首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Salt-dependent oligomerization of nucleosomal arrays is related to fiber-fiber interactions and global chromosome structure. Previous studies have shown that the H2A/H2B and H3/H4 N-terminal domain (NTD) pairs are able to mediate array oligomerization. However, because of technical barriers, the function(s) of the individual core histone NTDs have not been investigated. To address this question, all possible combinations of "tailless" nucleosomal arrays were assembled from native and NTD-deleted recombinant Xenopus core histones and tandemly repeated 5 S rDNA. The recombinant arrays were characterized by differential centrifugation over the range of 0-50 mm MgCl2 to determine how each NTD affects salt-dependent oligomerization. Results indicate that all core histone NTDs participate in the oligomerization process and that the NTDs function additively and independently. These observations provide direct biochemical evidence linking all four core histone NTDs to the assembly and maintenance of global chromatin structures.  相似文献   

2.
3.
4.
We find that the remodeling of the condensed Xenopus laevis sperm nucleus into the paternal pronucleus in egg extracts is associated with phosphorylation of the core histones H2A, H2A.X and H4, and uptake of a linker histone B4 and a HMG 2 protein. Histone B4 is required for the assembly of chromatosome structures in the pronucleus. However neither B4 nor core histone phosphorylation are required for the assembly of spaced nucleosomal arrays. We suggest that the spacing of nucleosomal arrays is determined by interaction between adjacent histone octamers under physiological assembly conditions.  相似文献   

5.
Post-translational modifications (PTMs) of histones play important roles in regulating the structure and function of chromatin in eukaryotes. Although histone PTMs were considered to mainly occur at the N-terminal tails of histones, recent studies have revealed that PTMs also exist in the histone-fold domains, which are commonly shared among the core histones H2A, H2B, H3, and H4. The lysine residue is a major target for histone PTM, and the lysine to glutamine (KQ) substitution is known to mimic the acetylated states of specific histone lysine residues in vivo. Human histones H3 and H4 contain 11 lysine residues in their histone-fold domains (five for H3 and six for H4), and eight of these lysine residues are known to be targets for acetylation. In the present study, we prepared 11 mutant nucleosomes, in which each of the lysine residues of the H3 and H4 histone-fold domains was replaced by glutamine: H3 K56Q, H3 K64Q, H3 K79Q, H3 K115Q, H3 K122Q, H4 K31Q, H4 K44Q, H4 K59Q, H4 K77Q, H4 K79Q, and H4 K91Q. The crystal structures of these mutant nucleosomes were determined at 2.4-3.5 ? resolutions. Some of these amino acid substitutions altered the local protein-DNA interactions and the interactions between amino acid residues within the nucleosome. Interestingly, the C-terminal region of H2A was significantly disordered in the nucleosome containing H4 K44Q. These results provide an important structural basis for understanding how histone modifications and mutations affect chromatin structure and function.  相似文献   

6.
J Jordano  F Montero  E Palacián 《Biochemistry》1984,23(19):4280-4284
Modification of nucleosomal particles from chicken erythrocytes with the reagents for protein amino groups acetic and dimethylmaleic anhydrides causes a rearrangement of nucleosomal components. Treatment with both reagents is accompanied by liberation of free DNA and formation of residual particles with anomalous histone composition. The residual particles obtained with acetic anhydride contain an excess of histones corresponding to the free DNA produced. In contrast, dimethylmaleic anhydride causes release of histones H1, H5, H2A and H2B and formation of residual particles deficient in these histones but containing an excess of H3 and H4 corresponding to the liberated DNA. Regeneration of the modified amino groups of nucleosomal preparations treated with dimethylmaleic anhydride is accompanied by reconstitution of nucleosomal particles with the sedimentation coefficient and composition of core histones of the original nucleosomes. This reconstitution does not occur when the released fraction containing histones H2A and H2B and free DNA is separated from the residual particles. The studied disassembly of nucleosomal particles obtained by specifically blocking lysine-DNA interactions with these reagents appears to indicate that lysine residues are essential for the binding of DNA to histones with formation of nucleosomal particles.  相似文献   

7.
We determined the 2.45 A crystal structure of the nucleosome core particle from Drosophila melanogaster and compared it to that of Xenopus laevis bound to the identical 147 base-pair DNA fragment derived from human alpha-satellite DNA. Differences between the two structures primarily reflect 16 amino acid substitutions between species, 15 of which are in histones H2A and H2B. Four of these involve histone tail residues, resulting in subtly altered protein-DNA interactions that exemplify the structural plasticity of these tails. Of the 12 substitutions occurring within the histone core regions, five involve small, solvent-exposed residues not involved in intraparticle interactions. The remaining seven involve buried hydrophobic residues, and appear to have coevolved so as to preserve the volume of side chains within the H2A hydrophobic core and H2A-H2B dimer interface. Thus, apart from variations in the histone tails, amino acid substitutions that differentiate Drosophila from Xenopus histones occur in mutually compensatory combinations. This highlights the tight evolutionary constraints exerted on histones since the vertebrate and invertebrate lineages diverged.  相似文献   

