首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We recently reported that rhesus macaques inoculated with CD4-binding-competent and CD4-binding-defective soluble YU2-derived HIV-1 envelope glycoprotein (Env) trimers in adjuvant generate comparable levels of Env-specific binding antibodies (Abs) and T cell responses. We also showed that Abs directed against the Env coreceptor binding site (CoRbs) were elicited only in animals immunized with CD4-binding-competent trimers and not in animals immunized with CD4-binding-defective trimers, indicating that a direct interaction between Env and CD4 occurs in vivo. To investigate both the overall consequences of in vivo Env-CD4 interactions and the elicitation of CoRbs-directed Abs for protection against heterologous simian-human immunodeficiency virus (SHIV) challenge, we exposed rhesus macaques immunized with CD4-binding-competent and CD4-binding-defective trimers to the CCR5-tropic SHIV-SF162P4 challenge virus. Compared to unvaccinated controls, all vaccinated animals displayed improved control of plasma viremia, independent of the presence or absence of CoRbs-directed Abs prior to challenge. Immunization resulted in plasma responses that neutralized the heterologous SHIV challenge stock in vitro, with similar neutralizing Ab titers elicited by the CD4-binding-competent and CD4-binding-defective trimers. The neutralizing responses against both the SHIV-SF162P4 stock and a recombinant virus pseudotyped with a cloned SHIV-SF162P4-derived Env were significantly boosted by the SHIV challenge. Collectively, these results suggest that the capacity of soluble Env trimers to interact with primate CD4 in vivo and to stimulate the production of moderate titers of CoRbs-directed Abs did not influence the magnitude of the neutralizing Ab recall response after viral challenge or the subsequent control of viremia in this heterologous SHIV challenge model.The external glycoprotein gp120 and the membrane-anchored glycoprotein gp41 of human immunodeficiency virus type 1 (HIV-1), collectively referred to as the envelope glycoproteins (Env), mediate viral entry and are the sole virally encoded targets for neutralizing antibodies (NAbs). Prior to binding the primary host cell receptor, CD4, the trimeric Env spike may sample multiple conformations on the surface of the virus. Which of these potential conformations display neutralizing Ab epitopes and are recognized by broadly reactive NAbs is currently unclear. A substantial conformational change occurs when the functional Env spike interacts with CD4, leading to the exposure and the formation of the bridging sheet, a highly conserved and immunogenic structure spanning the inner and outer domains of gp120 that contributes to coreceptor interaction (6, 14, 25, 30). CD4 binding is also thought to lead to the displacement of variable region 3 (V3) from a less exposed conformation in the packed functional spike to a more protruding conformation. Exposure of V3 is necessary for viral entry, as it also contributes to Env interaction with coreceptor (21). Additional or concurrent rearrangements of the functional spike structure may occur upon CD4 binding, as suggested by cryotomography (38), However, these rearrangements are less well understood due to the absence of a high-resolution structure of the static or CD4-liganded trimeric spike.In attempts to elicit broadly reactive NAbs against HIV-1 through vaccination, a range of recombinant Env variants were designed and tested (reviewed in references 15, 26, 49, and 50). The capacity of such immunogens to elicit broadly reactive NAbs is often determined using standardized in vitro neutralization assays (34). However, the ability of HIV-1 Env vaccine-elicited B cell responses to mediate actual protective and functional responses against in vivo virus challenge is evaluated less frequently, since this requires the use of nonhuman primates (NHPs) and infection with chimeric simian-human immunodeficiency viruses (SHIVs). A series of SHIVs was developed, including those based on the HIV-1 Env glycoproteins from SF162 (40), 89.6 (54), ADA (45), BaL (48), DH12 (59), and 1157i (27). So far, few of these models, if any, fully mimic HIV-1 infection in humans. Currently, serially passaged CCR5-using SHIV-SF162 (SHIV-SF162P), which establishes transient or more prolonged viremia in macaques, represent a frequently used model to evaluate the protective effect of Env-based immunogens (2-5, 19, 20, 23, 24, 29, 53, 67). Depending on the number and nature of passages that this virus has been exposed to, the SHIV-SF162P stocks are more or less neutralization resistant (19, 62), allowing one to test the efficacy of a given vaccine candidate against a more or less rigorous form of viral challenge. Protection against mucosal SHIV-SF162P4 challenge after homologous SF162ΔV2 Env protein immunization of rhesus macaques was recently reported (2, 3). However, the nature and specificities of the vaccine-induced immune responses that mediate this effect remain incompletely defined.We recently showed that Abs against the HIV-1 gp120 coreceptor binding site (CoRbs) are elicited as a consequence of in vivo interactions between Env and primate CD4 during immunization with soluble CD4 (sCD4)-binding-competent Env trimers (14). We subsequently showed that rhesus macaques inoculated with CD4-binding competent and CD4-binding defective soluble YU2-derived gp140-F trimers in adjuvant generate comparable levels of Env-specific binding Abs and T cell responses but that CoRbs-directed Abs are elicited only in animals immunized with wild-type (wt) CD4-binding competent Env trimers (13). So far, the impact of Env-CD4 in vivo interactions during Env immunization and the role of CoRbs-directed Abs in protection against SHIV infection remain incompletely understood. A majority of the well-characterized CoRbs-directed monoclonal Abs (MAbs) lack the capacity to neutralize primary viruses in vitro (7, 31). However, it has been suggested that Abs directed against this region may contribute to the neutralizing Ab response seen in some HIV-1-infected individuals (18, 35, 58) and to the protection observed in some SHIV challenge experiments (12).The distinct difference in the capacity of the CD4-binding competent and CD4-binding defective Env trimers to elicit CoRbs-directed Abs described in our previous study presented an opportunity to evaluate the protective effect of CoRbs-directed Abs in the SHIV model. The availability of animals immunized with these Env immunogens also allowed us to ask the more general question about whether in vivo interactions between soluble Env trimers and CD4-expressing host cells would influence the outcome of heterologous SHIV-SF162P4 infection. We show here that Env trimer-immunized animals displayed improved control of SHIV-SF162P4 viremia compared to unimmunized control animals, independent of whether they were inoculated with CD4-binding-competent or CD4-binding-defective trimers. These results suggest that the capacity of soluble Env trimers to interact with CD4 in vivo and to stimulate the production of CoRbs-directed Abs did not measurably influence the protective effect of the vaccine-elicited immune responses in this SHIV challenge model.  相似文献   

2.
