首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite extensive work on ADP-ribosylation factor (Arf) 1 at the Golgi complex, the functions of Arf2-5 in the secretory pathway, or for that of any Arf at the ER-Golgi intermediate compartment (ERGIC) remain uncharacterized. Here, we examined the recruitment of fluorescently tagged Arf1, -3, -4, and -5 onto peripheral ERGIC. Live cell imaging detected Arfs on peripheral puncta that also contained Golgi-specific brefeldin A (BFA) resistance factor (GBF) 1 and the ERGIC marker p58. Unexpectedly, BFA did not promote corecruitment of Arfs with GBF1 either at the Golgi complex or the ERGIC, but it uncovered striking differences between Arf1,3 and Arf4,5. Although Arf1,3 quickly dissociated from all endomembranes after BFA addition, Arf4,5 persisted on ERGIC structures, even after redistribution of GBF1 to separate compartments. The GDP-arrested Arf4(T31N) mutant localized to the ERGIC, even with BFA and Exo1 present. In addtion, loss of Arf . GTP after treatment with Exo1 caused rapid release of all Arfs from the Golgi complex and led to GBF1 accumulation on both Golgi and ERGIC membranes. Our results demonstrate that GDP-bound Arf4,5 associate with ERGIC membranes through binding sites distinct from those responsible for GBF1 recruitment. Furthermore, they provide the first evidence that GBF1 accumulation on membranes may be caused by loss of Arf . GTP, rather than the formation of an Arf . GDP . BFA . GBF1 complex.  相似文献   

2.
We examined the relative function of the two classes of guanine nucleotide exchange factors (GEFs) for ADP-ribosylation factors that regulate recruitment of coat proteins on the Golgi complex. Complementary overexpression and RNA-based knockdown approaches established that GBF1 regulates COPI recruitment on cis-Golgi compartments, whereas BIGs appear specialized for adaptor proteins on the trans-Golgi. Knockdown of GBF1 and/or COPI did not prevent export of VSVGtsO45 from the endoplasmic reticulum (ER), but caused its accumulation into peripheral vesiculotubular clusters. In contrast, knockdown of BIG1 and BIG2 caused loss of clathrin adaptor proteins and redistribution of several TGN markers, but had no impact on COPI and several Golgi markers. Surprisingly, brefeldin A-inhibited guanine nucleotide exchange factors (BIGs) knockdown prevented neither traffic of VSVGtsO45 to the plasma membrane nor assembly of a polarized Golgi stack. Our observations indicate that COPII is the only coat required for sorting and export from the ER exit sites, whereas GBF1 but not BIGs, is required for COPI recruitment, Golgi subcompartmentalization, and cargo progression to the cell surface.  相似文献   

3.
Newly synthesized proteins and lipids are transported in vesicular carriers along the secretory pathway. Arfs (ADP-ribosylation factors), a family of highly conserved GTPases within the Ras superfamily, control recruitment of molecular coats to membranes, the initial step of coated vesicle biogenesis. Arf1 and coatomer constitute the minimal cytosolic machinery leading to COPI vesicle formation from Golgi membranes. Although some functional redundancies have been suggested, other Arf isoforms have been poorly analyzed in this context. In this study, we found that Arf1, Arf4, and Arf5, but not Arf3 and Arf6, associate with COPI vesicles generated in vitro from Golgi membranes and purified cytosol. Using recombinant myristoylated proteins, we show that Arf1, Arf4, and Arf5 each support COPI vesicle formation individually. Unexpectedly, we found that Arf3 could also mediate vesicle biogenesis. However, Arf3 was excluded from the vesicle fraction in the presence of the other isoforms, highlighting a functional competition between the different Arf members.  相似文献   

4.
The small G protein Arf1 regulates Golgi traffic and is activated by two related types of guanine nucleotide exchange factor (GEF). GBF1 acts at the cis-Golgi, whereas BIG1 and its close paralog BIG2 act at the trans-Golgi. Peripheral membrane proteins such as these GEFs are often recruited to membranes by small G proteins, but the basis for specific recruitment of Arf GEFs, and hence Arfs, to Golgi membranes is not understood. In this paper, we report a liposome-based affinity purification method to identify effectors for small G proteins of the Arf family. We validate this with the Drosophila melanogaster Arf1 orthologue (Arf79F) and the related class II Arf (Arf102F), which showed a similar pattern of effector binding. Applying the method to the Arf-like G protein Arl1, we found that it binds directly to Sec71, the Drosophila ortholog of BIG1 and BIG2, via an N-terminal region. We show that in mammalian cells, Arl1 is necessary for Golgi recruitment of BIG1 and BIG2 but not GBF1. Thus, Arl1 acts to direct a trans-Golgi-specific Arf1 GEF, and hence active Arf1, to the trans side of the Golgi.  相似文献   

