首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
PIWI proteins interacting with specific type of small RNAs (piRNAs) repress transposable elements in animals. Besides, they have been shown to participate in various cellular processes: in the regulation of heterochromatin formation including telomere structures, in the control of translation and the cell cycle, and in DNA rearrangements. PIWI proteins were first identified by their roles in the self-renewal of germline stem cells. PIWI protein functions are not limited to gonadogenesis, but the role in determining the fate of stem cells is their specific feature conserved throughout the evolution of animals. Molecular mechanisms underlying these processes are far from being understood. This review focuses on the role of PIWI proteins in the control of maintenance and proliferation of germinal stem cells and its relation to the known function of PIWI in transposon repression.  相似文献   

2.
3.
4.
5.
Nuclear cloning is still a developing technique used to create genetically identical animals by somatic cell nuclear transfer into unfertilized eggs. Despite an intensive effort in a number of laboratories, the success rate of obtaining viable offspring from this technique remains less than 5%. In the past few years many investigators reported the reprogramming of specific nuclear activities in cloned animals, such as genome-wide gene expression patterns, DNA methylation, genetic imprinting, histone modifications and telomere length regulation. The results highlight the tremendous difficulty the clones face to reprogram the original differentiation status of the donor nuclei. Nevertheless, nuclei prepared from terminally differentiated lymphocytes can overcome this barrier and produce apparently normal mice. Study of this striking nuclear reprogramming activity should significantly contribute to our understanding of cell differentiation in more physiological settings.  相似文献   

6.
Parallel mechanisms of epigenetic reprogramming in the germline   总被引:3,自引:0,他引:3  
Germ cells possess the extraordinary and unique capacity to give rise to a new organism and create an enduring link between all generations. To acquire this property, primordial germ cells (PGCs) transit through an unprecedented programme of sequential epigenetic events that culminates in an epigenomic basal state that is the foundation of totipotency. This process is underpinned by genome-wide DNA demethylation, which may occur through several overlapping pathways, including conversion to 5-hydroxymethylcytosine. We propose that the epigenetic programme in PGCs operates through multiple parallel mechanisms to ensure robustness at the level of individual cells while also being flexible through functional redundancy to guarantee high fidelity of the process. Gaining a better understanding of the molecular mechanisms that direct epigenetic reprogramming in PGCs will enhance our ability to manipulate epigenetic memory, cell-fate decisions and applications in regenerative medicine.  相似文献   

7.
8.
9.
10.
11.
Stem cell fate and patterning in mammalian epidermis.   总被引:30,自引:0,他引:30  
Recent studies highlight characteristics of epidermal stem cells that were not fully appreciated before. Stem cells are multipotential and signals exchanged with their neighbours help to regulate exit from the stem cell compartment and differentiation along specific lineages. Stem cells exhibit a high degree of spatial organisation, and cell clustering and motility contribute to the assembly and maintenance of the epidermis.  相似文献   

12.
The movement of mobile small RNA signals between cells has garnered much interest over the last few years, and has recently been extended to germ cells during gamete development. Focusing on plants, we review mobile RNA signals that arise following reprogramming in the germline, and their effect on transposable element silencing on the one hand and on meiotic and apomictic germ cell fate on the other. A potential role for reprogramming and small RNA in hybrid formation and speciation is proposed.  相似文献   

13.
Maintenance of the shape and diameter of biological tubules is a critical task in the development and physiology of all metazoan organisms. We have cloned the exc-9 gene of Caenorhabditiselegans, which regulates the diameter of the single-cell excretory canal tubules. exc-9 encodes a homologue of the highly expressed mammalian intestinal LIM-domain protein CRIP, whose function has not previously been determined. A second well-conserved CRIP homologue functions in multiple valves of C. elegans. EXC-9 shows genetic interactions with other EXC proteins, including the EXC-5 guanine exchange factor that regulates CDC-42 activity. EXC-9 and its nematode homologue act in polarized epithelial cells that must maintain great flexibility at their apical surface; our results suggest that CRIPs function to maintain cytoskeletal flexibility at the apical surface.  相似文献   