8.
The conformational state of histones in isolated chicken erythrocyte chromatin was studied using procedures developed for probing surface proteins on membranes. Under controlled conditions, only exposed tyrosyl residues react with iodide radicals, generated either by the oxidant, chloramine-T (paratoluenesulfonyl chloramide), or the enzyme lactoperoxidase, giving monoidotyrosine. Using 125-iodine, this study compared the reactive tyrosines in free and bound histones H4, and H5. The relative extent of iodination of these histones within (H4) and outside (H5) of the nucleosomes was measured after extraction and gel electrophoresis. Each of the histones was further analyzed for the extent of specific tyrosine iodination by separating the tryptic peptides by high voltage electrophoresis. The identity of the labeled peptide was determined by dansylation of the amino acids present in each hydrolyzed peptide. The results show that there is a difference in the conformational arrangement of these histones on chromatin and in the free forms, since in chromatin not all tyrosine residues are as accessible for iodination as in the denatured state. Residue 53 of histone H5 for instance is more reactive than residues 28 and 58, indicating that the segments containing the latter residues are involved in either protein-DNA or protein-protein interactions. In histone H4, preferential labeling of 2 of the 4 tyrosines present was also observed.  相似文献   

9.
10.
Exchange of histones H1, H2A, and H2B in vivo   总被引:17,自引:0,他引:17  
L Louters  R Chalkley 《Biochemistry》1985,24(13):3080-3085
We have asked whether histones synthesized in the absence of DNA synthesis can exchange into nucleosomal structures. DNA synthesis was inhibited by incubating hepatoma tissue culture cells in medium containing 5.0 mM hydroxyurea for 40 min. During the final 20 min, the cells were pulsed with [3H]lysine to radiolabel the histones (all five histones are substantially labeled under these conditions). By two electrophoretic techniques, we demonstrate that histones H1, H2A, and H2B synthesized in the presence of hydroxyurea do not merely associate with the surface of the chromatin but instead exchange with preexisting histones so that for the latter two histones there is incorporation into nucleosome structures. On the other hand, H3 and H4 synthesized during this same time period appear to be only weakly bound, if at all, to chromatin. These two histones have been isolated from postnuclear washes and purified. Some possible implications of in vivo exchange are discussed.  相似文献   

11.
Histone proximity in chromatin was studied with the cleavable crosslinking reagent, dithiobissuccinimidyl propionate. Crosslinks between H4 and H2a, H4 and H2b, H4 and H3, H2a and H2b, H2b and H3 were found. H1 is also crosslinked to the nucleosomal histones. In nuclei, unsheared chromatin, and H1 depleted chromatin, the four nucleosomal histones are crosslinked at similar relative rates both in 5 mM salt and 100 mM salt. After micrococcal nuclease treatment to generate nucleosomes, H2a and H2b are crosslinked faster than H4 and H3. C14-NEM titration of thiopropionate residues bound to each histone shows that H2a and H2b are more accessible to this reagent after nuclease treatment but that the increased binding was not sufficient by itself to explain the increase in crosslinking. Bolton Hunter reagent was used to further study the accessibility of the four nucleosomal histones in whole chromatin and nuclease digested chromatin. These studies showed that salt increases the accessibility of all four histones while nuclease treatment decreases H4 accessibility.  相似文献   

12.
The MgCl2-induced folding of defined 12-mer nucleosomal arrays, in which ubiquitinated histone H2A (uH2A) replaced H2A, was analyzed by quantitative agarose gel electrophoresis and analytical centrifugation. Both types of analysis showed that uH2A arrays attained a degree of compaction similar to that of control arrays in 2 mM MgCl2. These results indicate that attachment of ubiquitin to H2A has little effect on the ability of nucleosomal arrays to form higher order folded structures in the ionic conditions tested. In contrast, uH2A arrays were found to oligomerize at lower MgCl2 concentrations than control nucleosomal arrays, suggesting that histone ubiquitination may play a role in nucleosomal fiber association.  相似文献   

13.
Radioactive iodine has been used to probe the relative reactivities of nucleosomal H4 tyrosine residues under various conditions of subphysiological ionic strength. We observe that tyrosine 72 of H4, which is not reactive over the range 20-150 mM NaCl, becomes the predominant site of iodination within H4 when nucleosomes are subjected to conditions of very low ionic strength. Conversely, the other H4 tyrosine residues, which are reactive within nucleosomes in solutions of moderate ionic strength (20-150 mM NaCl), become nonreactive when the ionic strength is reduced. This "flip-flop" in the H4 iodination pattern is the manifestation of a reversible nucleosomal conformational change. A method is presented which enables the conformational status of H4 in nucleosomes to be determined by simply electrophoresing the histones on a Triton gel after probing nucleosomes with labeled iodine. Using this technique, we demonstrate that the presence of H1 on one side of the nucleosome stabilizes a histone core domain on the other side so that all four tyrosines of H4 are maintained in their physiological ionic strength conformation even under conditions of no added salt.  相似文献   