5.
Arf GTPases are key regulators of both retrograde and anterograde traffic at the Golgi complex. The Golgi-localized Arf activators, Arf-GEFs (guanine exchange factor) of the BIG/GBF family, are poorly understood in terms of both their regulatory and localization mechanisms. We have performed a detailed kinetic characterization of a functional Golgi Arf-GEF, the trans-Golgi network (TGN)-localized Sec7 protein from yeast. We demonstrate that Sec7 is regulated by both autoinhibition and positive feedback. We show that positive feedback arises through the stable recruitment of Sec7 to membranes via its HDS1 domain by interaction with its product, activated Arf1. This interaction mediates localization of Sec7 to the TGN, because deletion of the HDS1 domain or mutation of the HDS1 domain in combination with deletion of Arf1 significantly increases cytoplasmic localization of Sec7. Our results lead us to propose a model in which Arf-GEF recruitment is linked to Golgi maturation via Arf1 activation.  相似文献   

6.
ADP-ribosylation factors (Arfs) are small GTPases regulating membrane traffic in the secretory pathway. They are closely related and appear to have overlapping functions, regulators, and effectors. The functional specificity of individual Arfs and the extent of redundancy are still largely unknown. We addressed these questions by CRISPR/Cas9-mediated genomic deletion of the human class I (Arf1/3) and class II (Arf4/5) Arfs, either individually or in combination. Most knockout cell lines were viable with slight growth defects only when lacking Arf1 or Arf4. However, Arf1+4 and Arf4+5 could not be deleted simultaneously. Class I Arfs are nonessential, and Arf4 alone is sufficient for viability. Upon Arf1 deletion, the Golgi was enlarged, and recruitment of vesicle coats decreased, confirming a major role of Arf1 in vesicle formation at the Golgi. Knockout of Arf4 caused secretion of ER-resident proteins, indicating specific defects in coatomer-dependent ER protein retrieval by KDEL receptors. The knockout cell lines will be useful tools to study other Arf-dependent processes.  相似文献   

7.
The enrichment of phosphatidylinositol‐4‐phosphate (PI(4)P) at the trans Golgi network (TGN) is instrumental for proper protein and lipid sorting, yet how the restricted distribution of PI(4)P is achieved remains unknown. Here, we show that lipid phosphatase Suppressor of actin mutations 1 (SAC1) is crucial for the spatial regulation of Golgi PI(4)P. Ultrastructural analysis revealed that SAC1 is predominantly located at cisternal Golgi membranes but is absent from the TGN, thus confining PI(4)P to the TGN. RNAi‐mediated knockdown of SAC1 caused changes in Golgi morphology and mislocalization of Golgi enzymes. Enzymes involved in glycan processing such as mannosidase‐II (Man‐II) and N‐acetylglucosamine transferase‐I (GnT‐I) redistributed to aberrant intracellular structures and to the cell surface in SAC1 knockdown cells. SAC1 depletion also induced a unique pattern of Golgi‐specific defects in N‐and O‐linked glycosylation. These results indicate that SAC1 organizes PI(4)P distribution between the Golgi complex and the TGN, which is instrumental for resident enzyme partitioning and Golgi morphology.  相似文献   

