首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondria proliferate by growth and partition during every cell-division cycle. Recently, Kashatus et?al. (2011) reported that Aurora A kinase regulates the small GTPase RalA to mediate mitochondrial fission. This work illuminates the molecular mechanism behind mitochondrial inheritance in mammals and extends the functional repertoire of a key mitotic regulator.  相似文献   

2.
Aurora A, meiosis and mitosis   总被引:6,自引:0,他引:6  
The Aurora family kinases are pivotal to the successful execution of cell division. Together they ensure the formation of a bipolar mitotic spindle, accurate segregation of chromosomes and the completion of cytokinesis. They are also attractive drug targets, being frequently deregulated in cancer and able to transform cells in vitro. In this review, we summarize current knowledge about the three family members, Aur-A, Aur-B and Aur-C. We then focus on Aur-A, its roles in mitotic progression, and its emerging roles in checkpoint control pathways. Aur-A activity can be controlled at several levels, including phosphorylation, ubiquitin-dependent proteolysis and interaction with both positive regulators, such as TPX2, and negative ones, like the tumor suppressor protein p53. In addition, work in Xenopus oocytes and early embryos has revealed a second role for Aur-A, directing the polyadenylation-dependent translation of specific mRNAs important for cell cycle progression. This function extends to post-mitotic neurons, and perhaps even to cycling somatic cells.  相似文献   

3.
The Aurora kinase family is a well-characterized serine/threonine protein kinase family that regulates different processes of mitotic events. Although functions of animal and yeast Aurora kinases have been analyzed, plant aurora kinases were not identified and characterized. We identified three Aurora kinase orthologs in Arabidopsis thaliana and designated these as AtAUR1, AtAUR2, and AtAUR3. These AtAURs could phosphorylate serine 10 in histone H3, in vitro. Dynamic analyses of GFP-fused AtAUR proteins revealed that AtAUR1 and AtAUR2 localized at the nuclear membrane in interphase and located in mitotic spindles during cell division. AtAUR1 also localized in the cell plates. AtAUR3 showed dot-like distribution on condensed chromosomes at prophase and then localized at the metaphase plate. At late anaphase, AtAUR3 is evenly localized on chromosomes. The localization of AtAUR3 during mitosis is very similar to that of phosphorylated histone H3. Interestingly, an overexpression of AtAUR3 induces disassembly of spindle microtubules and alteration of orientation of cell division. Our results indicate that plant Aurora kinases have different characters from that of Aurora kinases of other eukaryotes.†These authors equally contributed to this work  相似文献   

4.
During mitosis, regulation of protein structures and functions by phosphorylation plays critical roles in orchestrating a series of complex events essential for the cell division process. Tumor-associated microtubule-associated protein (TMAP), also known as cytoskeleton-associated protein 2 (CKAP2), is a novel player in spindle assembly and chromosome segregation. We have previously reported that TMAP is phosphorylated at multiple residues specifically during mitosis. However, the mechanisms and functional importance of phosphorylation at most of the sites identified are currently unknown. Here, we report that TMAP is a novel substrate of the Aurora B kinase. Ser627 of TMAP was specifically phosphorylated by Aurora B both in vitro and in vivo. Ser627 and neighboring conserved residues were strictly required for efficient phosphorylation of TMAP by Aurora B, as even minor amino acid substitutions of the phosphorylation motif significantly diminished the efficiency of the substrate phosphorylation. Nearly all mutations at the phosphorylation motif had dramatic effects on the subcellular localization of TMAP. Instead of being localized to the chromosome region during late mitosis, the mutants remained associated with microtubules and centrosomes throughout mitosis. However, the changes in the subcellular localization of these mutants could not be completely explained by the phosphorylation status on Ser627. Our findings suggest that the motif surrounding Ser627 (625RRSRRL630) is a critical part of a functionally important sequence motif which not only governs the kinase-substrate recognition, but also regulates the subcellular localization of TMAP during mitosis.  相似文献   

