首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Alzheimer’s disease (AD) is a multifactorial disorder with several target proteins contributing to its etiology. In search for multifunctional anti-AD drug candidates, taking into account that the acetylcholinesterase (AChE) and beta-amyloid (Aβ) aggregation are particularly important targets for inhibition, the tacrine and benzothiazole (BTA) moieties were conjugated with suitable linkers in a novel series of hybrids. The designed compounds (7a7e) were synthesized and in vitro as well as in ex vivo evaluated for their capacity for the inhibition of acetylcholinesterase (AChE) and Aβ self-induced aggregation, and also for the protection of neuronal cells death (SHSY-5Y cells, AD and MCI cybrids). All the tacrine–BTA hybrids displayed high in vitro activities, namely with IC50 values in the low micromolar to sub-micromolar concentration range towards the inhibition of AChE, and high percentages of inhibition of the self-induced Aβ aggregation. Among them, compound 7a, with the shortest linker, presented the best inhibitory activity of AChE (IC50 = 0.34 μM), while the highest activity as anti-Aβ42 self-aggregation, was evidenced for compound 7b (61.3%, at 50 μM. The docking studies demonstrated that all compounds are able to interact with both catalytic active site (CAS) and peripheral anionic site (PAS) of AChE. Our results show that compounds 7d and 7e improved cell viability in cells treated with Aβ42 peptide. Overall, these multi-targeted hybrid compounds appear as promising lead compounds for the treatment of Alzheimer’s disease.  相似文献   

2.
A series of novel flurbiprofen-clioquinol hybrids were designed and synthesized as multifunctional agents for Alzheimer’s disease therapy, and their potential was evaluated through various biological experiments. In vitro studies showed that most target compounds exhibited significant ability to inhibit self- and Cu2+-induced β-amyloid aggregation. Furthermore, some target compounds, especially 7i and 7r, also showed biometal chelating abilities, antioxidant activity, anti-neuroinflammatory activity and appropriate BBB permeability. These biological activities indicated that the representative compound 7i and 7r might be promising multifunctional agents for AD treatment.  相似文献   

3.
This paper describes the synthesis and evaluation of new dihydropyrimidinone (DHPM)-derived selenoesters as potential multi-targeted agents for the treatment of Alzheimer’s disease. A series of DHPM-derived selenoesters were obtained with high structural diversity through a short and modular synthetic route. The antioxidant activity was evaluated by TBARS and iron chelation assays. These compounds were also evaluated as acetylcholinesterase inhibitors (AChEi). The compounds demonstrated good antioxidant activity, since they presented excellent lipid peroxidation inhibition and good iron chelation activity. In addition, they showed acetylcholinesterase inhibition activity and some of them presented activity superior to that of the standard drug galantamine. The in silico predictions showed that the compound 1h may present a good pharmacokinetic profile. Therefore, the series of DHPM-derived selenoesters described herein displayed good potential for the development of antioxidant and anticholinesterasic agents in the search for new multi-targeted therapeutics for the treatment of Alzheimer’s disease.  相似文献   

4.
To search for multifunctional anti-Alzheimer’s disease (AD) agents with good safety, the previously synthesized tacrine–flurbiprofen hybrids 1a and 1b were modified into tacrine–flurbiprofen–nitrate trihybrids 3ah. These compounds displayed comparable or higher cholinesterase inhibitory activity relative to the bivalent hybrids. Compound 3a was the most potent, which released moderate NO, exerted blood vessel relaxative activity, and showed significant Aβ inhibitory effects whereas tacrine and flurbiprofen did not exhibit any Aβ inhibitory activity at the same dose. In addition, 3a was active in improving memory impairment in vivo. More importantly, the hepatotoxicity study showed that 3a was much safer than tacrine, suggesting it might be a promising anti-AD agent for further investigation.  相似文献   

5.
A series of new coumarin-dithiocarbamate hybrids were designed and synthesized as multitarget agents for the treatment of Alzheimer’s disease. Most of them showed potent and clearly selective inhibition towards AChE and MAO-B. Among these compounds, compound 8f demonstrated the most potent inhibition to AChE with IC50 values of 0.0068 μM and 0.0089 μM for eeAChE and hAChE, respectively. Compound 8g was identified as the most potent inhibitor to hMAO-B, and it is also a good and balanced inhibitor to both hAChE and hMAO-B (0.114 µM for hAChE; 0.101 µM for hMAO-B). Kinetic and molecular modeling studies revealed that 8g was a dual binding site inhibitor for AChE and a competitive inhibitor for MAO-B. Further studies indicated that 8g could penetrate the BBB and exhibit no toxicity on SH-SY5Y neuroblastoma cells. More importantly, 8g did not display any acute toxicity in mice at doses up to 2500 mg/kg and could reverse the cognitive dysfunction of scopolamine-induced AD mice. Overall, these results highlighted 8g as a potential multitarget agent for AD treatment and offered a starting point for design of new multitarget AChE/MAO-B inhibitors based on dithiocarbamate scaffold.  相似文献   