8.
Min MK  Kim SJ  Miao Y  Shin J  Jiang L  Hwang I 《Plant physiology》2007,143(4):1601-1614
ADP ribosylation factor (Arf) GTPase-activating proteins (GAPs) promote the hydrolysis of GTP bound to Arfs to GDP, which plays a pivotal role in regulating Arfs by converting the active GTP-bound forms of these proteins into their inactive GDP-bound forms. Here, we investigated the biological role of AGD7, an Arf GAP homolog, in Arabidopsis (Arabidopsis thaliana). We show that AGD7 bears a highly conserved N-terminal region and a unique C-terminal region, interacts with Arf1 both in vitro and in vivo, and stimulates Arf1 GTPase activity in a phosphatidic acid-dependent manner in vitro. In plant cells, AGD7 localized to the Golgi complex, where its overexpression was found to inhibit the Golgi localization of gamma-subunit of coat proteins and promote the relocation of Golgi proteins into the endoplasmic reticulum in both protoplasts and transgenic plants. Furthermore, overexpression of AGD7 inhibited anterograde trafficking of proteins from the endoplasmic reticulum. We propose that AGD7 functions as a GAP for Arf1 in the Golgi complex and plays a critical role in protein trafficking by controlling Arf1 activity.  相似文献   

9.
We have previously shown that synthesis of poliovirus protein 3CD in uninfected HeLa cell extracts induces an increased association with membranes of the cellular Arf GTPases, which are key players in cellular membrane traffic. Arfs cycle between an inactive, cytoplasmic, GDP-bound form and an active, membrane-associated, GTP-bound form. 3CD promotes binding of Arf to membranes by initiating recruitment to membranes of guanine nucleotide exchange factors (GEFs), BIG1 and BIG2. GEFs activate Arf by replacing GDP with GTP. In poliovirus-infected cells, there is a dramatic redistribution of cellular Arf pools that coincides with the reorganization of membranes used to form viral RNA replication complexes. Here we demonstrate that Arf translocation in vitro can be induced by purified recombinant 3CD protein; thus, concurrent translation of viral RNA is not required. Coexpression of 3C and 3D proteins was not sufficient to target Arf to membranes. 3CD expressed in HeLa cells was retained after treatment of the cells with digitonin, indicating that it may interact with a membrane-bound host factor. A F441S mutant of 3CD was shown previously to have lost Arf translocation activity and was also defective in attracting the corresponding GEFs to membranes. A series of other mutations were introduced at 3CD residue F441. Mutations that retained Arf translocation activity of 3CD also supported efficient growth of virus, regardless of their effects on 3D polymerase elongation activity. Those that abrogated Arf activation by 3CD generated quasi-infectious RNAs that produced some plaques from which revertants that always restored the Arf activation property of 3CD were rescued.  相似文献   

10.
Association of the Golgi-specific adaptor protein complex 1 (AP-1) with the membrane is a prerequisite for clathrin coat assembly on the trans-Golgi network (TGN). The AP-1 adaptor is efficiently recruited from cytosol onto the TGN by myristoylated ADP-ribosylation factor 1 (ARF1) in the presence of the poorly hydrolyzable GTP analog guanosine 5′-O-(3-thiotriphosphate) (GTPγS). Substituting GTP for GTPγS, however, results in only poor AP-1 binding. Here we show that both AP-1 and clathrin can be recruited efficiently onto the TGN in the presence of GTP when cytosol is supplemented with ARF1. Optimal recruitment occurs at 4 μM ARF1 and with 1 mM GTP. The AP-1 recruited by ARF1·GTP is released from the Golgi membrane by treatment with 1 M Tris-HCl (pH 7) or upon reincubation at 37°C, whereas AP-1 recruited with GTPγS or by a constitutively active point mutant, ARF1(Q71L), remains membrane bound after either treatment. An incubation performed with added ARF1, GTP, and AlFn, used to block ARF GTPase-activating protein activity, results in membrane-associated AP-1, which is largely insensitive to Tris extraction. Thus, ARF1·GTP hydrolysis results in lower-affinity binding of AP-1 to the TGN. Using two-stage assays in which ARF1·GTP first primes the Golgi membrane at 37°C, followed by AP-1 binding on ice, we find that the high-affinity nucleating sites generated in the priming stage are rapidly lost. In addition, the AP-1 bound to primed Golgi membranes during a second-stage incubation on ice is fully sensitive to Tris extraction, indicating that the priming stage has passed the ARF1·GTP hydrolysis point. Thus, hydrolysis of ARF1·GTP at the priming sites can occur even before AP-1 binding. Our finding that purified clathrin-coated vesicles contain little ARF1 supports the concept that ARF1 functions in the coat assembly process rather than during the vesicle-uncoating step. We conclude that ARF1 is a limiting factor in the GTP-stimulated recruitment of AP-1 in vitro and that it appears to function in a stoichiometric manner to generate high-affinity AP-1 binding sites that have a relatively short half-life.  相似文献   

