bcl-xL.  相似文献   

20.
As one of the most promising anticancer target in protein arginine methyltransferase (PRMT) family, PRMT5 has been drawing more and more attentions, and many efforts have been devoted to develop its inhibitors. In this study, three PRMT5 inhibitors (9, 16, and 23) with novel scaffolds were identified by performing pharmacophore- and docking-based virtual screening combined with in vitro radiometric-based scintillation proximity assay (SPA). Substructure search based on the scaffold of the most active 9 afforded 26 additional analogues, and SPA results indicated that two analogues (91 and 92) showed increased PRMT5 inhibitory activity compared with the parental compound. Resynthesis of 9, 91, and 92 confirmed their PRMT5 enzymatic inhibition activity. In addition, compound 91 displayed selectivity against PRMT5 over other key homological members (PRMT1 and CARM1 (PRMT4)). While the structure–activity relationship (SAR) of this series of compounds was discussed to provide clues for further structure optimization, the probable binding modes of active compounds were also probed by molecular docking and molecular dynamics simulations. Finally, the antiproliferative effect of 91 on MV4-11 leukemia cell line was confirmed and its impact on regulating the target gene of PRMT5 was also validated. The hit compounds identified in this work have provided more novel scaffolds for future hit-to-lead optimization of small-molecule PRMT5 inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号