5.
Accurate coordination between chromosome segregation and cytokinesis by various mitotic kinases, such as Aurora, prevent tetraploidization and subsequent tumorigensis. The tumor suppressors Lats1 and Lats2 are serine/threonine kinases that localize to the centrosome and regulate cell cycle progression and apoptosis. In the present study, Aurora A was demonstrated to phosphorylate Lats2 on serine 380 (S380) during mitosis. Immunocytochemical observations revealed that the subcellular localization of Lats2 was distinct during the cell cycle and depended on which site was phosphorylated. Interestingly, the S380-phosphorylated Lats2 protein (pS380) colocalized at the central spindle with Aurora B. Physical interactions were observed between Aurora A, Lats2, Lats1 and Aurora B. The Lats1 kinase was shown to phosphorylate Aurora B. Cells expressing a nonphosphorylated mutant (S380A) of Lats2 caused chromosome missegregation and cytokinesis failure, similar to cells with aberrantly expressed Aurora B. Together, the results suggest that the Aurora A-Lats1/2-Aurora B axis might be a novel pathway that regulates accurate mitotic progression by ensuring the proper mitotic localization of Lats2.  相似文献   

6.
7.
Centrosomes act as sites of microtubule growth, but little is known about how the number and stability of microtubules emanating from a centrosome are controlled during the cell cycle. We studied the role of the TACC3-XMAP215 complex in this process by using purified proteins and Xenopus laevis egg extracts. We show that TACC3 forms a one-to-one complex with and enhances the microtubule-stabilizing activity of XMAP215 in vitro. TACC3 enhances the number of microtubules emanating from mitotic centrosomes, and its targeting to centrosomes is regulated by Aurora A-dependent phosphorylation. We propose that Aurora A regulation of TACC3 activity defines a centrosome-specific mechanism for regulation of microtubule polymerization in mitosis.  相似文献   

8.
9.
10.
11.
Knowledge of Aurora A kinase functions is limited to premetaphase events, particularly centrosome maturation, G2/M transition, and mitotic spindle assembly. The involvement of Aurora A in events after metaphase has only been suggested because appropriate experiments are technically difficult. We report here the design of the first human Aurora A kinase (as-AurA) engineered by chemical genetics techniques. This kinase is fully functional biochemically and in cells, and is rapidly and specifically inhibited by the ATP analogue 1-Naphthyl-PP1 (1-Na-PP1). By treating cells exclusively expressing the as-AurA with 1-Na-PP1, we discovered that Aurora A is required for central spindle assembly in anaphase through phosphorylation of Ser 19 of P150Glued. This paper thus describes a new Aurora A function that takes place after the metaphase-to-anaphase transition and a new powerful tool to search for and study new Aurora A functions.  相似文献   

12.
During cytokinesis, closure of the actomyosin contractile ring (CR) is coupled to the formation of a midbody ring (MR), through poorly understood mechanisms. Using time-lapse microscopy of Drosophila melanogaster S2 cells, we show that the transition from the CR to the MR proceeds via a previously uncharacterized maturation process that requires opposing mechanisms of removal and retention of the scaffold protein Anillin. The septin cytoskeleton acts on the C terminus of Anillin to locally trim away excess membrane from the late CR/nascent MR via internalization, extrusion, and shedding, whereas the citron kinase Sticky acts on the N terminus of Anillin to retain it at the mature MR. Simultaneous depletion of septins and Sticky not only disrupted MR formation but also caused earlier CR oscillations, uncovering redundant mechanisms of CR stability that can partly explain the essential role of Anillin in this process. Our findings highlight the relatedness of the CR and MR and suggest that membrane removal is coordinated with CR disassembly.  相似文献   