Monoclonal antibodies (MAbs) that neutralize human immunodeficiency virus type 1 (HIV-1) have been isolated from HIV-1-infected individuals or animals immunized with recombinant HIV-1 envelope (Env) glycoprotein constructs. The epitopes of these neutralizing antibodies (NAbs) were shown to be located on either the variable or conserved regions of the HIV-1 Env and to be linear or conformational. However, one neutralizing MAb, 2909, which was isolated from an HIV-1-infected subject, recognizes a more complex, quaternary epitope that is present on the virion-associated functional trimeric Env spike of the SF162 HIV-1 isolate. Here, we discuss the isolation of 11 anti-HIV NAbs that were isolated from three rhesus macaques infected with the simian/human immunodeficiency virus SHIVSF162P4 and that also recognize quaternary epitopes. A detailed epitope mapping analysis of three of these rhesus antibodies revealed that their epitopes overlap that of the human MAb 2909. Despite this overall similarity in binding, however, differences in specific amino acid and glycosylation pattern requirements for MAb 2909 and the rhesus MAbs were identified. These results highlight similarities in the B-cell responses of humans and macaques to structurally complex neutralization epitopes on related viruses, HIV-1 and SHIV.HIV-1 infection typically elicits high levels of antibodies directed against the viral surface envelope (Env) glycoprotein, gp160. The initial anti-Env antibody response is nonneutralizing (28), but within 1 or 2 months after infection, neutralizing antibodies (NAbs) emerge which tend to be highly strain specific for the autologous virus and exhibit little or no neutralizing activity against heterologous HIV-1 strains (10, 22). However, several recent reports have indicated that approximately 25% of HIV-1-infected, antiretroviral-naïve patients develop broad cross-neutralizing antibody responses (5, 23, 26). In some cases, these broad neutralizing antibody responses can be mapped to the CD4-binding site of Env while in most cases a single epitope specificity cannot be identified to recapitulate the neutralizing breadth of the corresponding plasma (1, 4, 14, 15, 23, 25). Detailed analyses of the epitope specificities of broad plasma neutralizing antibody responses performed by several groups revealed the presence in HIV-positive (HIV+) plasmas of NAbs with as yet undefined epitope specificities (1, 15, 18, 23). It is possible that these undefined specificities include quaternary neutralizing epitopes (QNEs) and/or sugar molecules which coat the HIV Env spike expressed on the surface of viral particles.The human monoclonal antibody (MAb) 2909 recognizes a QNE present on the oligomeric Env spike present on the surface of HIV-1 SF162 virions (8). MAb 2909 can bind and neutralize SF162 virions but does not bind to the corresponding soluble SF162 Env. The binding of MAb 2909 to its QNE depends on the presence of the second and third variable regions of gp120 (the V2 and V3 loops, respectively). One particular amino acid at the amino terminal side of the V2 loop (K at position 158, based on the SF162 numbering, or position 160, based on the strain HxB2 numbering) appears to be critical for its binding (11). MAb 2909 was isolated from a person who was not infected with SF162, but a virus isolated from the donor of MAb 2909 bears a V2 loop with similarities to that of SF162 and, in particular, possesses the same K158 residue (M. K. Gorny, unpublished data). More recently, two additional human MAbs, PG9 and PG16, were isolated from a subject infected with clade A HIV-1 and were shown to bind to a QNE that also includes the V2 and V3 loops (30). In contrast, however, to the narrow neutralizing potential of MAb 2909, MAbs PG9 and PG16 display far broader neutralizing abilities.Similar to the infection of humans by HIV-1, chronic infection of rhesus macaques by simian/human immunodeficiency viruses (SHIVs) or chimpanzees by HIV-1 also results in the elicitation of potent NAbs against the autologous virus and, to a much lesser extent, against heterologous SHIV isolates or HIV-1 viruses (3, 6, 12, 17). Here, we describe a panel of MAbs from SHIVSF162P4-infected rhesus macaques that demonstrates extremely potent neutralization against the homologous virus (that expresses the same Env as HIV-1 SF162) and that recognizes QNEs present on the surface of intact virions. Similar to the human MAbs 2909, PG9, and PG16, these rhesus macaque monoclonal antibodies (RhMAbs) recognize QNEs that include the V2 and V3 loops. Also, similar to MAb 2909, the RhMAbs neutralize only viruses expressing the SF162 Env. Consequently, we compared the fine epitope specificities of these RhMAbs to the epitope specificity of the human MAb 2909. Our detailed epitope mapping analysis reveals that although the human MAb 2909 and the RhMAbs recognize that same overall Env complex region, their specific requirements for binding differ. Thus, these studies of human and rhesus MAbs indicate that infection of humans and rhesus macaques with viruses expressing distinct Envs can result in the elicitation of antibodies that bind to overlapping conserved quaternary epitopes.  相似文献   

3.
HIV-1 gp140 envelope immunogens express conserved epitopes that are targeted by broadly cross-reactive neutralizing antibodies, but they fail to elicit similar antibodies upon immunization. The poor immunogenicity of conserved epitopes on gp140 could be linked to the high immunogenicity of variable Env regions on such constructs. Previous studies have shown that the first hypervariable region (V1 loop) is immunogenic on soluble gp140s but elicits type-specific antibodies. To address issues related to the high immunogenicity of the V1 loop, two conceptually opposite approaches were tested. In the first approach, we eliminated the V1 loop from our gp140 construct and examined how V1 deletion altered the immunogenic properties of other Env regions. In the second approach, we took advantage of the high immunogenicity of the V1 loop and engrafted four diverse V1 loops onto a common gp140 Env “scaffold.” These four scaffolds were used as a cocktail of immunogens to elicit diverse anti-V1 antibodies, under the hypothesis that eliciting diverse anti-V1 antibodies would expand the neutralizing breadth of immune sera. Our study indicates that three of four heterologous V1 loops were immunogenic on the common Env backbone “scaffold,” but heterologous anti-V1 neutralizing responses were observed in only one case. Both types of V1 modification dampened the immunogenicity of the V3 loop, differentially altered the immunogenicity of the transmembrane gp41 subunit, and altered the relative immunogenicities of unknown Env regions, including potentially the CD4-binding site (CD4-bs) and trimer-specific targets, which elicited cross-reactive neutralizing antibodies but of limited breadth.An effective vaccine against human immunodeficiency virus type 1 (HIV-1) will need to incorporate an envelope-derived immunogen capable of eliciting potent and broadly cross-reactive neutralizing antibody responses against diverse primary HIV-1 isolates. The target of anti-HIV neutralizing antibodies (NAbs), the viral envelope (Env) glycoprotein, is expressed as a single transmembrane polypeptide precursor (gp160) that is glycosylated and cleaved into an extracellular subunit (gp120) and a transmembrane subunit (gp41) during intracellular processing (10, 20, 21, 54). The functional Env form on virion surfaces is a trimer composed of three noncovalently associated gp120-gp41 heterodimers. Soluble forms of the trimeric Env have been generated by introducing stop codons immediately upstream of the transmembrane domain of gp41. These constructs are commonly referred to as gp140 proteins and have been tested extensively as immunogens to elicit anti-HIV-1 NAbs. Soluble gp140s express epitopes that are targets of NAbs, including cross-reactive NAbs such as b12, 4E10, and 2G12 (5, 17, 34, 45, 47, 49, 50, 52, 57). Immunization with gp140 immunogens nonetheless does not result in a broadly cross-reactive neutralizing antibody response (2, 3, 17, 18, 26, 56, 58).Epitope mapping analyses of the Abs elicited by soluble trimeric gp140 immunogens revealed that a large fraction of the gp140-induced neutralization response targets the first hypervariable region of gp120 (the V1 loop). In our hands, ∼40 