首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Human parechovirus (HPEV) infections are very common in early childhood and can be severe in neonates. It has been shown that integrins are important for cellular infectivity of HPEV1 through experiments using peptide blocking assays and function-blocking antibodies to αV integrins. The interaction of HPEV1 with αV integrins is presumably mediated by a C-terminal RGD motif in the capsid protein VP1. We characterized the binding of integrins αVβ3 and αVβ6 to HPEV1 by biochemical and structural studies. We showed that although HPEV1 bound efficiently to immobilized integrins, αVβ6 bound more efficiently than αVβ3 to immobilized HPEV1. Moreover, soluble αVβ6, but not αVβ3, blocked HPEV1 cellular infectivity, indicating that it is a high-affinity receptor for HPEV1. We also showed that HPEV1 binding to integrins in vitro could be partially blocked by RGD peptides. Using electron cryo-microscopy and image reconstruction, we showed that HPEV1 has the typical T=1 (pseudo T=3) organization of a picornavirus. Complexes of HPEV1 and integrins indicated that both integrin footprints reside between the 5-fold and 3-fold symmetry axes. This result does not match the RGD position predicted from the coxsackievirus A9 X-ray structure but is consistent with the predicted location of this motif in the shorter C terminus found in HPEV1. This first structural characterization of a parechovirus indicates that the differences in receptor binding are due to the amino acid differences in the integrins rather than to significantly different viral footprints.Picornaviruses consist of a positive-sense, single-stranded infectious RNA genome of approximately 7.3 kb enclosed in a capsid composed of 60 copies of each of the three or four capsid proteins (VP1 to VP4). Human parechovirus 1 (HPEV1) is a member of the Parechovirus genus of the Picornaviridae family (38, 70). There are currently eight completely sequenced human parechovirus types and 14 described types (4, 19, 24, 30, 38, 39, 51, 58, 78). In addition, the Parechovirus genus currently has four Ljungan virus members that infect rodents. HPEV1 exhibits several distinct molecular characteristics compared to other picornaviruses (38, 71). These include the lack of the maturation cleavage of the capsid proteins VP0 to VP4 (N-terminal) and VP2 (C-terminal), existence of an approximately 30-amino-acid-long extension to the N terminus of VP3, a unique nonstructural protein 2A, and a 5′ untranslated region that is more closely related to picornaviruses infecting animals than those infecting humans.HPEV infections are common during the first years of life and are often mild or asymptomatic (20, 28, 42, 73, 80). Recently, a number of new types have been identified, and their prevalence in stool samples, for example, highlights their clinical importance. Normally, they cause gastroenteritis and respiratory infections, but severe illnesses, such as infections of the central nervous system, generalized infections of neonates, and myocarditis, have also been associated with HPEV infections (1, 8, 10, 28, 80). Currently, the role of the unique molecular, structural, and antigenic characteristics of HPEVs in the pathogenesis of infection is unknown.HPEV types 1, 2, 4, 5, and 6 are known to possess an RGD motif near the C terminus of VP1 that is known to facilitate binding of cellular ligands (e.g., fibronectin) to αv integrins. The motif is in an analogous position to motifs in coxsackievirus A9 (CAV9) and echovirus 9 (EV9; Barty strain) (Fig. (Fig.1).1). The role of the RGD sequence in cellular entry and subsequent replication of HPEV1 has been shown through blocking assays with RGD-containing peptides, mutation of the sequence, and function-blocking antibodies to αv integrins (11, 43, 62, 71). These results strongly suggested that αv integrins play a central role in the initiation of HPEV1 infection. Direct involvement of αv integrins in the infectious entry of HPEV1 was further confirmed by overexpression of human αvβ1 and αvβ3 integrins in Chinese hamster ovary (CHO) cells, allowing successful virus infection (74). There are no reports yet on the identification of receptors for the HPEV types lacking the RGD motif (HPEV3, HPEV7, and HPEV8) (19, 39, 51).Open in a separate windowFIG. 1.Sequence alignments. Amino acid sequence alignment of the viral coat protein VP1 from different picornaviruses with the CAV9 secondary structure derived from the atomic model displayed above the alignment (34). The columns boxed in blue with red letters signify similarity, and the red column signifies identity. There is limited similarity between HPEV and other picornaviruses. C-terminal RGD motifs are boxed in red.Although the crystal structures of several picornaviruses have been determined (3, 26, 34, 35, 44, 57, 59, 65, 68, 72) and the receptor interactions have been studied in detail by X-ray crystallography, electron cryo-microscopy (cryo-EM), and three-dimensional (3D) image reconstruction (6, 9, 23, 31, 32, 47, 83), there is no structural information available for the parechoviruses or parechovirus-receptor complexes. Here, we compare the binding of αVβ3 and αVβ6 to HPEV1 in vitro by biochemical assays and determine the structures of HPEV1 and the corresponding HPEV1-integrin complexes.  相似文献   