11.
ADP-ribosylation factors (Arfs) are small GTPases that regulate vesicular trafficking in exo- and endocytotic pathways. As a first step in understanding the role of Arfs in renal physiology, immunocytochemistry and Western blotting were performed to characterize the expression and targeting of Arf1 and Arf6 in epithelial cells in situ. Arf1 and Arf6 were associated with apical membranes and subapical vesicles in proximal tubules, where they colocalized with megalin. Arf1 was also apically expressed in the distal tubule, connecting segment, and collecting duct (CD). Arf1 was abundant in intercalated cells (IC) and colocalized with V-ATPase in A-IC (apical) and B-IC (apical and/or basolateral). In contrast, Arf6 was associated exclusively with basolateral membranes and vesicles in the CD. In the medulla, basolateral Arf6 was detectable mainly in A-IC. Expression in principal cells became weaker throughout the outer medulla, and Arf6 was not detectable in principal cells in the inner medulla. In some kidney epithelial cells Arf1 but not Arf6 was also targeted to a perinuclear patch, where it colocalized with TGN38, a marker of the trans-Golgi network. Quantitative Western blotting showed that expression of endogenous Arf1 was 26–180 times higher than Arf6. These data indicate that Arf GTPases are expressed and targeted in a cell- and membrane-specific pattern in kidney epithelial cells in situ. The results provide a framework on which to base and interpret future studies on the role of Arf GTPases in the multitude of cellular trafficking events that occur in renal tubular epithelial cells. protein trafficking; immunofluorescence microscopy; Western blotting; endocytosis  相似文献   

12.
The cis-Golgi protein GPP130 reversibly redistributes to endosomes upon pH disruption, but the identity of the endosomes and the involved cycling route are unknown. It is also unknown whether any other early Golgi proteins participate in this pathway. Here, we analyze GPP130 and the structurally related Golgi protein GP73. Unlike the TGN marker TGN38/46, GPP130 and GP73 colocalized in the early Golgi and redistributed to the ER after brefeldin A treatment. Nevertheless, after pH disruption by monensin, GPP130 and GP73 redistributed to endosomes containing redistributed TGN38/46, but not other endosomal markers. In common with TGN38/46, the redistribution involved transient appearance on the plasma membrane, and upon monensin washout, the proteins moved back to the Golgi along a microtubule- and PI3 kinase-independent route. Although GP73 did not associate with GPP130, its steady-state Golgi targeting was also mediated by a lumenal predicted coiled-coil stem domain. These findings indicate that at least two early Golgi proteins, each containing stem domain Golgi targeting determinants, cycle to the cell surface and back along the late endosome independent TGN38/46 pathway.  相似文献   

13.
After growth factor stimulation, kinases are activated to regulate multiple aspects of cell physiology. Activated Src is present on Golgi membranes, but its function here remains unclear. We find that Src regulates mucin-type protein O-glycosylation through redistribution of the initiating enzymes, polypeptide N-acetylgalactosaminyl transferases (GalNac-Ts), from the Golgi to the ER. Redistribution occurs after stimulation with EGF or PDGF in a Src-dependent manner and in cells with constitutively elevated Src activity. All GalNac-T family enzymes tested are affected, whereas multiple other glycosylation enzymes are not displaced from the Golgi. Upon Src activation, the COP-I coat is also redistributed in punctate structures that colocalize with GalNac-Ts and a dominant-negative Arf1 isoform, Arf1(Q71L), efficiently blocks GalNac-T redistribution, indicating that Src activates a COP-I–dependent trafficking event. Finally, Src activation increases O-glycosylation initiation as seen by lectin staining and metabolic labeling. We propose that growth factor stimulation regulates O-glycosylation initiation in a Src-dependent fashion by GalNac-T redistribution to the ER.  相似文献   