6.
Combining N-benzylpiperidine moiety of donepezil and coumarin into in a single molecule, novel hybrids with ChE and MAO-B inhibitory activity were designed and synthesized. The biological screening results indicated that most of compounds displayed potent inhibitory activity for AChE and BuChE, and clearly selective inhibition to MAO-B. Of these compounds, 5m was the most potent inhibitor for eeAChE and eqBuChE (0.87 μM and 0.93 μM, respectively), and it was also a good and balanced inhibitor to hChEs and hMAO-B (1.37 μM for hAChE; 1.98 μM for hBuChE; 2.62 μM for hMAO-B). Molecular modeling and kinetic studies revealed that 5m was a mixed-type inhibitor, which bond simultaneously to CAS, PAS and mid-gorge site of AChE, and it was also a competitive inhibitor, which occupied the active site of MAO-B. In addition, 5m showed good ability to cross the BBB and had no toxicity on SH-SY5Y neuroblastoma cells. Collectively, all these results suggested that 5m might be a promising multi-target lead candidate worthy of further pursuit.  相似文献   

7.
A novel series of benzylisoquinoline derivatives were designed, synthesized, and evaluated as multifunctional agents against Alzheimer’s disease (AD). The screening results showed that most of the compounds significantly inhibited cholinesterases (ChEs), human cholinesterases (h-ChEs) and self-induced β-amyloid (Aβ) aggregation. In particular, compound 9k showed the strongest acetylcholinesterase (AChE) inhibitory activity, being 1000-fold and 3-fold more potent than its precursor benzylisoquinoline (10) and the positive control galanthamine, respectively. In addition, 9k was a moderately potent inhibitor for h-ChEs. Compared with precursor benzylisoquinoline (36.0% at 20 μМ), 9k (78.4% at 20 μМ) could further inhibit Aβ aggregation. Moreover, 9k showed low cell toxicity in human SH-SY5Y neuroblastoma cells. Therefore, compound 9k might be a promising lead compound for AD treatment.  相似文献   

8.
A new series of flavonoid derivatives were designed, synthesized and evaluated as potential multifunctional AChE inhibitors against Alzheimer’s disease. Most of them exhibited potent AChE inhibitory activity, high selectivity for AChE over BuChE, and moderate to good inhibitory potency toward Aβ aggregation. Specifically, compound 12c was the strongest AChE inhibitor, being 20-fold more potent than galanthamine and twofold more potent than tacrine, and it also had ability to inhibit Aβ aggregation (close to the reference compound) and to function as a metal chelator. Molecular modeling and enzyme kinetic study revealed that it targeted both the catalytic active site and the peripheral anionic site of AChE. Consequently, this class of compounds deserved to be thoroughly and systematically studied for the treatment of Alzheimer’s disease.  相似文献   

9.
A series of novel 2-methoxy-phenyl dimethyl-carbamate derivatives were designed, synthesized and evaluated as site-activated MTDLs based on rivastigmine and curcumin. Most of them exhibited good to excellent AChE and BuChE inhibitory activities with sub-micromolar IC50 values. Among all the compounds, 6a demonstrated the most potent AChE inhibition with IC50 value of 0.097 μM, which is about 20-fold than that of rivastigmine. In addition, the three selected compounds 5a, 6a and 6e demonstrated inhibitory activity against Aβ self-aggregation similar to cucurmin in TEM assay, which is obviously different from the weak activity of rivastigmine. Moreover, the hydrolysate of 6a (compound 7) also showed potent ABTS+ scavenging and moderate copper ion chelating activity in vitro.  相似文献   

10.
A series of tacrine-(β-carboline) hybrids (11aq) were designed, synthesized and evaluated as multifunctional cholinesterase inhibitors against Alzheimer’s disease (AD). In vitro studies showed that most of them exhibited significant potency to inhibit acetylcholinesterase (eeAChE and hAChE), butyrylcholinesterase (BuChE) and self-induced β-amyloid (Aβ) aggregation, Cu2+-induced Aβ (1–42) aggregation, and to chelate metal ions. Especially, 11l presented the greatest ability to inhibit cholinesterase (IC50, 21.6 nM for eeAChE, 63.2 nM for hAChE and 39.8 nM for BuChE), good inhibition of Aβ aggregation (65.8% at 20 μM) and good antioxidant activity (1.57 trolox equivalents). Kinetic and molecular modeling studies indicated that 11l was a mixed-type inhibitor, binding simultaneously to the catalytic anionic site (CAS) and the peripheral anionic site (PAS) of AChE. In addition, 11l could chelate metal ions, reduce PC12 cells death induced by oxidative stress and penetrate the blood–brain barrier (BBB). These results suggested that 11l might be an excellent multifunctional agent for AD treatment.  相似文献   