14.
15.
The relationships between the core histone N termini and linker histones during chromatin assembly and salt-dependent chromatin condensation were investigated using defined chromatin model systems reconstituted from tandemly repeated 5 S rDNA, histone H5, and either native "intact" core histone octamers or "tailless" histone octamers lacking their N-terminal domains. Nuclease digestion and sedimentation studies indicate that H5 binding and the resulting constraint of entering and exiting nucleosomal DNA occur to the same extent in both tailless and intact chromatin arrays. However, despite possessing a normal chromatosomal structure, tailless chromatin arrays can neither condense into extensively folded structures nor cooperatively oligomerize in MgCl(2). Tailless nucleosomal arrays lacking linker histones also are unable to either fold extensively or oligomerize, demonstrating that the core histone N termini perform the same functions during salt-dependent condensation regardless of whether linker histones are components of the array. Our results further indicate that disruption of core histone N termini function in vitro allows a linker histone-containing chromatin fiber to exist in a decondensed state under conditions that normally would promote extensive fiber condensation. These findings have key implications for both the mechanism of chromatin condensation, and the regulation of genomic function by chromatin.  相似文献   

16.
17.
Post-translational modifications of histones influence both chromatin structure and the binding and function of chromatin-associated proteins. A major limitation to understanding these effects has been the inability to construct nucleosomes in vitro that harbor homogeneous and site-specific histone modifications. Here, we describe a native peptide ligation strategy for generating nucleosomal arrays that can harbor a wide range of desired histone modifications. As a first test of this method, we engineered model nucleosomal arrays in which each histone H3 contains a phosphorylated serine at position 10 and performed kinetic analyses of Gcn5-dependent histone acetyltransferase activities. Recombinant Gcn5 shows increased histone acetyltransferase activity on nucleosomal arrays harboring phosphorylated H3 serine 10 and is consistent with peptide studies. However, in contrast to analyses using peptide substrates, we find that the histone acetyltransferase activity of the Gcn5-containing SAGA complex is not stimulated by H3 phosphorylation in the context of nucleosomal arrays. This difference between peptide and array substrates suggests that the ability to generate specifically modified nucleosomal arrays should provide a powerful tool for understanding the effects of post-translational histone modifications.  相似文献   

18.
In this report, we introduce the use of DNA-cellulose chromatography for evaluating the strength of binding of histones to DNA under a variety of conditions. We have found that histones added directly to DNA-cellulose at physiological salt concentrations bind relatively weakly, with all histones eluting together at about 0.5 M NaCl when a salt gradient is applied. However, much tighter binding of the four nucleosomal histones to DNA-cellulose is obtained if gradual histone-DNA reconstitution conditions are used. In this case, the binding of histones H2A, H2B, H3, and H4 to DNA-cellulose closely resembles their binding to native chromatin. The nativeness of the binding is indicated both by the distinctive sodium chloride elution profile of these histones from DNA-cellulose and by their relative resistance to trypsin digestion when DNA-bound. The binding to DNA-cellulose of histones H2A, H2B, H3, and H4, which have had the first 20 to 30 amino acid residues removed from their NH2 termini, is indistinguishable from the binding to DNA-cellulose of the same intact histones, as judged by their salt elution profile. Thus, even though the NH2 termini contain 40 to 50% of the positively charged amino acid residues (thought to interact with the DNA backbone), a major contribution to the DNA binding comes from the remainder of the histone molecule. Finally, we have discovered that histones can form a "nucleosome-like" complex on single-stranded DNA. The same complex does not appear to form on RNA. Histones H3 and H4 play a predominant role in organizing this histone complex on single-stranded DNA, as they do on double-stranded DNA in normal nucleosomes. We suggest that, in the cell nucleus, nucleosomal structures may form transiently on single strands of DNA, as DNA and RNA polymerases traverse DNA packaged by histones.  相似文献   

19.
The tumor promoter phorbol-12-myristate-13-acetate (PMA) increases the poly ADP-ribosylation of acid extractable (0.2N H2SO4) nuclear proteins in mouse embryo fibroblasts C3H10T1/2. Catalase suppresses the reaction by approximately 50%. Polyacrylamide gel electrophoresis reveals that the core histones H2B, A24 and H3d serve as major poly ADP-ribose acceptors. Smaller amounts of poly ADP-ribose are associated with histones H2A/H3 and H1. Poly ADP-ribosylation of histones may change the nucleosomal structure and function and play a role in PMA induced modulation of gene expression in promotion.  相似文献   

20.
Contrary to native H1/H5-containing chromatin where phosphorylation induces local structural changes affecting chromatin condensation, in stripped fibers phosphorylation of the totality of H3 molecules does not affect significantly chromatin conformation and DNA-protein interactions. Modification of H3 causes only a slight increase of flexibility of nucleosomal chains, despite important changes in histone topography revealed by immunochemical reactivity studies. We suggest that phosphorylation may only induce into the system the potential for dynamic change by modulating histone-histone interactions within and between nucleosomes, probably as a result of conformational change in the H3 protein. The signal for structural change would come from one or other factors (very lysine-rich histones, non-histones) that influence internucleosomal interactions at very specific locations in the chromatin, probably through protein-protein contacts. So, phosphorylation may modify a direct interaction between the N-terminal basic tail of H3 and very lysine-rich histones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号