2.
The ATPase activity of the F1-ATPase from the thermophilic bacterium PS3 is stimulated at concentrations of rhodamine 6G up to about 10 µM where 70% stimulation is observed at 36°C. Half maximal stimulation is observed at about 3 µM dye. At rhodamine 6G concentrations greater than 10 µM, ATPase activity declines with 50% inhibition observed at about 75 µM dye. The ATPase activities of the 33 and 33 complexes assembled from isolated subunits of TF1 expressed inE. coli deleted of theunc operon respond to increasing concentrations of rhodamine 6G nearly identically to the response of TF1. In contrast, the ATPase activities of the 33 and 33 complexes are only inhibited by rhodamine 6G with 50% inhibition observed, respectively, at 35 and 75 µM dye at 36°C. The ATPase activity of TF1 is stimulated up to 4-fold by the neutral detergent, LDAO. In the presence of stimulating concentrations of LDAO, the ATPase activity of TF1 is no longer stimulated by rhodamine 6G, but rather, it is inhibited with 50% inhibition observed at about 30 µM dye at 30°C. One interpretation of these results is that binding of rhodamine 6G to a high-affinity site on TF1 stimulates ATPase activity and unmasks a low-affinity, inhibitory site for the dye which is also exposed by LDAO.  相似文献   

3.
The basic structures of the catalytic portion (F1, 33) of ATP synthase are the 33 hexamer (oligomer with cooperativity) and 11 heterodimer (protomer). These were reconstituted from the and subunits of thermophilic F1 (TF1), and the 33 hexamer was crystallized. On electrophoresis, both the dimer and hexamer showed bands with ATPase activity. Using the dimer and hexamer, we studied the nucleotide-dependent rapid molecular dynamics. The formation of the hexamer required neither nucleotide nor Mg. The hexamer was dissociated into the dimer in the presence of MgADP, while the dimer was associated into the hexamer in the presence of MgATP. The hexamer, like mitochondrial F1 and TF1, showed two kinds of ATPase activity: one was cooperative and was inhibited by only one BzADP per hexamer, and the other was inhibited by three BzADP per hexamer.  相似文献   

4.
α3β1 integrin has been considered to be a mysterious adhesion molecule due to the pleiotropy in its ligand-binding specificity. However, recent studies have identified laminin isoforms as high-affinity ligands for this integrin, and demonstrated that α3β1 integrin plays a number of essential roles in development and differentiation, mainly by mediating the establishment and maintenance of epithelial tissues. Furthermore, α3β1 integrin is also implicated in many other biological phenomena, including cell growth and apoptosis, angiogenesis and neural functions. This integrin receptor forms complexes with various other membrane proteins, such as the transmembrane-4 superfamily proteins (tetraspanins), cytoskeletal proteins and signaling molecules. Recently, lines of evidence have been reported showing that complex formation regulates integrin functions in cell adhesion and migration, signal transduction across cell membranes, and cytoskeletal organization. In addition to these roles in physiological processes, α3β1 integrin performs crucial functions in various pathological processes, especially in wound healing, tumor invasion and metastasis, and infection by pathogenic microorganisms.This revised version was published online in June 2005 with a corrected cover date.  相似文献   