to 70% of the neutralizing activity of sera from animals immunized with SF162 gp140 constructs is due to anti-V1 antibodies (17). In a study by Li et al. with YU2 gp140 (30) and a study by Wu et al. with HxB2/BaL gp145 (56), ∼10 to 80% of anti-YU2 neutralizing activity and 100% of anti-HxB2 neutralizing activity, respectively, were due to anti-V1 Abs. These anti-V1 Abs, however, are not cross-reactive. Previously, we also demonstrated that the diverse positionings of the V1 across heterologous strains limit access of broadly cross-reactive monoclonal antibodies (MAbs) to their targets (12).Here, taking into consideration the V1 loop''s high immunogenicity, we employed two opposing approaches aimed at the elicitation of cross-reactive neutralizing antibody responses to HIV-1. In the first approach, we deleted the V1 loop on our soluble trimeric gp140 construct (ΔV1SF162 gp140) and examined whether and how this modification altered the immunogenic properties of other Env regions. In the second approach, we substituted the V1 loop on our SF162 gp140 construct with the V1 loops from four heterologous HIV-1 viruses (89.6, YU2, JRFL, and HxB2) that differ in their amino acid compositions and in the number of potential N-linked glycosylation sites (PNGs). These four heterologous viruses display various neutralization phenotypes (7) and coreceptor utilization profiles (15, 35, 36, 48, 51). A total of four SF162 Env-based gp140 “scaffolds” expressing four different V1 loops were created and used as immunogens in a cocktail to test as a “proof of principle” the hypothesis that if diverse V1 loops are presented to the immune system simultaneously, the elicitation of anti-V1 NAbs with diverse specificities would broaden the overall neutralizing activity of immune sera. We also immunized animals with each of the four V1 chimeric scaffolds individually to ensure that all V1 loops were immunogenic when presented on the heterologous SF162 Env background.All immunogens (including wild-type [WT] SF162 gp140 and ΔV1SF162 gp140) elicited homologous anti-SF162 NAbs. All immunogens except the scaffold construct expressing the YU2 V1 also elicited heterologous NAbs against the sensitive lab-adapted strain HxB2. The heterologous YU2, 89.6, and HxB2 V1 loops, but not the JRFL V1 loop, were immunogenic on the background of the SF162 Env scaffold. However, only anti-V1 neutralizing activity against the HxB2 virus was observed. Although neither approach resulted in the development of broad anti-HIV-1 cross-neutralizing antibody responses, cross-neutralizing antibody responses of narrow breadth were elicited. These responses were not due to antibodies that target to variable regions of gp120 but were due to antibodies that target either epitopes of the CD4-binding site (CD4-bs) or epitopes that are not present on monomeric gp120. These observations have implications for guiding rational Env-based immunogen design and for potentially eliciting broadly cross-reactive NAb responses.  相似文献   

4.
The envelope (Env) glycoproteins of HIV and other lentiviruses possess neutralization and other protective epitopes, yet all attempts to induce protective immunity using Env as the only immunogen have either failed or afforded minimal levels of protection. In a novel prime-boost approach, specific-pathogen-free cats were primed with a plasmid expressing Env of feline immunodeficiency virus (FIV) and feline granulocyte-macrophage colony-stimulating factor and then boosted with their own T lymphocytes transduced ex vivo to produce the same Env and interleukin 15 (3 × 106 to 10 × 106 viable cells/cat). After the boost, the vaccinees developed elevated immune responses, including virus-neutralizing antibodies (NA). Challenge with an ex vivo preparation of FIV readily infected all eight control cats (four mock vaccinated and four naïve) and produced a marked decline in the proportion of peripheral CD4 T cells. In contrast, five of seven vaccinees showed little or no traces of infection, and the remaining two had reduced viral loads and underwent no changes in proportions of CD4 T cells. Interestingly, the viral loads of the vaccinees were inversely correlated to the titers of NA. The findings support the concept that Env is a valuable immunogen but needs to be administered in a way that permits the expression of its full protective potential.Despite years of intense research, a truly protective AIDS vaccine is far away. Suboptimal immunogenicity, inadequate antigen presentation, and inappropriate immune system activation are believed to have contributed to these disappointing results. However, several lines of evidence suggest that the control or prevention of infection is possible. For example, despite repeated exposures, some individuals escape infection or delay disease progression after being infected (1, 14, 15). Furthermore, passively infused neutralizing antibodies (NA) (28, 42, 51) or endogenously expressed NA derivatives (29) have been shown to provide protection against intravenous simian immunodeficiency virus challenge. On the other hand, data from several vaccine experiments suggest that cellular immunity is an important factor for protection (6, 32). Therefore, while immune protection against human immunodeficiency virus (HIV) and other lentiviruses appears feasible, the strategies for eliciting it remain elusive.Because of its crucial role in viral replication and infectivity, the HIV envelope (Env) is an attractive immunogen and has been included in nearly all vaccine formulations tested so far (28, 30, 31). Env surface (SU) and transmembrane glycoproteins (gp) are actively targeted by the immune system (9, 10, 47), and Env-specific antibodies and cytotoxic T lymphocytes (CTLs) are produced early in infection. The appearance of these effectors also coincides with the decline of viremia during the acute phase of infection (30, 32). Individuals who control HIV infection in the absence of antiretroviral therapy have Env-specific NA and CTL responses that are effective against a wide spectrum of viral strains (14, 23, 35, 52, 60). At least some of the potentially protective epitopes in Env appear to interact with the cellular receptors during viral entry and are therefore highly conserved among isolates (31, 33, 39, 63). However, these epitopes have complex secondary and tertiary structures and are only transiently exposed by the structural changes that occur during the interaction between Env and its receptors (10, 11, 28). As a consequence, these epitopes are usually concealed from the immune system, and this may explain, at least in part, why Env-based vaccines have failed to show protective efficacy. Indeed, data from previous studies suggested that protection may be most effectively triggered by nascent viral proteins (22, 28, 30, 48, 62).We have conducted a proof-of-concept study to evaluate whether presenting Env to the immune system in a manner as close as possible to what occurs in the context of a natural infection may confer some protective advantage. The study was carried out with feline immunodeficiency virus (FIV), a lentivirus similar to HIV that establishes persistent infections and causes an AIDS-like disease in domestic cats. As far as it is understood, FIV evades immune surveillance through mechanisms similar to those exploited by HIV, and attempts to develop an effective FIV vaccine have met with difficulties similar to those encountered with AIDS vaccines (25, 37, 66). In particular, attempts to use FIV Env as a protective immunogen have repeatedly failed (13, 38, 58). Here we report the result of one experiment in which specific-pathogen-free (SPF) cats primed with a DNA immunogen encoding FIV Env and feline granulocyte-macrophage colony-stimulating factor (GM-CSF) and boosted with viable, autologous T lymphocytes ex vivo that were transduced to express Env and feline interleukin 15 (IL-15) showed a remarkable level of protection against challenge with ex vivo FIV. Consistent with recent findings indicating the importance of NA in controlling lentiviral infections (1, 59, 63), among the immunological parameters investigated, only the titers of NA correlated inversely with protection. Collectively, the findings support the notion that Env is a valuable vaccine immunogen but needs to be administered in a way that permits the expression of its full protective potential.  相似文献   

5.