14.
The 100-110-kD proteins (alpha-, beta-, beta'-, and gamma-adaptins) of clathrin-coated vesicles and the 110-kD protein (beta-COP) of the nonclathrin-coated vesicles that mediate constitutive transport through the Golgi have homologous protein sequences. To determine whether homologous processes are involved in assembly of the two types of coated vesicles, the membrane binding properties of their coat proteins were compared. After treatment of MDBK cells with the fungal metabolite Brefeldin A (BFA), beta-COP was redistributed to the cytoplasm within 15 s, gamma-adaptin and clathrin in the trans-Golgi network (TGN) dispersed within 30 s, but the alpha-adaptin and clathrin present on coated pits and vesicles derived from the plasma membrane remained membrane associated even after a 15-min exposure to BFA. In PtK1 cells and MDCK cells, BFA did not affect beta-COP binding or Golgi morphology but still induced redistribution of gamma-adaptin and clathrin from TGN membranes to the cytoplasm. Thus BFA affects the binding of coat proteins to membranes in the Golgi region (Golgi apparatus and TGN) but not plasma membranes. However, the Golgi binding interactions of beta-COP and gamma-adaptin are distinct and differentially sensitive to BFA. BFA treatment did not release gamma-adaptin or clathrin from purified clathrin-coated vesicles, suggesting that their distribution to the cytoplasm after BFA treatment of cells was due to interference with their rebinding to TGN membranes after a normal cycle of disassembly. This was confirmed using an in vitro assay in which gamma-adaptin binding to TGN membranes was blocked by BFA and enhanced by GTP gamma S, similar to the binding of beta-COP to Golgi membranes. These results suggest the involvement of GTP-dependent proteins in the association of the 100-kD coat proteins with membranes in the Golgi region of the cell.  相似文献   

15.
Cargo adaptors control intracellular trafficking of transmembrane proteins by sorting them into membrane transport carriers. The COPI, COPII, and clathrin cargo adaptors are structurally well characterized, but other cargo adaptors remain poorly understood. Exomer is a specialized cargo adaptor that sorts specific proteins into trans‐Golgi network (TGN)‐derived vesicles in response to cellular signals. Exomer is recruited to the TGN by the Arf1 GTPase, a universally conserved trafficking regulator. Here, we report the crystal structure of a tetrameric exomer complex composed of two copies each of the Chs5 and Chs6 subunits. The structure reveals the FN3 and BRCT domains of Chs5, which together we refer to as the FBE domain (F N3–B RCT of e xomer), project from the exomer core complex. The overall architecture of the FBE domain is reminiscent of the appendage domains of other cargo adaptors, although it exhibits a distinct topology. In contrast to appendage domains, which bind accessory factors, we show that the primary role of the FBE domain is to bind Arf1 for recruitment of exomer to membranes.  相似文献   

16.
Oleate, the most abundant endogenous and dietary cis-unsaturated fatty acid, has the atypical property to cause the redistribution of microtubule-associated proteins 1A/1B light chain 3B (referred to as LC3) to the trans-Golgi network (TGN), as shown here. A genome-wide screen identified multiple, mostly Golgi transport-related genes specifically involved in the oleate-induced relocation of LC3 to the Golgi apparatus. Follow-up analyses revealed that oleate also caused the retention of secreted proteins in the TGN, as determined in two assays in which the secretion of proteins was synchronized, (i) an assay involving a thermosensitive vesicular stomatitis virus G (VSVG) protein that is retained in the endoplasmic reticulum (ER) until the temperature is lowered, and (ii) an isothermic assay involving the reversible retention of the protein of interest in the ER lumen and that was used both in vitro and in vivo. A pharmacological screen searching for agents that induce LC3 aggregation at the Golgi apparatus led to the identification of “oleate mimetics” that share the capacity to block conventional protein secretion. In conclusion, oleate represents a class of molecules that act on the Golgi apparatus to cause the recruitment of LC3 and to stall protein secretion.Subject terms: Autophagy, Proteins  相似文献   