13.
Structural information on the mitotic spindle of Saccharomyces cerevisiae obtained from isolated whole mount preparations has shown that the spindle undergoes a two-fold increase in length whilst comprising only a single microtubule continuous between the two spindle pole bodies. Further data from immunofluorescence microscopy on the timing of anaphase B has suggested that microtubules do not directly produce the required force, but instead have a more passive role. Here a regulatory function for spindle microtubules during mitosis is explored and the existence of a non-microtubule force-generating system is postulated. Thus it is suggested that the continuous microtubules govern the velocity of anaphase B by providing a resistive force that is itself regulated by the number of microtubules and their rate of polymerization. On this basis a model for the forces acting on a spindle pole body during anaphase is proposed.  相似文献   

14.
It is now clear that a centrosome-independent pathway for mitotic spindle assembly exists even in cells that normally possess centrosomes. The question remains, however, whether this pathway only activates when centrosome activity is compromised, or whether it contributes to spindle morphogenesis during a normal mitosis. Here, we show that many of the kinetochore fibers (K-fibers) in centrosomal Drosophila S2 cells are formed by the kinetochores. Initially, kinetochore-formed K-fibers are not oriented toward a spindle pole but, as they grow, their minus ends are captured by astral microtubules (MTs) and transported poleward through a dynein-dependent mechanism. This poleward transport results in chromosome bi-orientation and congression. Furthermore, when individual K-fibers are severed by laser microsurgery, they regrow from the kinetochore outward via MT plus-end polymerization at the kinetochore. Thus, even in the presence of centrosomes, the formation of some K-fibers is initiated by the kinetochores. However, centrosomes facilitate the proper orientation of K-fibers toward spindle poles by integrating them into a common spindle.  相似文献   

15.
Y H Chou  J R Bischoff  D Beach  R D Goldman 《Cell》1990,62(6):1063-1071
As cells enter mitosis, the intermediate filament (IF) networks of interphase BHK-21 cells are depolymerized to form cytoplasmic aggregates of disassembled IFs, and the constituent IF proteins, vimentin and desmin are hyperphosphorylated at several specific sites. We have characterized one of two endogenous vimentin kinases from a particulate fraction of mitotic cell lysates. Through several purification steps, vimentin kinase activity copurifies with histone H1 kinase and both activities bind to p13suc1-Sepharose. The final enriched kinase preparation consists primarily of p34cdc2 and polypeptides of 65 and 110 kd. The purified kinase complex phosphorylates vimentin in vitro at a subset of sites phosphorylated in vivo during mitosis. Furthermore, phosphorylation of in vitro polymerized vimentin IFs by the purified kinase causes their disassembly. Therefore, vimentin is a substrate of p34cdc2 and phosphorylation of vimentin contributes to M phase reorganization of the IF network.  相似文献   

16.
Chloroquine (CQ) is an antimalaria drug that has been used in clinical practice for several decades. One serious complication of CQ treatment is the macular retinopathy caused by the disruption of the retinal pigmented epithelium, leading to vision loss. Little is known about how CQ affects retinal pigmented epithelium. In this study, we found that cell proliferation was reduced by CQ treatment in time and dose-dependent manners. No obvious cell death was detected; however, what was observed instead was G0/G1 arrest during which primary cilium started to grow in the presence of CQ. Pharmacological inhibition of primary cilium formation led to a reduction of cell viability suggesting that CQ-induced primary cilium protected cells from death. In addition to cell growth, with the CQ treatment the retina pigmented epithelium (RPE) cells less flattened with the spindle-like protrusion. When checking the microtubule networks, the microtubule nucleation activity was disrupted in the presence of CQ. The level of p150 glued, the largest subunit of dynactin, was reduced in CQ-treated RPE1 cells, and depletion of p150 glued resulted in a phenotype reminiscent of CQ-treated cells. Thus, CQ treatment reduced the expression of p150 glued, leading to reduced S phase entry and defective microtubule nucleation.  相似文献   