5.
Fu BH  Wu ZZ  Qin J 《Molecular biology reports》2011,38(5):3271-3276
In this study, we applied specific blocking antibodies for integrin α6 or β1 subunit, and evaluated the in vitro effects of integrins α6β1 on the adhesion, chemotaxis and migration of hepatocellular carcinoma (HCC) cell line SMMC-7721 to type IV collagen. The adhesion force and cell migration, as measured by a micropipette aspiration system and Boyden chamber assay respectively, was dramatically reduced when either integrin subunits was blocked. The chemotaxis, as determined using a dual-micropipette system, was only affected by the antibody against β1 subunit. This study suggests that integrin α6β1 is an important cell surface receptor that mediates the adhesion of SMMC-7721 to type IV collagen. But the α6 subunit has minimal effect on pseudopod formation in response to type IV collagen. Therefore, the integrin α6β1-mediated cell migration is, at least in part, through the regulation on the cell adhesion step.  相似文献   

6.
  1. Download : Download high-res image (138KB)
  2. Download : Download full-size image
  相似文献   

7.
A potent series of substituted (2S,4S)-benzylproline α2δ ligands have been designed from the readily available starting material (2S,4R)-hydroxy-l-proline. The ligands have improved pharmacokinetic profile over the (4S)-phenoxyproline derivatives described previously and have potential for development as oral agents for the treatment of neuropathic pain. Compound 16 has been progressed to clinical development.  相似文献   

8.
ATP synthase (FoF1) consists of F1 (ATP-driven motor) and Fo (H+-driven motor). F1 is a complex of 33 subunits, and is the rotating cam in 33. Thermophilic F1 (TF1) is exceptional in that it can be crystallized as a monomer and an 33 oligomer, and it is sufficiently stable to allow refolding and reassembly of hybrid complexes containing 1, 2, and 3 modified or . The nucleotide-dependent open–close conversion of conformation is an inherent property of an isolated and energy and signals are transferred through / interfaces. The catalytic and noncatalytic interfaces of both mitochondrial F1 (MF1) and TF1 were analyzed by an atom search within the limits of 0.40 nm across the interfaces. Seven (plus thermophilic loop in TF1) contact areas are located at both the catalytic and noncatalytic interfaces on the open form. The number of contact areas on closed increased to 11 and 9, respectively, in the catalytic and noncatalytic interfaces. The interfaces in the barrel domain are immobile. The torsional elastic strain applied through the mobile areas is concentrated in hinge residues and the P-loop in . The notion of elastic energy in FoF1 has been revised. X-ray crystallography of F1 is a static snap shot of one state and the elastic hypotheses are still inconsistent with the structure, dyamics, and kinetics of FoF1. The domain motion and elastic energy in FoF1 will be elucidated by time-resolved crystallography.  相似文献   

9.
GABAA receptors are composed predominantly of αβγ receptors, which mediate primarily synaptic inhibition, and αβδ receptors, which mediate primarily extrasynaptic inhibition. At saturating GABA concentrations, the barbiturate pentobarbital substantially increased the amplitude and desensitization of the α1β3δ receptor but not the α1β3γ2L receptor currents. To explore the structural domains of the δ subunit that are involved in pentobarbital potentiation and increased desensitization of α1β3δ currents, chimeric cDNAs were constructed by progressive replacement of γ2L subunit sequence with a δ subunit sequence or a δ subunit sequence with a γ2L subunit sequence, and HEK293T cells were co-transfected with α1 and β3 subunits or α1 and β3 subunits and a γ2L, δ, or chimeric subunit. Currents evoked by a saturating concentration of GABA or by co-application of GABA and pentobarbital were recorded using the patch clamp technique. By comparing the extent of enhancement and changes in kinetic properties produced by pentobarbital among chimeric and wild type receptors, we concluded that although potentiation of α1β3δ currents by pentobarbital required the δ subunit sequence from the N terminus to proline 241 in the first transmembrane domain (M1), increasing desensitization of α1β3δ currents required a δ subunit sequence from the N terminus to isoleucine 235 in M1. These findings suggest that the δ subunit N terminus and N-terminal portion of the M1 domain are, at least in part, involved in transduction of the allosteric effect of pentobarbital to enhance α1β3δ currents and that this effect involves a distinct but overlapping structural domain from that involved in altering desensitization.  相似文献   