14.
15.
16.
Sialylation, or the covalent addition of sialic acid to the terminal end of glycoproteins, is a biologically important modification that is involved in embryonic development, neurodevelopment, reprogramming, oncogenesis and immune responses. In this review, we have given a comprehensive overview of the current literature on the involvement of sialylation in cell fate decision during development, reprogramming and cancer progression. Sialylation is essential for early embryonic development and the deletion of UDP-GlcNAc 2-epimerase, a rate-limiting enzyme in sialic acid biosynthesis, is embryonically lethal. Furthermore, the sialyltransferase ST6GAL1 is required for somatic cell reprogramming, and its downregulation is associated with decreased reprogramming efficiency. In addition, sialylation levels and patterns are altered during cancer progression, indicating the potential of sialylated molecules as cancer biomarkers. Taken together, the current evidences demonstrate that sialylation is involved in crucial cell fate decision.  相似文献   

17.
18.
Epigenetic reprogramming in mammalian nuclear transfer   总被引:6,自引:0,他引:6  
With the exception of lymphocytes, the various cell types in a higher multicellular organism have basically an identical genotype but are functionally and morphologically different. This is due to tissue-specific, temporal, and spatial gene expression patterns which are controlled by genetic and epigenetic mechanisms. Successful cloning of mammals by transfer of nuclei from differentiated tissues into enucleated oocytes demonstrates that these genetic and epigenetic programs can be largely reversed and that cellular totipotency can be restored. Although these experiments indicate an enormous plasticity of nuclei from differentiated tissues, somatic cloning is a rather inefficient and unpredictable process, and a plethora of anomalies have been described in cloned embryos, fetuses, and offspring. Accumulating evidence indicates that incomplete or inappropriate epigenetic reprogramming of donor nuclei is likely to be the primary cause of failures in nuclear transfer. In this review, we discuss the roles of various epigenetic mechanisms, including DNA methylation, chromatin remodeling, imprinting, X chromosome inactivation, telomere maintenance, and epigenetic inheritance in normal embryonic development and in the observed abnormalities in clones from different species. Nuclear transfer represents an invaluable tool to experimentally address fundamental questions related to epigenetic reprogramming. Understanding the dynamics and mechanisms underlying epigenetic control will help us solve problems inherent in nuclear transfer technology and enable many applications, including the modulation of cellular plasticity for human cell therapies.  相似文献   

19.
20.
The C. elegans germline provides an excellent model for analyzing the regulation of stem cell activity and the decision to differentiate and undergo meiotic development. The distal end of the adult hermaphrodite germline contains the proliferative zone, which includes a population of mitotically cycling cells and cells in meiotic S phase, followed by entry into meiotic prophase. The proliferative fate is specified by somatic distal tip cell (DTC) niche-germline GLP-1 Notch signaling through repression of the redundant GLD-1 and GLD-2 pathways that promote entry into meiosis. Here, we describe characteristics of the proliferative zone, including cell cycle kinetics and population dynamics, as well as the role of specific cell cycle factors in both cell cycle progression and the decision between the proliferative and meiotic cell fate. Mitotic cell cycle progression occurs rapidly, continuously, with little or no time spent in G1, and with cyclin E (CYE-1) levels and activity high throughout the cell cycle. In addition to driving mitotic cell cycle progression, CYE-1 and CDK-2 also play an important role in proliferative fate specification. Genetic analysis indicates that CYE-1/CDK-2 promotes the proliferative fate downstream or in parallel to the GLD-1 and GLD-2 pathways, and is important under conditions of reduced GLP-1 signaling, possibly corresponding to mitotically cycling proliferative zone cells that are displaced from the DTC niche. Furthermore, we find that GLP-1 signaling regulates a third pathway, in addition to the GLD-1 and GLD-2 pathways and also independent of CYE-1/CDK-2, to promote the proliferative fate/inhibit meiotic entry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号