17.
To investigate the role of cytoplasmic sequences in directing transmembrane protein trafficking through the Golgi, we analyzed the sorting of VSV tsO45 G fusions with either the native G cytoplasmic domain (G) or an alternative cytoplasmic tail derived from the chicken AE1‐4 anion exchanger (GAE). At restrictive temperature GAE and G accumulated in the ER, and upon shifting the cells to permissive temperature both proteins folded and underwent transport through the Golgi. However, GAE and G did not form hetero‐oligomers upon the shift to permissive temperature and they progressed through the Golgi with distinct kinetics. In addition, the transport of G through the proximal Golgi was Arf1 and COPI‐dependent, while GAE progression through the proximal Golgi was Arf1 and COPI‐independent. Although Arf1 did not regulate the sorting of GAE in the cis‐Golgi, Arf1 did regulate the exit of GAE from the TGN. The trafficking of GAE through the Golgi was similar to that of the native AE1‐4 anion exchanger, in that the progression of both proteins through the proximal Golgi was Arf1‐independent, while both required Arf1 to exit the TGN. We propose that the differential recognition of cytosolic signals in membrane‐spanning proteins by the Arf1‐dependent sorting machinery may influence the rate at which cargo progresses through the Golgi.   相似文献   

18.
The E6 gene of the bovine papillomavirus type 1 (BPV-1) is expressed in fibropapillomas caused by BPV-1 and in tissue culture cells transformed by BPV-1. It encodes one of the two major oncoproteins of BPV-1. In this study, we demonstrate an interaction between the BPV-1 E6 protein and AP-1, the TGN (trans-Golgi network)-specific clathrin adaptor complex. AP-1 is a four-subunit protein complex required for clathrin-mediated cellular transport from the TGN. The AP-1/E6 interaction was observed in vitro and in cells. The E6 binding site on AP-1 was mapped to the N-terminal trunk domain of the γ subunit. BPV-1 E6 preferentially associated with membrane-bound AP-1 in cells but not with free cytosolic AP-1. BPV-1 E6 was further shown to be recruited to isolated Golgi membranes and to copurify with clathrin-coated vesicles. The recruitment of BPV-1 E6 to Golgi membranes was AP-1 independent, but the E6 interaction with AP-1 was required for its association with clathrin-coated vesicles. Furthermore, AP-1 proteins could compete with BPV-1 E6 for binding to Golgi membranes, suggesting that the recruitment of BPV-1 E6 and AP-1 to Golgi membranes involves a common factor. Taken together, our results suggest that cytosolic BPV-1 E6 is first recruited to the TGN, where it is then recognized by membrane-bound AP-1 and subsequently recruited into TGN-derived clathrin-coated vesicles. We propose that BPV-1 E6, through its interaction with AP-1, can affect cellular processes involving clathrin-mediated trafficking pathway.  相似文献   

19.
Activation of several ADP-ribosylation factors (ARFs) by guanine nucleotide exchange factors (GEFs) regulates recruitment of coat proteins (COPs) on the Golgi complex and is generally assumed to be the target of brefeldin A (BFA). The large ARF-GEFs Golgi-specific BFA resistance factor 1 (GBF1) and BFA-inhibited GEFs (BIGs) localize to this organelle but catalyze exchange preferentially on class II and class I ARFs, respectively. We now demonstrate using quantitative confocal microscopy that these GEFs show a very limited overlap with each other (15 and 23%). In contrast, GBF1 colocalizes with the cis-marker p115 (86%), whereas BIGs overlap extensively with TGN38 (83%). Consistent with these distributions, GBF1, but not BIG1, partially relocalized to peripheral sites after incubation at 15 degrees C. The new GBF1 structures represent peripheral vesicular tubular clusters (VTCs) because 88% of structures analyzed stained for both GBF1 and p115. Furthermore, as expected of VTCs, they rapidly reclustered to the Golgi complex in a microtubule-dependent manner upon warm-up. These observations suggest that GBF1 and BIGs activate distinct subclasses of ARFs in specific locations to regulate different types of reactions. In agreement with this possibility, COPI overlapped to a greater extent with GBF1 (64%) than BIG1 (31%), whereas clathrin showed limited overlap with BIG1, and virtually none with GBF1.  相似文献   

20.
PI4KIIIβ recruitment to Golgi membranes relies on GBF1/Arf and ACBD3. Enteroviruses such as poliovirus and coxsackievirus recruit PI4KIIIβ to their replication sites via their 3A proteins. Here, we show that human rhinovirus (HRV) 3A also recruited PI4KIIIβ to replication sites. Unlike other enterovirus 3A proteins, HRV 3A failed to bind GBF1. Although HRV 3A was previously shown to interact with ACBD3, our data suggest that PI4KIIIβ recruitment occurred independently of both GBF1 and ACBD3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号