10.
11.
The basement membrane protein laminin-332 (laminin-5) mediates both stable cell adhesion and rapid cell migration and thus has the potential to either restrain or promote tumor cell metastasis. The major cellular receptors for laminin-332 are integrin α3β1, which mediates rapid tumor cell migration, and integrin α6β4, which often mediates stable cell attachment. Tetraspanin protein CD151 interacts directly with both α3β1 and α6β4 integrins and with other tetraspanins, thereby promoting α3β1 and α6β4 association with tetraspanin-enriched microdomains on the cell surface. To explore the possibility of selectively modulating tumor cell responses to laminin-332, we re-expressed a series of CD151 mutants in epidermoid carcinoma cells with near total, RNAi-mediated silencing of endogenous CD151. The interactions of CD151 with its integrin partners or its interactions with other tetraspanins were selectively disrupted by specific mutations in the CD151 large extracellular loop (EC2 domain) or in intracellular CD151 palmitoylation sites, respectively. CD151-integrin association and CD151-tetraspanin association were both important for α3β1 integrin-dependent initial adhesion and rapid migration on laminin-332. Remarkably, however, only CD151-integrin association was required for stable, α6β4 integrin-dependent cell attachment on laminin-332. In addition, we found that a QRD amino acid motif in the CD151 EC2 domain, which had been thought to be crucial for CD151-integrin interaction, is not essential for CD151-integrin association or for the ability of CD151 to promote several different integrin functions. These new data suggest potential strategies for selectively modulating migratory cell responses to laminin-332, while leaving stable cell attachment on laminin-332 intact.  相似文献   

12.
α6β2 Nicotinic acetylcholine receptors (nAChRs) expressed by dopaminergic neurons in the CNS are potential therapeutic targets for the treatment of several neuropsychiatric diseases, including nicotine addiction and Parkinson disease. However, recent studies indicate that the α6 subunit can also associate with the β4 subunit to form α6β4 nAChRs that are difficult to pharmacologically distinguish from α6β2, α3β4, and α3β2 subtypes. The current study characterized a novel 16-amino acid α-conotoxin (α-CTx) TxIB from Conus textile whose sequence is GCCSDPPCRNKHPDLC-amide as deduced from gene cloning. The peptide and an analog with an additional C-terminal glycine were chemically synthesized and tested on rat nAChRs heterologously expressed in Xenopus laevis oocytes. α-CTx TxIB blocked α6/α3β2β3 nAChR with an IC50 of 28 nm. In contrast, the peptide showed little or no block of other tested subtypes at concentrations up to 10 μm. The three-dimensional solution structure of α-CTx TxIB was determined using NMR spectroscopy. α-CTx TxIB represents a uniquely selective ligand for probing the structure and function of α6β2 nAChRs.  相似文献   

