首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Labdane analogs with o-quinol, catechol and hydroquinone moiety have been synthesized using Diels–Alder reaction of methyl 3,4-dioxocyclohexa-1,5-diene-carboxylate, 3,4-dioxocyclohexa-1,5-diene-carboxylic acid and 3,6-dioxocyclohexa-1,4-dienecarboxylic acid with mono terpene 1,3-dienes, namely ocimene and myrcene. The resulting molecules and their derivatives were evaluated for their anti-HIV-1 activity using TZM-bl cell based virus infectivity assay. Two molecules 13 and 18 showed anti-HIV activity with IC50 values 5.0 (TI = 11) and 4.6 (TI = 46) μM, respectively. The compounds 17, 18 and 20 showed efficacy against HIV-1 integrase activity and showed inhibition with IC50 13.4, 11.1 and 11.5 μM, respectively. The HIV-1 integrase inhibition activity of these synthetic molecules was comparable with integric acid, the natural fungal metabolite. Molecular modeling studies for the HIV-1 integrase inhibition of these active synthetic molecules indicated the binding to the active site residues of the enzyme.  相似文献   

2.
A novel series of 3-benzyloxy-linked pyrimidinylphenylamine derivatives (8a8s) was designed, synthesized and evaluated for their in vitro anti-HIV activity in MT-4 cell cultures. Most of the compounds inhibited wild-type (wt) HIV-1 replication in the lower micromolar concentration range (EC50 = 0.05–35 μM) with high selectivity index (SI) values (ranged from 10 to >4870). In particular, 8h and 8g displayed excellent antiretroviral activity against wt HIV-1 with low cytotoxicity (EC50 = 0.07 μM, CC50 >347 μM, SI >4870; EC50 = 0.05 μM, CC50 = 42 μM, SI = 777, respectively), comparable to that of the marked drug nevirapine (EC50 = 0.113 μM, CC50 >15 μM, SI >133). In order to confirm the binding target, 8h was selected to perform the anti-HIV-1 RT assay. Additionally, preliminary structure activity relationship (SAR) analysis and molecular docking studies of newly synthesized compounds were also discussed, as well as the predicted physicochemical properties.  相似文献   

3.
One pot, three-component reaction of 1-acryloyl-3,5-bisarylmethylidenepiperidin-4-ones with isatin and sarcosine in molar ratios of 1:1:1 and 1:2:2 furnished to mono- and bis-spiropyrrolidine heterocyclic hybrids comprising functionalized piperidine, pyrrolidine and oxindole structural motifs. Both mono and bis-spiropyrrolidines displayed good inhibitory activity against acetylcholinesterase (AChE) with IC50 values of 2.36–9.43 μM. For butyrylcholinesterase (BChE), mono-cycloadducts in series 8 with IC50 values of lower than 10 μM displayed better inhibitory activities than their bis-cycloadduct analogs in series 9 with IC50 values of 7.44–19.12 μM. The cycloadducts 9j and 8e were found to be the most potent AChE and BChE inhibitors with IC50 values of 2.35 and 3.21 μM, respectively. Compound 9j was found to be competitive inhibitor of AChE while compound 8e was a mixed-mode inhibitor of BChE with calculated Ki values of 2.01 and 6.76 μM, respectively. Molecular docking on Torpedo californica AChE and human BChE showed good correlation between IC50 values and free binding energy values of the synthesized compounds docked into the active site of the enzymes.  相似文献   

4.
5.
A series of CR2(OH)-diarylpyrimidine derivatives (CR2(OH)-DAPYs) featuring a hydrophobic group at CH(OH) linker between wing I and the central pyrimidine were synthesized and evaluated for their anti-HIV activity in MT-4 cell cultures. All the target compounds except for compound 3k displayed inhibitory activity against HIV-1 wild-type with EC50 values ranging from 7.21 ± 1.99 to 0.067 ± 0.006 μM. Among them, compound 3d showed the most potent anti-HIV-1 activity (EC50 = 0.067 ± 0.006 μM, SI > 592), which was approximately 2-fold more potent than the reference drugs nevirapine (NVP) and delaviridine (DLV) in the same assay. In addition, the binding modes with HIV-1 RT and the preliminary SAR studies of these new derivatives were also investigated.  相似文献   