Lentiviruses, including human immunodeficiency virus type 1 (HIV-1), typically encode envelope glycoproteins (Env) with long cytoplasmic tails (CTs). The strong conservation of CT length in primary isolates of HIV-1 suggests that this factor plays a key role in viral replication and persistence in infected patients. However, we report here the emergence and dominance of a primary HIV-1 variant carrying a natural 20-amino-acid truncation of the CT in vivo. We demonstrated that this truncation was deleterious for viral replication in cell culture. We then identified a compensatory amino acid substitution in the matrix protein that reversed the negative effects of CT truncation. The loss or rescue of infectivity depended on the level of Env incorporation into virus particles. Interestingly, we found that a virus mutant with defective Env incorporation was able to spread by cell-to-cell transfer. The effects on viral infectivity of compensation between the CT and the matrix protein have been suggested by in vitro studies based on T-cell laboratory-adapted virus mutants, but we provide here the first demonstration of the natural occurrence of similar mechanisms in an infected patient. Our findings provide insight into the potential of HIV-1 to evolve in vivo and its ability to overcome major structural alterations.The envelope glycoprotein complex of the human immunodeficiency virus type 1 (HIV-1) is involved principally in virion attachment to target cell surfaces and in the entry process (15, 18, 27, 29, 52). Envelope glycoproteins (Env) are initially translated as a gp160 precursor glycoprotein, which is then processed during its trafficking through the secretory pathway, to yield a surface subunit gp120 noncovalently attached to a transmembrane subunit gp41. During HIV-1 assembly, Env proteins are incorporated at the surface of the viral particle as a trimeric structure consisting of three gp120/gp41 dimers (59, 62).The gp41 consists of an ectodomain, a hydrophobic transmembrane anchor, and a cytoplasmic tail (CT). Lentiviruses, including HIV-1 and simian immunodeficiency virus (SIV), are unusual in having a transmembrane subunit with much longer CTs (∼150 amino acids) than most other retroviruses (20 to 50 amino acids) (27). Early studies with T-cell laboratory-adapted HIV-1 mutants showed that the gp41 CT region played an important role in regulating Env functions, the incorporation of Env into virus particles and, consequently, viral replication (16, 21, 35, 63). The integrity of the gp41 CT thus appears to be crucial for replication in primary T cells, macrophages, and in many transformed T-cell lines (1, 44). Viral variants with truncated gp41 are rarely isolated from infected patients. One study reported the isolation of a CD4-independent variant harboring a sharply truncated CT (64). However, this atypical isolate existed as a minority variant in the original quasispecies of the patient (54). SIV variants with truncated CTs obtained in cell culture in vitro have also been shown to revert rapidly (to full-length CT) when introduced into macaques (39). These observations indicate that the long CTs of lentiviruses, such as HIV-1 and SIV, have functions specific to viral replication and persistence in vivo.Two groups of conserved sequence motifs have been identified in the gp41 CT that are likely to be involved in its functions. The first group, involved in regulating the intracellular trafficking of Env, includes a membrane-proximal tyrosine-based endocytic motif, Y712SPL, (9, 47); a diaromatic motif, Y802W803, implicated in the retrograde transport of Env to the trans-Golgi network (8), and a C-terminal dileucine motif recently identified as a second endocytic motif (7, 10, 60). We have also provided evidence for the existence of additional as-yet-unidentified signals in studies of primary HIV-1 (34). The second group of motifs consists of three structurally conserved amphipathic α-helical domains: lentivirus lytic peptides 1, 2, and 3 (LLP-1, LLP-2, and LLP-3) (11, 17, 33). LLP domains have been implicated in various functions, including Env fusogenicity and the incorporation of Env into HIV-1 particles (28, 32, 43, 45, 50, 61).Several lines of evidence suggest that Env incorporation requires direct or indirect interactions between the matrix domain of the structural protein precursor Pr55Gag (matrix) and the gp41 CT during HIV-1 assembly. This possibility was first suggested by the observation that HIV-1 Env drives the basolateral budding of Gag in polarized cells (37, 48). A direct interaction between the matrix and a glutathione S-transferase fusion protein containing Env CT was subsequently observed in vitro (13). Synthetic peptides corresponding to various domains of the gp41 CT have also been shown to interact directly with Pr55Gag molecules (26). Furthermore, effects on viral infectivity of compensation between the CT and the matrix protein have been suggested by studies based on T-cell laboratory-adapted virus mutants (19, 40, 43). Finally, the cellular protein TIP47 was recently implicated in Env incorporation, based on its ability to bind both the matrix protein and the gp41 CT (38).In a previous study describing the evolutionary dynamics of the glycan shield of HIV-1 Env, we identified a patient (patient 153) for whom the 15 env clones obtained during primary infection (early stage) encoded full-length Env, whereas the 15 env sequences from the HIV-1 present 6 years later (late stage) encoded truncated gp41 CTs (14). These late-stage sequences contained a deletion introducing an in-frame stop codon, resulting in a 20-amino-acid truncation of the Env. Note that, unlike a point mutation, this deletion cannot easily revert to the full-length form. Such a deletion affecting various known motifs of the gp41 CT would be expected to impair viral replication. However, the plasma viral load measured in patient 153 demonstrated that the virus had retained its ability to replicate.In the present study, we explored the molecular mechanisms by which a primary HIV-1 maintained its capacity to replicate efficiently in this patient and demonstrated for the first time the occurrence of matrix and Env coevolution in vivo, providing insight into the ability of HIV-1 to overcome major structural alterations.  相似文献   

6.