13.
Minimal photosynthetic catalytic F1() core complexes, containing equimolar ratios of the and subunits, were isolated from membrane-bound spinach chloroplast CF1 and Rhodospirillum rubrum chromatophore RrF1. A CF1-33 hexamer and RrF1-11 dimer, which were purified from the respective F1() complexes, exhibit lower rates and different properties from their parent F1-ATPases. Most interesting is their complete resistance to inhibition by the general F1 inhibitor azide and the specific CF1 inhibitor tentoxin. These inhibitors were earlier reported to inhibit multisite, but not unisite, catalysis in all sensitive F1-ATPases and were therefore suggested to block catalytic site cooperativity. The absence of this typical property of all F1-ATPases in the 11 dimer is consistant with the view that the dimer contains only a single catalytic site. The 33 hexamer contains however all F1 catalytic sites. Therefore the observation that CF1-33 can bind tentoxin and is stimulated by it suggests that the F1 subunit, which is required for obtaining inhibition by tentoxin as well as azide, plays an important role in the cooperative interactions between the F1-catalytic sites.Abbreviations CF0F1 chloroplast F0F1 - CF1 chloroplast F1 - CF1 chloroplast F1 subunit - CF1 chloroplast F1 subunit - CF1() a complex containing equal amounts of the CF1 and subunits - MF1 mitochondrial F1 - RrF0F1 Rhodospirillum rubrum F0F1 - RrF1 R. rubrum F1 - RrF1 R. rubrum F1 subunit - RrF1 R. rubrum F1 subunit - RrF1() a complex containing equal amounts of the RrF1 and subunits - Rubisco Ribulose-1,5-bisphosphate carboxylase - TF1 thermophilic bacterium PS3 F1  相似文献   

14.
15.

Background

Tamoxifen is still the most widely used drug in hormone therapy for the treatment of breast cancer. Its benefits in adjuvant treatment are well documented in controlled and randomized clinical studies, which have demonstrated an increase in disease-free intervals of patients with positive hormonal receptors. However, the mechanisms involved in endocrine resistance are not clear. Laboratory and clinical data now indicate that bi-directional molecular cross-talk between nuclear or membrane ER and growth factor receptor pathways may be involved in endocrine resistance. We recently found a functional interaction between α6β4 integrin and ErbB-3 receptor to maintain the PI3K/Akt survival pathway of mammary tumour cells. We sought to improve understanding of this process in order to provide the involvement of both receptors insight into mechanism of Tamoxifen resistance.

Methods and Findings

Using human breast cancer cell lines displaying different levels of α6β4 and ErbB-3 receptors and a series of 232 breast cancer biopsies from patients submitted to adjuvant Tamoxifen monotherapy for five years, we evaluated the functional interaction between both receptors in relationship to Tamoxifen responsiveness. In mammary carcinoma cells, we evidenced that the α6β4 integrin strongly influence Akt phosphorylation through ErbB-3 protein regulation. Moreover, the ErbB-3 inactivation inhibits Akt phosphorylation, induces apoptosis and inhibits in vitro invasion favouring Tamoxifen responsiveness. The analysis of human tumors revealed a significant relationship between α6β4 and ErbB-3 in P-Akt-positive and ERβ1-negative breast cancers derived from patients with lower disease free survival.

Conclusions

We provided evidence that a strong relationship occurs between α6β4 and ErbB-3 positivity in ERβ1-negative breast cancers. We also found that the association between ErbB-3 and P-Akt positivity mainly occurs in ERβ1-negative breast cancer derived from patients with lower DFS indicating that both receptors are clinically relevant in predicting the response to Tamoxifen.  相似文献   

16.
The discovery, synthesis and preliminary SAR of a novel class of non-peptidic antagonists of the αv-integrins αvβ3 and αvβ5 is described. High-throughput screening of an extensive series of ECLiPS? compound libraries led to the identification of compound 1 as a dual inhibitor of the αv-integrins αvβ3 and αvβ5. Optimization of compound 1 involving, in part, introduction of two novel constraints led to the discovery of compounds 15a and 15b with reduced PSA and much improved potency for both the αvβ3 and αvβ5 integrins. Compounds 15a and 15b were shown to have promising activity in functional cellular assays and compound 15a also exhibited a promising Caco-2 permeability profile.  相似文献   