6.
Melampomagnolide B (MMB) is a natural sesquiterpene structurally related to parthenolide (PTL). We have shown that MMB exhibits anti-leukemic properties similar to PTL. Unlike PTL, the presence of a primary hydroxyl group in the MMB molecule allows the opportunity for examining the biological activity of a variety of conjugated analogs of MMB. We have now synthesized a series of carbamate analogs of MMB and evaluated these derivatives for anti-cancer activity against a panel of sixty human cancer cell lines. Analogs 6a and 6e exhibited promising anti-leukemic activity against human leukemia cell line CCRF-CEM with GI50 values of 680 and 620 nM, respectively. Analog 6a also showed GI50 values of 1.98 and 1.38 μM respectively, against RPMI-8226 and SR leukemia cell lines and GI50 values of 460 and 570 nM against MDA-MB-435 melanoma and MDA-MB-468 breast cancer cell lines, respectively. Analog 6e had GI50 values of 650 and 900 nM against HOP-92 non-small cell lung and RXF 393 renal cancer cell lines.  相似文献   

7.
Four series of phenylpyrimidine-carboxamide derivatives bearing 1H-pyrrolo[2,3-b]pyridine moiety (14ae, 15ag, 16ae and 17ag) were designed, synthesized and evaluated for the IC50 values against three cancer cell lines (A549, PC-3 and MCF-7). Four selected compounds (15e, 16ab and 17a) were further evaluated for the activity against c-Met kinase, HepG2 and Hela cell lines. Most of the compounds showed excellent cytotoxicity activity and selectivity with the IC50 valuables in single-digit μM to nanomole range. Eleven of them are equal to more active than positive control Foretinib against one or more cell lines. The most promising compound 15e showed superior activity to Foretinib against A549, PC-3 and MCF-7 cell lines, with the IC50 values of 0.14 ± 0.08 μM, 0.24 ± 0.07 μM and 0.02 ± 0.01 μM, which were 4.6, 1.6 and 473.5 times more active than Foretinib (0.64 ± 0.26 μM, 0.39 ± 0.11 μM, 9.47 ± 0.22 μM), respectively. Structure–activity relationships (SARs) and docking studies indicated that the replacement of phenylpicolinamide scaffold with phenylpyrimidine fragment of the target compounds was benefit for the activity. What’s more, the introduction of fluoro atom to the aminophenoxy part played no significant impact on the activity and any substituent group on aryl group is unfavourable for the activity.  相似文献   

8.
Various 2,3′-anhydro analogs of 5-substituted 1-(2-deoxy-β-d-lyxofuranosyl)uracils (1015) and a related 1-(3-O-mesyl-2-deoxy-β-d-lyxofuranosyl) pyrimidine nucleoside analog (18) have been synthesized for evaluation as a new class of potential anti-HBV agents. The compounds 10, 12, and 15 demonstrated most potent anti-HBV activities against duck HBV (DHBV) and human HBV with EC50 values in the range of 2.5–10 and 5–10 μg/mL, respectively, at non-toxic concentrations (CC50 = >200 μg/mL). The nucleoside 18 also demonstrated significant anti-HBV activity against DHBV with an EC50 value of 2.5 μg/mL, however, it was less active against HBV in 2.2.15 cells (EC50 = >10 μg/mL).  相似文献   

9.
Thirteen novel seco-DCK analogs (416) with several new skeletons were designed, synthesized and screened for in vitro anti-HIV-1 activity. Among them, three compounds (5, 13, and 16) showed moderate activity, and compound 9 exhibited the best activity with an EC50 value of 0.058 μM and a therapeutic index (TI) of 1000. The activity of 9 was better than that of 4-methyl DCK (2, EC50: 0.126 μM, TI: 301.2) in the same assay. Additionally, 9 also showed antiviral activity against a multi-RT inhibitor-resistant strain (RTMDR), which is insensitive to most DCK analogs. Compared with 2, compound 9 has a less complex structure, fewer hydrogen-bond acceptors, and a reduced log P value. Therefore, it is likely to exhibit better ADME, and appears to be a promising new lead for further development as an anti-HIV candidate.  相似文献   

10.
Here a new class of hydroxy- or methoxy-substituted 5-benzylidene(thio)barbiturates were designed, synthesized and their inhibitory effects on the diphenolase activity of mushroom tyrosinase were evaluated. The results showed that several compounds had more potent tyrosinase inhibitory activities than the widely used tyrosinase inhibitor kojic acid (IC50 = 18.25 μM). In particular, 3′,4′-dihydroxylated 1e was found to be the most potent inhibitor with IC50 value of 1.52 μM. The inhibition mechanism analysis revealed that the potential compounds 1e and 2e exhibited such inhibitory effects on tyrosinase by acting as the irreversible inhibitors. Structure–activity relationships’ (SARs) analysis also suggested that further development of such compounds might be of interest.  相似文献   