The native envelope (Env) spike on the surface of human immunodeficiency virus type 1 (HIV-1) is trimeric, and thus trimeric Env vaccine immunogens are currently being explored in preclinical immunogenicity studies. Key challenges have included the production and purification of biochemically homogeneous and stable trimers and the evaluation of these immunogens utilizing standardized virus panels for neutralization assays. Here we report the binding and neutralizing antibody (NAb) responses elicited by clade A (92UG037.8) and clade C (CZA97.012) Env gp140 trimer immunogens in guinea pigs. These trimers have been selected and engineered for optimal biochemical stability and have defined antigenic properties. Purified gp140 trimers with Ribi adjuvant elicited potent, cross-clade NAb responses against tier 1 viruses as well as detectable but low-titer NAb responses against select tier 2 viruses from clades A, B, and C. In particular, the clade C trimer elicited NAbs that neutralized 27%, 20%, and 47% of tier 2 viruses from clades A, B, and C, respectively. Heterologous DNA prime, protein boost as well as DNA prime, recombinant adenovirus boost regimens expressing these antigens, however, did not result in an increased magnitude or breadth of NAb responses in this system. These data demonstrate the immunogenicity of stable, homogeneous clade A and clade C gp140 trimers and exemplify the utility of standardized tier 1 and tier 2 virus panels for assessing the NAb responses of candidate HIV-1 Env immunogens.The development and evaluation of novel HIV-1 Env immunogens are critical priorities of the HIV-1 vaccine field (2, 10, 25). The major antigenic target for neutralizing antibodies (NAbs) is the trimeric Env glycoprotein on the virion surface (4, 18, 30). Monomeric gp120 immunogens have not elicited broadly reactive NAbs in animal models (5, 13, 28, 29) or humans (16, 31), and thus several groups have focused on generating trimer immunogens that better mimic the native Env spike found on virions (3, 7, 14, 15, 20, 22, 27). It has, however, proven difficult to produce stable and conformationally homogeneous Env trimers. Strategies to modify Env immunogens have therefore been explored, including the removal of the cleavage site between gp120 and gp41 (3, 7, 23, 39, 40), the incorporation of an intramolecular disulfide bond to stabilize cleaved gp120 and gp41 moieties (6), and the addition of trimerization motifs such as the T4 bacteriophage fibritin “fold-on” (Fd) domain (8, 17, 39).Preclinical evaluation of candidate Env immunogens is critical for concept testing and for the prioritization of vaccine candidates. Luciferase-based virus neutralization assays with TZM.bl cells (21, 24) have been developed as high-throughput assays that can be standardized (26). However, the optimal use of this assay requires the generation of standardized virus panels derived from multiple clades that reflect both easy-to-neutralize (tier 1) and primary isolate (tier 2) viruses (21, 24). A tiered approach for the evaluation of novel Env immunogens has been proposed, in which tier 1 viruses represent homologous vaccine strains and a small number of heterologous neutralization-sensitive viruses while tier 2 viruses provide a greater measure of neutralization breadth for the purpose of comparing immunogens (24).We screened a large panel of primary HIV-1 isolates for Env stability and identified two viruses, CZA97.012 (clade C) (32) and 92UG037.8 (clade A) (17), that yielded biochemically homogeneous and stable Env trimers with well defined and uniform antigenic properties (17). The addition of the T4 bacteriophage fibritin “fold-on” (Fd) trimerization domain further increased their yield and purity (17). In the present study, we assessed the immunogenicity of these stable clade A and clade C gp140 trimers in guinea pigs. Both trimers elicited high-titer binding antibody responses and cross-clade neutralization of select tier 1 viruses as well as low-titer but detectable NAb responses against select tier 2 viruses from clades A, B, and C. These data demonstrate the immunogenicity of these stable gp140 trimers and highlight the utility of standardized virus panels in the evaluation of novel HIV-1 Env immunogens.  相似文献   

7.
We previously reported coreceptor switch in rhesus macaques inoculated intravenously with R5 simian-human immunodeficiency virus SF162P3N (SHIVSF162P3N). Whether R5-to-X4 virus evolution occurs in mucosally infected animals and in which anatomic site the switch occurs, however, were not addressed. We herein report a change in coreceptor preference in macaques infected intrarectally with SHIVSF162P3N. The switch occurred in infected animals with high levels of virus replication and undetectable antiviral antibody response and required sequence changes in the V3 loop of the gp120 envelope protein. X4 virus emergence was associated with an accelerated drop in peripheral CD4+ T-cell count but followed rather than preceded the onset of CD4+ T-cell loss. The conditions, genotypic requirements, and patterns of coreceptor switch in intrarectally infected animals were thus remarkably consistent with those found in macaques infected intravenously. They also overlapped with those reported for humans, suggestive of a common mechanism for coreceptor switch in the two hosts. Furthermore, two independent R5-to-X4 evolutionary pathways were identified in one infected animal, giving rise to dual-tropic and X4 viruses which differed in switch kinetics and tissue localization. The dual-tropic switch event predominated early, and the virus established infection in multiple tissues sites. In contrast, the switch to X4 virus occurred later, initiating and expanding mainly in peripheral lymph nodes. These findings help define R5 SHIVSF162P3N infection of rhesus macaques as a model to study the mechanistic basis, dynamics, and sites of HIV-1 coreceptor switch.The human immunodeficiency virus (HIV) enters target cells via binding of the viral envelope glycoprotein to the CD4 receptor, triggering envelope conformational changes that allow for interaction with either the CCR5 or CXCR4 chemokine receptor (1, 3, 8, 15, 16, 18). Most HIV type 1 (HIV-1) transmissions are initiated with CCR5-using (R5) viruses (58, 68). With time, CXCR4-tropic (X4) viruses emerge and coexist with R5 viruses in close to 50% of subtype B-infected individuals, and this is accompanied by a rise in viremia, rapid CD4+ T-cell loss, and progression to disease (4, 7, 11, 34, 57, 65). The mechanistic basis and reasons for HIV-1 coreceptor switch, however, are still not well understood. Several factors including high viral load, low CD4+ T-cell numbers, reduced availability of CCR5+ cells, and progressive immune dysfunction have been proposed as playing important roles (48, 54). Since X4 virus emergence is associated with a faster rate of disease progression, insights into the determinants of HIV-1 coreceptor switch are of interest in understanding viral pathogenesis. Furthermore, with the introduction of CCR5 entry inhibitors as anti-HIV therapeutics (19, 23, 24, 38), there is a need not only to identify the presence of X4 variants in patients when treatment options are considered but also to understand the factors that influence X4 virus evolution. Although the majority of individuals failing on short-term CCR5 antagonist monotherapy harbor preexisting minor X4 variants (71), it is conceivable that given the right conditions and selective forces, inhibiting HIV-1 entry via CCR5 may drive the virus to evolve to CXCR4 usage and exacerbate disease. An animal model that faithfully recapitulates the process of coreceptor switch will be highly useful to study and identify the determinants and conditions that facilitate the change in coreceptor preference. In addition, an animal model provides the opportunity to track the kinetics of coreceptor switching at different anatomical sites, which may inform on the mechanisms of X4 virus emergence.In this regard, we recently reported coreceptor switch in two of nine rhesus macaques (RM) inoculated intravenously with simian-human immunodeficiency virus SF162P3N (SHIVSF162P3N) that bears an HIV-1 CCR5-tropic Env (28, 29). In order to establish a reproducible model for coreceptor switch, however, it was crucial to document additional switching events. Furthermore, since the majority of HIV transmission occurs via mucosal surfaces, it was important to demonstrate coreceptor switch in macaques infected with R5 SHIVSF162P3N by the mucosal route to validate this animal model in studying the in vivo evolution of HIV-1 coreceptor usage. Additionally, the tissue compartment(s) where CXCR4-using viruses evolve and expand is not well characterized. A recent study indicates that the thymus may play an important role in the evolution and/or amplification of coreceptor variants in pediatric HIV infection (56). Since the thymus is the primary source of T lymphopoiesis during early life (45) and since CXCR4 is the predominant coreceptor expressed on thymocytes (33, 64), this organ would seem to provide the ideal milieu for X4 amplification in infants and children. Indeed, we previously showed that whereas X4 SHIV infection of newborn RM resulted in severe thymic involution, R5 SHIV infection induced only a minor disruption in thymic morphology (55), lending support to the idea that the thymus is a preferred site for X4 replication in pediatric HIV infections. Nevertheless, thymopoietic function declines with age (17, 42, 60), and naïve T cells that express high levels of CXCR4 are also enriched in peripheral lymph nodes (5, 27, 36, 66). Thus, the role of the thymus and other lymphoid tissues in HIV-1 coreceptor switch in older individuals remains to be determined. To address these issues, we inoculated adult RM intrarectally (i.r.) with R5 SHIVSF162P3N and performed frequent longitudinal blood and tissue samplings. Our goal was to document changes in coreceptor preference in mucosally infected macaques, as well as to obtain a more detailed picture of the kinetics and site of X4 virus evolution and amplification in vivo.  相似文献   

8.