11.
A series of 4′-OH-flurbiprofen-chalcone hybrids were designed, synthesized and evaluated as potential multifunctional agents for the treatment of Alzheimer’s disease. The biological screening results indicated that most of these hybrids exhibited good multifunctional activities. Among them, compounds 7k and 7m demonstrated the best inhibitory effects on self-induced Aβ1–42 aggregation (60.0% and 78.2%, respectively) and Cu2+-induced Aβ1–42 aggregation (52.4% and 95.0%, respectively). Moreover, these two representative compounds also exhibited good antioxidant activities, MAO inhibitions, biometal chelating abilities and anti-neuroinflammatory activities in vitro. Furthermore, compound 7m displayed appropriate blood-brain barrier permeability. These multifunctional properties highlight compound 7k and 7m as promising candidates for further development of multi-functional drugs against AD.  相似文献   

12.
In search of potent acetyl cholinesterase inhibitors with low hepatotoxicity for the treatment of Alzheimer’s disease, introduction of a chloro substitution to tacrine and some of its analogs has proven to be beneficial in maintaining or potentiating the cholinesterase inhibitory activity. Furthermore, it was found to be able to reduce the hepatotoxicity of the synthesized compounds, which is the main target of the study. Accordingly, a series of new 4-(chlorophenyl)tetrahydroquinoline derivatives, was synthesized and characterized. The synthesized compounds were evaluated for their in vitro and in vivo anti-cholinesterase activity using tacrine as a reference standard. Furthermore, they were investigated for their hepatotoxicity compared to tacrine. The obtained biological results revealed that all synthesized compounds displayed equivalent or significantly higher anti-cholinesterase activity and lower hepatotoxicity in comparison to tacrine. In addition, in silico drug-likeness of the synthesized compounds were predicted and their practical logP were assessed indicating that all synthesized compounds can be considered as promising hits/leads. Furthermore, docking study of the compound showing the highest in vitro anticholinesterase activity was performed and its binding mode was compared to that of tacrine.  相似文献   

13.
A novel family of cinnamic acid derivatives has been developed to be multifunctional cholinesterase inhibitors against AD by fusing N-benzyl pyridinium moiety and different substituted cinnamic acids. In vitro studies showed that most compounds were endowed with a noteworthy ability to inhibit cholinesterase, self-induced Aβ (1–42) aggregation, and to chelate metal ions. Especially, compound 5l showed potent cholinesterase inhibitory activity (IC50, 12.1?nM for eeAChE, 8.6?nM for hAChE, 2.6?μM for eqBuChE and 4.4?μM for hBuChE) and the highest selectivity toward AChE over BuChE. It also showed good inhibition of Aβ (1–42) aggregation (64.7% at 20?μM) and good neuroprotection on PC12 cells against amyloid-induced cell toxicity. Finally, compound 5l could penetrate the BBB, as forecasted by the PAMPA-BBB assay and proved in OF1 mice by ex vivo experiments. Overall, compound 5l seems to be a promising lead compound for the treatment of Alzheimer’s diseases.  相似文献   

14.
A series of compounds following the lead compounds including deferasirox and tacrine were designed, synthesized and evaluated as multifunctional agents against Alzheimer’s disease (AD). In vitro studies showed that most synthesized compounds exhibited good multifunctional activities in inhibiting acetylcholinesterase (bAChE), and chelating metal ions. Especially, compound TDe demonstrated significant metal chelating property, a moderate acetylcholinesterase (AChE) inhibitory activity and an antioxidant activity. Results from the molecular modeling indicated that TD compounds were mixed-type inhibitor, binding simultaneously to the catalytic anionic site (CAS) and the peripheral anionic site (PAS) of TcAChE. Moreover, TDe showed a low cytotoxicity but a good protective activity against the injury caused by H2O2. These results suggest that TD compounds might be considered as attractive multi-target cholinesterase inhibitor and will play important roles in the treatment of AD.  相似文献   