17.
The nicotinic acetylcholine receptor (nAChR) subtype α6β2* (the asterisk denotes the possible presence of additional subunits) has been identified as an important molecular target for the pharmacotherapy of Parkinson disease and nicotine dependence. The α6 subunit is closely related to the α3 subunit, and this presents a problem in designing ligands that discriminate between α6β2* and α3β2* nAChRs. We used positional scanning mutagenesis of α-conotoxin PeIA, which targets both α6β2* and α3β2*, in combination with mutagenesis of the α6 and α3 subunits, to gain molecular insights into the interaction of PeIA with heterologously expressed α6/α3β2β3 and α3β2 receptors. Mutagenesis of PeIA revealed that Asn11 was located in an important position that interacts with the α6 and α3 subunits. Substitution of Asn11 with a positively charged amino acid essentially abolished the activity of PeIA for α3β2 but not for α6/α3β2β3 receptors. These results were used to synthesize a PeIA analog that was >15,000-fold more potent on α6/α3β2β3 than α3β2 receptors. Analogs with an N11R substitution were then used to show a critical interaction between the 11th position of PeIA and Glu152 of the α6 subunit and Lys152 of the α3 subunit. The results of these studies provide molecular insights into designing ligands that selectively target α6β2* nAChRs.  相似文献   

18.
The photoaffinity spin-labeled ATP analog, 2-N3-SL-adenosine triphosphate (ATP), was used to covalently modify isolated β-subunits from F1-ATPase of the thermophilic bacterium PS3. Approximately 1.2 mol of the nucleotide analog bound to the isolated subunit in the dark. Irradiation leads to covalent incorporation of the nucleotide into the binding site. ESR spectra of the complex show a signal that is typical for protein-immobilized radicals. Addition of isolated α-subunits to the modified β-subunits results in ESR spectra with two new signals indicative of two distinctly different environments of the spin-label, e.g., two distinctly different conformations of the catalytic sites. The relative ratio of the signals is approx 2∶1 in favor of the more closed conformation. The data show for the first time that when nucleotides are bound to isolated β-subunits, binding of α-subunits induces asymmetry in the catalytic sites even in the absence of the γ-subunit. This work was supported by a grant from the Deutsche Forschungsgemeinschaft to PDV.  相似文献   

19.
In the functionally differentiated mammary gland, basal myoepithelial cells contract to eject the milk produced by luminal epithelial cells from the body. We report that conditional deletion of a laminin receptor, α3β1 integrin, from myoepithelial cells leads to low rates of milk ejection due to a contractility defect but does not interfere with the integrity or functional differentiation of the mammary epithelium. In lactating mammary gland, in the absence of α3β1, focal adhesion kinase phosphorylation is impaired, the Rho/Rac balance is altered and myosin light-chain (MLC) phosphorylation is sustained. Cultured mammary myoepithelial cells depleted of α3β1 contract in response to oxytocin, but are unable to maintain the state of post-contractile relaxation. The expression of constitutively active Rac or its effector p21-activated kinase (PAK), or treatment with MLC kinase (MLCK) inhibitor, rescues the relaxation capacity of mutant cells, strongly suggesting that α3β1-mediated stimulation of the Rac/PAK pathway is required for the inhibition of MLCK activity, permitting completion of the myoepithelial cell contraction/relaxation cycle and successful lactation. This is the first study highlighting the impact of α3β1 integrin signalling on mammary gland function.  相似文献   

20.
Soluble guanylyl cyclase (sGC) regulates several important physiological processes by converting GTP into the second-messenger cGMP. sGC has several structural and functional properties in common with adenylyl cyclases (ACs). Recently, we reported that membranous ACs and sGC are potently inhibited by 2',3'-O-(2,4,6-trinitrophenyl)-substituted purine and pyrimidine nucleoside 5'-triphosphates. Using a highly sensitive high-performance liquid chromatography-tandem mass spectrometry method, we report that highly purified recombinant sGC of rat possesses nucleotidyl cyclase activity. As opposed to GTP, ITP, XTP and ATP, the pyrimidine nucleotides UTP and CTP were found to be sGC substrates in the presence of Mn(2+). When Mg(2+) is used, sGC generates cGMP, cAMP, cIMP, and cXMP. In conclusion, soluble "guanylyl" cyclase possesses much broader substrate specificity than previously assumed. Our data have important implications for cyclic nucleotide-mediated signal transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号