11.
Two new tirucallane triterpenoids, 21-methoxy-21,23-epoxy-tirucalla-7,24-dien-3α-ol (1) and 21-methoxy-21,23-epoxy-tirucalla-7,24-diene-1α,3α-diol (2), together with thirteen known compounds were isolated from the CH2Cl2 extract of the stem bark of Araliopsis synopsis. The structures of the compounds were determined by comprehensive analyses of their 1D and 2D NMR, mass spectral (EI and ESI) data and comparison with previously known analogs. Compounds 110 were tested against bacteria, fungi and plant pathogen oomycetes by the paper disk agar diffusion assay resulting in missing to low activities corresponding with MICs > 1 mg/mL. However, compounds 510 exhibited high cytotoxic activity against the human Caucasian prostate adenocarcinoma cell PC-3 line, with IC50 8.5–12.5 μM compared to the standard Doxorubicin with IC50 = 0.9 μM, while compounds 1, 3 and 4 showed low activity.  相似文献   

12.
Four series of phenylpicolinamide derivatives bearing 1H-pyrrolo[2,3-b]pyridine moiety (12ae, 13af, 14af and 15ai) were designed, synthesized and evaluated for the IC50 values against three cancer cell lines (A549, PC-3 and MCF-7) and c-Met kinase. Five selected compounds (13b, 15b, 15d, 15e and 15f) were further evaluated for the activity against HepG2 and Hela cell lines. Eighteen of the compounds showed excellent cytotoxicity activity and selectivity with the IC50 valuables in single-digit μM to nanomole range. Seven of them are equal to more active than positive control Foretinib against one or more cell lines. The most promising compound 15f showed superior activity to Foretinib, with the IC50 values of 1.04 ± 0.11 μM, 0.02 ± 0.01 μM and 9.11 ± 0.55 μM against A549, PC-3 and MCF-7 cell lines, which were 0.62 to 19.5 times more active than Foretinib (IC50 values: 0.64 ± 0.26 μM, 0.39 ± 0.11 μM, 9.47 ± 0.22 μM), respectively. Structure–activity relationships (SARs) and docking studies indicated that replacement of quinoline nucleus of the previous active compounds with 1H-pyrrolo[2,3-b]pyridine moiety maintained even improved the potent cytotoxic activity. The results suggested that the introduction of fluoro atoms to the aminophenoxy part of target compounds or the phenyl group of pyrimidine substituted on C-4 position was benefit for the activity.  相似文献   

13.
Based on antiviral screening of our diphenylmethane derivatives prepared as steroid substitutes, we identified a 1,1-diphenylcyclobutane analog (9) and two diethyldiphenylsilane analogs (12 and 13) as superior lead compounds with potent anti-bovine viral diarrhea virus (BVDV) activity, having 50% effective concentration (EC50: based on reduction of BVDV replication-induced cell destruction) and 50% cytotoxic concentration (CC50: based on reduction of viable cell number) values of 6.2–8.4 μM and >100 μM, respectively, in Madin–Darby bovine kidney (MDBK) cells infected with BVDV.  相似文献   

14.
A series of novel 2-(phenylaminocarbonylmethylthio)-6-(2,6-dichlorobenzyl)-pyrimidin-4(3H)-ones have been designed and synthesized. All of the new compounds were evaluated for their anti-HIV activities in MT-4 cells. Most of these new compounds showed moderate to potent activities against wild-type HIV-1 with an EC50 ranging from 4.48 μM to 0.18 μM. Among them, 2-[(4-bromophenylamino)carbonylmethylthio]-6-(2,6-dichlorobenzyl)-5-methylpyrimidin-4(3H)-one 4b3 was identified as the most promising compound (EC50 = 0.18 ± 0.06 μM, CC50 >243.56 μM, SI >1326). The structure–activity relationship (SAR) of these new congeners is discussed.  相似文献   

15.
Twelve aminoarylazocompounds (AC) and 46 aryltriazene 7 derivatives (DG) have been synthesized and evaluated in cell-based assays for cytotoxicity and antiviral activity against a panel of 10 RNA and DNA viruses.Eight aminoazocompounds and 27 aryltriazene derivatives exhibited antiviral activity, sometimes of high level, against one or more viruses. A marked activity against BVDV and YFV was prevailing among the former compounds, while the latter type of compounds affected mainly CVB-2 and RSV. None of the active compounds inhibited the multiplication of HIV-1, VSV and VV.Arranged in order of decreasing potency and selectivity versus the host cell lines, the best compounds are the following; BVDV: 1 > 7 > 8 > 4; YFV: 7 > 5; CVB-2: 25 > 56 > 18; RSV: 14 > 20 > 55 > 38 > 18 > 19; HSV-1: 2. For these compounds the EC50 ranged from 1.6 μM (1) to 12 μM (18), and the S. I. from 19.4 (1) to 4.2 (2).Thus the aminoarylazo and aryltriazene substructures appear as interesting molecular component for developing antiviral agents against ss RNA viruses, particularly against RSV and BVDV, which are important human and veterinary pathogens.Finally, molecular modeling investigations indicated that compounds of structure AC, active against BVDV, could work targeting the viral RNA-dependent RNA-polymerase (RdRp), having been observed a good agreement between the trends of the estimated IC50 and the experimental EC50 values.  相似文献   