15.
Phosphodiesterase-9 (PDE9) is a promising target for the treatment of Alzheimer’s disease (AD). To discover efficient PDE9 inhibitors with good metabolic stability and solubility, a series of novel pyrazolopyrimidinone derivatives have been designed with the assistance of molecular docking and dynamics simulations. All the fourteen synthesized compounds gave excellent inhibition ratio against PDE9 at 10 nM. Compound 1k with the IC50 of 2.0 nM against PDE9, showed good metabolic stability (t1/2 of 57 min) in the RLM as well as good solubility (195 mg/L). The analysis on binding modes of targeted compounds may provide insight for further structural modification.  相似文献   

16.
Small molecule cholinesterases inhibitor (ChEI) provides an effective therapeutic strategy to treat Alzheimer’s disease (AD). Currently, the discovery of new ChEI with multi-target effect is still of great importance. Herein, we report the synthesis, structure–activity relationship study and biological evaluation of a series of tacrine-cinnamic acid hybrids as new ChEIs. All target compounds are evaluated for their in vitro cholinesterase inhibitory activities. The representatives which show potent activity on cholinesterase, are evaluated for the amyloid β-protein self-aggregation inhibition and in vivo assays. The optimal compound 19, 27, and 30 (human AChE IC50?=?10.2?±?1.2, 16.5?±?1.7, and 15.3?±?1.8?nM, respectively) show good performance in ameliorating the scopolamine-induced cognition impairment and preliminary safety in hepatotoxicity evaluation. These compounds deserve further evaluation for the development of new therapeutic agents against AD.  相似文献   

17.
Alzheimer’s disease (AD), a complex chronic progressive central nervous system degenerative disease and a public health problem of the world, often characters cognitive dysfunction accompaning aggression and depression, and may lead to death. More attentions should be paid on it because there is no modified strategy against AD till now. AD is featured with the loss of cholinergic neurons, the amyloid-beta peptide (Aβ) plaques and the neurofibrillary tangles and several hypotheses were established to explain the pathogenesis of AD. Hydroxycinnamic acids, including caffeic acid (CA) and ferulic acid (FA) are widely distributed in natural plants and fruits. CA and FA exert various pharmacological activities, including anti-inflammatory, antioxidant, neuroprotection, anti-amyloid aggregation and so on. All these pharmacological activities are associated with the treatment of AD. Here we summarized the pharmacological activities of CA and FA, and their hybrids as multi-target-directed ligands (MTDLs) against AD. The future application of CA and FA was also discussed, hoping to provide beneficial information for the development of CA- and FA-based MTDLs against AD.  相似文献   

18.
A series of estradiol–chlorambucil hybrids was synthesized as anticancer drugs for site-directed chemotherapy of breast cancer. The novel compounds were synthesized in good yields through efficient modifications of estrone at position 16α of the steroid nucleus. The newly synthesized compounds were evaluated for their anticancer efficacy in different hormone-dependent and hormone-independent breast cancer cell lines. The novel hybrids showed significant in vitro anticancer activity when compared to chlorambucil. Structure–activity relationship (SAR) reveals the influence of the length of the spacer chain between carrier and drug molecule.  相似文献   

19.
Abstract

Cholinesterase inhibitor plays an important role in the treatment of patients with Alzheimer’s disease (AD). Herein, we report the medicinal chemistry efforts leading to a new series of 1,3-dimethylbenzimidazolinone derivatives. Among the synthesised compounds, 15b and 15j showed submicromolar IC50 values (15b, eeAChE IC50?=?0.39?±?0.11?µM; 15j, eqBChE IC50?=?0.16?±?0.04?µM) towards acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Kinetic and molecular modelling studies revealed that 15b and 15j act in a competitive manner. 15b and 15j showed neuroprotective effect against H2O2-induced oxidative damage on PC12 cells. This effect was further supported by their antioxidant activity determined in a DPPH assay in vitro. Morris water maze test confirmed the memory amelioration effect of the two compounds in a scopolamine-induced mouse model. Moreover, the hepatotoxicity of 15b and 15j was lower than tacrine. In summary, these data suggest 15b and 15j are promising multifunctional agents against AD.  相似文献   

20.
A series of hybrids containing the pharmacophores of the histone deacetylase (HDAC) inhibitor, SAHA, and the antioxidant ebselen were designed and synthesized as multi-target-directed ligands against Alzheimer’s disease. An in vitro assay indicated that some of these molecules exhibit potent HDAC inhibitory activity and ebselen-related pharmacological effects. Specifically, the optimal compound 7f was found to be a potent HDAC inhibitor (IC50?=?0.037?μM), possessing rapid hydrogen peroxide scavenging activity and glutathione peroxidase-like activity (ν0?=?150.0?μM?min?1) and good free oxygen radical absorbance capacity (value of ORAC: 2.2). Furthermore, compound 7f showed significant protective effects against damage induced by H2O2 and the ability to prevent ROS accumulation in PC12 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号