Human immunodeficiency virus type 1 (HIV-1) infects target cells by binding to CD4 and a chemokine receptor, most commonly CCR5. CXCR4 is a frequent alternative coreceptor (CoR) in subtype B and D HIV-1 infection, but the importance of many other alternative CoRs remains elusive. We have analyzed HIV-1 envelope (Env) proteins from 66 individuals infected with the major subtypes of HIV-1 to determine if virus entry into highly permissive NP-2 cell lines expressing most known alternative CoRs differed by HIV-1 subtype. We also performed linear regression analysis to determine if virus entry via the major CoR CCR5 correlated with use of any alternative CoR and if this correlation differed by subtype. Virus pseudotyped with subtype B Env showed robust entry via CCR3 that was highly correlated with CCR5 entry efficiency. By contrast, viruses pseudotyped with subtype A and C Env proteins were able to use the recently described alternative CoR FPRL1 more efficiently than CCR3, and use of FPRL1 was correlated with CCR5 entry. Subtype D Env was unable to use either CCR3 or FPRL1 efficiently, a unique pattern of alternative CoR use. These results suggest that each subtype of circulating HIV-1 may be subject to somewhat different selective pressures for Env-mediated entry into target cells and suggest that CCR3 may be used as a surrogate CoR by subtype B while FPRL1 may be used as a surrogate CoR by subtypes A and C. These data may provide insight into development of resistance to CCR5-targeted entry inhibitors and alternative entry pathways for each HIV-1 subtype.Human immunodeficiency virus type 1 (HIV-1) infects target cells by binding first to CD4 and then to a coreceptor (CoR), of which C-C chemokine receptor 5 (CCR5) is the most common (6, 53). CXCR4 is an additional CoR for up to 50% of subtype B and D HIV-1 isolates at very late stages of disease (4, 7, 28, 35). Many other seven-membrane-spanning G-protein-coupled receptors (GPCRs) have been identified as alternative CoRs when expressed on various target cell lines in vitro, including CCR1 (76, 79), CCR2b (24), CCR3 (3, 5, 17, 32, 60), CCR8 (18, 34, 38), GPR1 (27, 65), GPR15/BOB (22), CXCR5 (39), CXCR6/Bonzo/STRL33/TYMSTR (9, 22, 25, 45, 46), APJ (26), CMKLR1/ChemR23 (49, 62), FPLR1 (67, 68), RDC1 (66), and D6 (55). HIV-2 and simian immunodeficiency virus SIVmac isolates more frequently show expanded use of these alternative CoRs than HIV-1 isolates (12, 30, 51, 74), and evidence that alternative CoRs other than CXCR4 mediate infection of primary target cells by HIV-1 isolates is sparse (18, 30, 53, 81). Genetic deficiency in CCR5 expression is highly protective against HIV-1 transmission (21, 36), establishing CCR5 as the primary CoR. The importance of alternative CoRs other than CXCR4 has remained elusive despite many studies (1, 30, 70, 81). Expansion of CoR use from CCR5 to include CXCR4 is frequently associated with the ability to use additional alternative CoRs for viral entry (8, 16, 20, 63, 79) in most but not all studies (29, 33, 40, 77, 78). This finding suggests that the sequence changes in HIV-1 env required for use of CXCR4 as an additional or alternative CoR (14, 15, 31, 37, 41, 57) are likely to increase the potential to use other alternative CoRs.We have used the highly permissive NP-2/CD4 human glioma cell line developed by Soda et al. (69) to classify virus entry via the alternative CoRs CCR1, CCR3, CCR8, GPR1, CXCR6, APJ, CMKLR1/ChemR23, FPRL1, and CXCR4. Full-length molecular clones of 66 env genes from most prevalent HIV-1 subtypes were used to generate infectious virus pseudotypes expressing a luciferase reporter construct (19, 57). Two types of analysis were performed: the level of virus entry mediated by each alternative CoR and linear regression of entry mediated by CCR5 versus all other alternative CoRs. We thus were able to identify patterns of alternative CoR use that were subtype specific and to determine if use of any alternative CoR was correlated or independent of CCR5-mediated entry. The results obtained have implications for the evolution of env function, and the analyses revealed important differences between subtype B Env function and all other HIV-1 subtypes.  相似文献   

9.
Human T-lymphotropic virus type 1 (HTLV-1) envelope (Env) glycoprotein mediates binding of the virus to its receptor on the surface of target cells and subsequent fusion of virus and cell membranes. To better understand the mechanisms that control HTLV-1 Env trafficking and activity, we have examined two protein-protein interaction motifs in the cytoplasmic domain of Env. One is the sequence YSLI, which matches the consensus YXXΦ motifs that are known to interact with various adaptor protein complexes; the other is the sequence ESSL at the C terminus of Env, which matches the consensus PDZ-binding motif. We show here that mutations that destroy the YXXΦ motif increased Env expression on the cell surface and increased cell-cell fusion activity. In contrast, mutation of the PDZ-binding motif greatly diminished Env expression in cells, which could be restored to wild-type levels either by mutating the YXXΦ motif or by silencing AP2 and AP3, suggesting that interactions with PDZ proteins oppose an Env degradation pathway mediated by AP2 and AP3. Silencing of the PDZ protein hDlg1 did not affect Env expression, suggesting that hDlg1 is not a binding partner for Env. Substitution of the YSLI sequence in HTLV-1 Env with YXXΦ elements from other cell or virus membrane-spanning proteins resulted in alterations in Env accumulation in cells, incorporation into virions, and virion infectivity. Env variants containing YXXΦ motifs that are predicted to have high-affinity interaction with AP2 accumulated to lower steady-state levels. Interestingly, mutations that destroy the YXXΦ motif resulted in viruses that were not infectious by cell-free or cell-associated routes of infection. Unlike YXXΦ, the function of the PDZ-binding motif manifests itself only in the producer cells; AP2 silencing restored the incorporation of PDZ-deficient Env into virus-like particles (VLPs) and the infectivity of these VLPs to wild-type levels.Human T-lymphotropic virus type 1 (HTLV-1) envelope (Env), like most retroviral envelopes, is synthesized as a precursor protein in the endoplasmic reticulum, forms trimers, and is cleaved by a cellular furin-like protease as it transits through the trans-Golgi network on its way to the plasma membrane (7, 21, 31). Cleavage of the HTLV-1 Env precursor generates a 46-kDa surface subunit (SU, gp46) and a 21-kDa