16.
A series of novel 6-(aminomethylphenoxy)benzoxaborole analogs was synthesized for the investigation of the structure–activity relationship of the inhibition of TNF-alpha, IL-1beta, and IL-6, from lipopolysaccharide stimulated peripheral blood mononuclear cells. Compounds 9d and 9e showed potent activity against all three cytokines with IC50 values between 33 and 83 nM. Chloro substituted analog 9e (AN3485) is considered to be a promising lead for novel anti-inflammatory agent with a favorable pharmacokinetic profile.  相似文献   

17.
Series of benzimidazole and benzothiazole linked phosphoramidates and phosphoramidothioates (5aj) and benzimidazole linked phenylphosphoramidates and phenylphosphoramidothioates (10ae) were synthesized. The title compounds were preliminary screened for mosquito larvicidal properties against Aedes albopictus and Culex quinquefasciatus at different concentration from 40 to 5 mg/L. Among the screened compounds three compounds revealed potential larvicidal effects with 100% mortality in the order of 10e > 5j > 5e. Compound 10e was found to be the most toxic compound to Ae. albopictus and Cx. quinquefasciatus. The LC50 of 10e against Ae. albopictus was found to be 6.42 and 5.25 mg/L at 24 and 48 h, respectively, whereas it was 7.01 and 3.88 mg/L, respectively in Cx. quinquefasciatus. Temephos was used as positive control.  相似文献   

18.
In continuation of our program aimed at the discovery and development of compounds with superior anti-human immunodeficiency virus type 1 (HIV-1) activity, 21N-arylsulfonyl-3-acetylindole analogs (2au) were synthesized and preliminarily evaluated as HIV-1 inhibitors in vitro. Among of all the analogs, several compounds exhibited significant anti-HIV-1 activity, especially N-phenylsulfonyl-3-acetyl-6-methylindole (2j) and N-(p-ethyl)phenylsulfonyl-3-acetyl-6-methylindole (2n) showed the most potent anti-HIV-1 activity with EC50 values of 0.36 and 0.13 μg/mL, and TI values of >555.55 and 791.85, respectively. It demonstrated that introduction of the acetyl group at the 3-position of N-arylsulfonyl-6-methylindoles could generally lead to the more potent analogs.  相似文献   

19.
A series of novel conformationally-restricted thiourea analogs were designed, synthesized, and evaluated for their anti-HCV activity. Herein we report the synthesis, structure–activity relationships (SARs), and pharmacokinetic properties of this new class of thiourea compounds that showed potent inhibitory activities against HCV in the cell-based subgenomic HCV replicon assay. Among compounds tested, the fluorene compound 4b was found to possess the most potent activity (EC50 = 0.3 μM), lower cytotoxicity (CC50 > 50 μM), and significantly better pharmacokinetic properties compared to its corresponding fluorenone compound 4c.  相似文献   

20.
A series of chalcone, flavone, coumaranone and other flavonoid compounds were screened for their anti HIV-1 activity in two cell culture models using TZM-bl and PM1 cells. Within the systems evaluated, the most promising compounds contained either an α- or β-hydroxy-carbonyl motif within their structure (e.g., 8 and 9). Efficacious substituents were identified and used to design new HIV inhibitors with increased potency and lower cytotoxicity. Of the scaffolds evaluated, specific chalcones were found to provide the best balance between anti-HIV potency and low host cell toxicity. Chalcone 8l was shown to inhibit different clinical isolates of HIV in a dose-dependent manner (e.g., IC50 typically  5 μM). Inhibition of HIV infection experiments using TZM-bl cells demonstrated that chalcone 8l and flavonol 9c had IC50 values of 4.7 μM and 10.4 μM, respectively. These insights were used to design new chalcones 8o and 8p. Rewardingly, chalcones 8o and 8p (at 10 μM) each gave >92% inhibition of viral propagation without impacting PM1 host cell viability. Inhibition of viral propagation significantly increased (60–90%) when PM1 cells were pre-incubated with chalcone 8o, but not with the related flavonol 9c. These results suggested that chalcone 8o may be of value as both a HIV prophylactic and therapy. In summary, O-benzyl-substituted chalcones were identified as promising anti-HIV agents for future investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号