17.
We recently demonstrated that the p53 oncosuppressor associates to centrosomes in mitosis and this association is disrupted by treatments with microtubule-depolymerizing agents. Here, we show that ATM, an upstream activator of p53 after DNA damage, is essential for p53 centrosomal localization and is required for the activation of the postmitotic checkpoint after spindle disruption. In mitosis, p53 failed to associate with centrosomes in two ATM-deficient, ataxiatelangiectasia-derived cell lines. Wild-type ATM gene transfer reestablished the centrosomal localization of p53 in these cells. Furthermore, wild-type p53 protein, but not the p53-S15A mutant, not phosphorylatable by ATM, localized at centrosomes when expressed in p53-null K562 cells. Finally, Ser15 phosphorylation of endogenous p53 was detected at centrosomes upon treatment with phosphatase inhibitors, suggesting that a p53 dephosphorylation step at centrosome contributes to sustain the cell cycle program in cells with normal mitotic spindles. When dissociated from centrosomes by treatments with spindle inhibitors, p53 remained phosphorylated at Ser15. AT cells, which are unable to phosphorylate p53, did not undergo postmitotic proliferation arrest after nocodazole block and release. These data demonstrate that ATM is required for p53 localization at centrosome and support the existence of a surveillance mechanism for inhibiting DNA reduplication downstream of the spindle assembly checkpoint  相似文献   

18.
The Aurora kinases comprise a family of evolutionary conserved serine/threonine kinases that have important functions in centrosome duplication, mitotic spindle assembly, chromosome condensation, chromosome biorientation on the spindle and chromosome segregation. Vertebrates have three Aurora kinases, Aurora-A, -B and -C, while invertebrates have only Aurora-A and -B and yeasts have a single Aurora kinase, Ipl1 in S. cerevisiae and Ark1 in S. pombe. Recently, the role of Aurora kinases in chromosome condensation has been defined; Aurora B plays a crucial role in the axial shortening of chromosomes during anaphase, presumably in order to prevent chromosome arms from becoming trapped within the cytokinetic plate.  相似文献   

19.
Roles of Aurora kinases in mitosis and tumorigenesis   总被引:8,自引:0,他引:8  
Aurora kinases, which have been implicated in several vital events in mitosis, represent a protein kinase family highly conserved during evolution. The activity of Aurora kinases is delicately regulated, mainly by phosphorylation and degradation. Deregulation of Aurora kinase activity can result in mitotic abnormality and genetic instability, leading to defects in centrosome function, spindle assembly, chromosome alignment, and cytokinesis. Both the expression level and the kinase activity of Aurora kinases are found to be up-regulated in many human cancers, indicating that these kinases might serve as useful targets for the development of anticancer drugs. This review focuses on recent progress on the roles of Aurora kinases in mitosis and tumorigenesis.  相似文献   

20.
Telomere length is critical for chromosome stability that affects cell proliferation and survival. Telomere elongation by telomerase is inhibited by the telomeric protein, TRF1. Tankyrase-1 (TNKS1) poly(ADP-ribosyl)ates TRF1 and releases TRF1 from telomeres, thereby allowing access of telomerase to the telomeres. TNKS1-mediated poly(ADP-ribosyl)ation also appears to be crucial for regulating the mitotic cell cycle. In searching for proteins that interact with polo-like kinase-1 (Plk1) by using complex proteomics, we identified TNKS1 as a novel Plk1-binding protein. Here, we report that Plk1 forms a complex with TNKS1 in vitro and in vivo, and phosphorylates TNKS1. Phosphorylation of TNKS1 by Plk1 appears to increase TNKS1 stability and telomeric poly(ADP-ribose) polymerase (PARP) activity. By contrast, targeted inhibition of Plk1 or mutation of phosphorylation sites decreased the stability and PARP activity of TNKS1, leading to distort mitotic spindle-pole assembly and telomeric ends. Taken together, our results provide evidence of a novel molecular mechanism in which phosphorylation of TNKS1 by Plk1 may help regulate mitotic spindle assembly and promote telomeric chromatin maintenance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号