transmembrane protein (TM, gp21) (8, 43). SU contains the receptor-binding domain and is linked by a disulfide bond to TM, which anchors Env to the membrane and mediates fusion of virus and cell membranes after receptor engagement (11, 28, 40, 51). TM consists of extracellular, membrane-spanning, and cytoplasmic domains (31); the last contains motifs that direct Env trafficking, membrane targeting, and virion incorporation. HTLV-1 is poorly transmitted as cell-free virus, and there is good evidence supporting a model in which virions are transmitted in a polarized fashion between lymphocytes that are in close contact (22, 30). Unlike murine leukemia virus (MLV) and Mason-Pfizer monkey virus (MPMV) Envs, in which the cytoplasmic domain (CD) is cleaved by the virus-encoded protease to activate fusogenic activity (3, 6, 19, 42), the HTLV-1 Env cytoplasmic domain is not cleaved and HTLV-1 Env exists on the cell surface in a highly fusogenic state. In many respects, HTLV-1 Env resembles versions of MLV or MPMV Envs that lack C-terminal amino acids, e.g., with elevated cell-cell fusion activity and low virion infectivity. It is not exactly clear how HTLV-1 Env is controlled such that virus infection can proceed without cell-cell fusion, but it is probable that Env trafficking plays an important role. The cytoplasmic domain of HTLV-1 Env is relatively short and contains two important trafficking motifs: a YXXΦ motif (YSLI), which is involved in membrane protein trafficking and basolateral sorting in polarized epithelial cells (10), and a PDZ-binding motif (ESSL), which can interact with numerous PDZ proteins but is not found in other retroviral Envs (2).The tyrosine-based sorting motif (YXXΦ, where Y is tyrosine, X is any amino acid, and Φ is a bulky hydrophobic amino acid) determines the trafficking and turnover of many membrane-spanning proteins in the cell (5, 39) and is present in most retroviral Env proteins (7). The YXXΦ motif interacts with the μ subunit of the heterotetrameric adaptor protein complexes AP1, AP2, AP3, and AP4. Each adaptor complex is involved in a specific trafficking pathway: AP1 and AP4 deliver cargo from the trans-Golgi network to the plasma membrane (13, 33, 48), AP2 directs the endocytosis of proteins from the cell surface, and AP3 is involved in lysosomal sorting (5, 12, 24, 35). Each type of μ subunit interacts with a distinct but overlapping type of tyrosine-based motif; the tyrosine and the Φ residues are most critical, but affinity is determined in large part by the variable amino acids at positions +1 and +2 relative to tyrosine and also by surrounding amino acids (5, 37). Furthermore, interactions between AP2 and the YXXΦ motif may be regulated by phosphorylation of μ2 (38, 47), by localized changes in phosphoinositide concentration, or by interactions between AP2 and docking factors (47). Although most retroviral Env proteins contain YXXΦ-sorting motifs, the sequences of the motifs and their roles in Env trafficking and function appear to vary widely among different retroviruses. For example, mutation of the YXXΦ motif in MLV Env interferes with basolateral targeting of Env and diminishes viral pathogenesis in vivo but has little effect on Env accumulation at the plasma membrane (9, 16, 23, 25, 29). Mutations in the YXXΦ motif in MPMV Env are similar to those in MLV Evn and also were reported to affect Env incorporation into virions (45). Mutation of the YXXΦ motif in HTLV-1 Env was previously shown to decrease Env endocytosis, increase cell-cell fusion, increase Env incorporation into virions, abolish basolateral targeting, and decrease virus infectivity (1, 10).The most abundant protein-protein interaction domains in mammalian cells are the PDZ domains; more than 400 PDZ proteins are encoded in the human genome. PDZ domains are modular, recognize short C-terminal peptide motifs, and are often found in multiple copies or in combination with other protein interaction domains (36, 46, 50). PDZ proteins have the ability to form supramolecular scaffolds that coordinate signaling, synapse formation, cell polarity, and trafficking of interacting proteins (26, 44, 53). With respect to the last, it is important to note that PDZ proteins can delay the internalization of G protein-coupled receptors, ion channels, and membrane transporters (17, 41, 49, 52). Among retroviral Env proteins, only HTLV and simian T-lymphotropic virus (STLV) Envs contain putative PDZ-binding motifs. A yeast two-hybrid screen using the HTLV-1 Env cytoplasmic domain (CD) as bait identified the PDZ protein hDlg (human homolog of disc large protein) as a potential binding partner (2). In vitro pulldown experiments showed that a glutathione S-transferase (GST)-EnvCD fusion protein interacted with several PDZ proteins from cell lysates, one of which was hDlg. In one study, mutation of the PDZ-binding motif in HTLV-1 Env inhibited cell-cell fusion (2); in another study, hDlg small interfering RNA (siRNA) silencing caused a modest reduction in syncytium formation (54). Neither study examined how the PDZ-binding motif controls Env expression, membrane targeting, trafficking, or virus infectivity. Thus, it is still unclear which PDZ proteins interact with HTLV-1 Env in vivo and how those interactions affect Env trafficking and activity.In this paper, functional interactions between the YXXΦ motif and the PDZ-binding motif in the cytoplasmic domain of HTLV-1 Env were investigated by mutagenesis of Env and by siRNA silencing of potential cellular interacting proteins. The YXXΦ motif in HTLV-1 Env appears to interact primarily with AP2 and AP3, which regulate Env endocytosis and lysosomal degradation, respectively. Mutations that ablated the YXXΦ motif increased Env accumulation on the cell surface. The PDZ-binding motif at the C terminus of Env appears to delay Env turnover. Mutation of the PDZ-binding element diminished Env accumulation in cells to very low levels, indicating that loss of the PDZ-binding motif accelerates Env degradation. Expression of Env with a mutated PDZ-binding motif could be restored to normal levels by also mutating the YXXΦ motif or by silencing AP2 or AP3. The ability of the PDZ-binding motif to alter the activity of the YXXΦ motif depends on the particular sequence of the latter. The attenuating effect of the PDZ-binding motif on Env endocytosis could be overcome by substitution of the YSLI motif in HTLV-1 Env with YXXΦ elements from other cell or virus proteins that are predicted to have higher affinities for AP2 than the YSLI motif of HTLV-1 Env.  相似文献   

10.
The Env protein from gibbon ape leukemia virus (GaLV) has been shown to be incompatible with human immunodeficiency virus type 1 (HIV-1) in the production of infectious pseudotyped particles. This incompatibility has been mapped to the C-terminal cytoplasmic tail of GaLV Env. Surprisingly, we found that the HIV-1 accessory protein Vpu modulates this incompatibility. The infectivity of HIV-1 pseudotyped with murine leukemia virus (MLV) Env was not affected by Vpu. However, the infectivity of HIV-1 pseudotyped with an MLV Env with the cytoplasmic tail from GaLV Env (MLV/GaLV Env) was restricted 50- to 100-fold by Vpu. A Vpu mutant containing a scrambled membrane-spanning domain, VpuRD, was still able to restrict MLV/GaLV Env, but mutation of the serine residues at positions 52 and 56 completely alleviated the restriction. Loss of infectivity appeared to be caused by reduced MLV/GaLV Env incorporation into viral particles. The mechanism of this downmodulation appears to be distinct from Vpu-mediated CD4 downmodulation because Vpu-expressing cells that failed to produce infectious HIV-1 particles nonetheless continued to display robust surface MLV/GaLV Env expression. In addition, if MLV and HIV-1 were simultaneously introduced into the same cells, only the HIV-1 particle infectivity was restricted by Vpu. Collectively, these data suggest that Vpu modulates the cellular distribution of MLV/GaLV Env, preventing its recruitment to HIV-1 budding sites.The gammaretrovirus gibbon ape leukemia virus (GaLV) has been widely used for gene therapy because of its wide host cell tropism and nonpathogenicity (1, 6, 10, 12, 13, 20). The host cell receptor for GaLV Env has been cloned and identified as a sodium-dependent phosphate transporter protein (25, 26). Like other retroviruses, GaLV encodes a single transmembrane surface glycoprotein (GaLV Env), which is cleaved into surface (SU) and transmembrane (TM) subunits (Fig. (Fig.1).1). The TM domain of GaLV Env contains a short 30-amino-acid C-terminal cytoplasmic tail. Although GaLV Env functions well when coupled (pseudotyped) with murine leukemia virus (MLV)-based retroviral vectors, it has been shown to be completely incompatible with HIV-1 (4, 35). When GaLV Env is expressed with HIV-1, essentially no infectious HIV-1 particles are produced (4, 35). The mechanism for this infectivity downmodulation is unknown, but the component of GaLV Env responsible for the restriction has been mapped to the cytoplasmic tail. Replacing the cytoplasmic tail of GaLV Env with the equivalent sequence from MLV Env ameliorates the restriction. Likewise, replacing the cytoplasmic tail of MLV Env with that from GaLV Env confers the restriction (4).Open in a separate windowFIG. 1.Schematic of MLV Env protein. Sequences are the C-terminal cytoplasmic tails of MLV Env, GaLV Env, and human CD4. GaLV sequences in boldface are residues that have been shown to modulate the HIV-1 incompatibility (4). Underlined sequences in CD4 are amino acids required for Vpu-mediated downmodulation (2, 15). Arrows denote the location of MLV/GaLV tail substitution. SU, surface domain; TM, transmembrane domain.Vpu is an 81-amino-acid HIV-1 accessory protein produced from the same mRNA as the HIV-1 Env gene. The N terminus of Vpu contains a membrane-spanning domain, followed by a 50-amino-acid cytoplasmic domain. Vpu is unique to HIV-1 and a few closely related SIV strains. The best-characterized roles for Vpu in the HIV-1 life cycle are modulation of host proteins CD4 and tetherin (also known as BST-2, CD317, and HM1.24) (24, 38, 39). Vpu promotes the degradation of CD4 in the endoplasmic reticulum through a proteasome-dependent mechanism (29). The cytoplasmic tail of Vpu physically interacts with the cytoplasmic tail of CD4 and recruits the human β-transducing repeat-containing protein (β-TrCP) and E3 ubiquitin ligase components to polyubiquitinate and ultimately trigger the degradation of CD4 (18). Two serine residues at positions 52 and 56 of Vpu are phosphorylated by casein kinase-2 and are required for CD4 degradation (31, 32). The membrane-spanning domain of Vpu is not specifically required for CD4 degradation. A mutant protein containing a scrambled membrane-spanning sequence, VpuRD, is still able to trigger the degradation of CD4 (32). The region of CD4 that is targeted by Vpu is approximately 17 to 13 amino acids from the C terminus in the cytoplasmic tail (Fig. (Fig.1)1) (2, 15).In addition to degrading CD4, Vpu has also long been known to result in enhanced viral release (EVR) in certain cell lines (14, 36). Recently, the type I interferon-induced host protein tetherin was identified as being responsible for this Vpu-modulated restriction (24, 38). In the absence of Vpu, tetherin causes particles to remain tethered (hence the name) to the host cell postfission. Although Vpu counteracts the function of tetherin, the exact mechanism has not been fully elucidated. However, the mechanism for tetherin antagonism appears to be distinct from that for modulating CD4. Mutation of the serines 52 and 56 of Vpu abolish CD4 degradation, but only reduce EVR activity (5, 17, 21, 32). Some EVR activity remains even when much of the Vpu cytoplasmic tail is deleted (30). In addition, many mutations in the membrane-spanning domain, such as VpuRD, do not affect CD4 degradation and yet completely abolish EVR activity (27, 30, 37). The critical residues in tetherin for recognition by Vpu appear to be in the membrane-spanning domain and not the cytoplasmic tail (9, 19, 28). Although β-TrCP is required for complete EVR activity, there is no consensus whether the degradation of tetherin is proteasome or lysosome mediated (5, 7, 21) or whether degradation is required at all. In some cases there can be some EVR activity in the absence of tetherin degradation (17, 22).We demonstrate here that Vpu is responsible for the incompatibility between HIV-1 and GaLV Env. Glycoproteins containing the cytoplasmic tail from GaLV Env are prevented from being incorporated into HIV-1 particles by Vpu, effectively reducing infectious particle production by 50- to 100-fold. The serines at positions 52 and 56 are required for this restriction, but the membrane-spanning domain is not. Although the mechanism for this restriction appears similar to CD4 degradation, there are apparent differences. Vpu does not prevent surface expression, and it does not prevent its incorporation into MLV particles. Therefore, the mechanism of restriction appears to involve a system that does not rely directly on global protein degradation.  相似文献   

11.
The pathogenic subgroup C feline leukemia virus (FeLV-C) arises in infected cats as a result of mutations in the envelope (Env) of the subgroup A FeLV (FeLV-A). To better understand emergence of FeLV-C and potential FeLV intermediates that may arise, we characterized FeLV Env sequences from the primary FY981 FeLV isolate previously derived from an anemic cat. Here, we report the characterization of the novel FY981 FeLV Env that is highly related to FeLV-A Env but whose variable region A (VRA) receptor recognition sequence partially resembles the VRA sequence from the prototypical FeLV-C/Sarma Env. Pseudotype viruses bearing FY981 Env were capable of infecting feline, human, and guinea pig cells, suggestive of a subgroup C phenotype, but also infected porcine ST-IOWA cells that are normally resistant to FeLV-C and to FeLV-A. Analysis of the host receptor used by FY981 suggests that FY981 can use both the FeLV-C receptor FLVCR1 and the feline FeLV-A receptor THTR1 for infection. However, our results suggest that FY981 infection of ST-IOWA cells is not mediated by the porcine homologue of FLVCR1 and THTR1 but by an alternative receptor, which we have now identified as the FLVCR1-related protein FLVCR2. Together, our results suggest that FY981 FeLV uses FLVCR1, FLVCR2, and THTR1 as receptors. Our findings suggest the possibility that pathogenic FeLV-C arises in FeLV-infected cats through intermediates that are multitropic in their receptor use.Feline leukemia viruses (FeLVs) are pathogenic retroviruses of domestic cats that induce proliferative, degenerative, and immunosuppressive disorders (17, 18, 27). Infected cats often contain a mixture of FeLVs that have been categorized into subgroups A, B, and C based on their interference and in vitro host range properties (39). These subgroups have been shown to be tightly associated with distinct feline diseases (17, 27). A fourth subgroup (T) that is highly related to FeLV-A has also been reported (26) and has been shown to be associated with immune deficiency (30). FeLV-A is the primary strain that is transmitted between cats and is the progenitor virus from which other subgroups arise. FeLV-B arises by recombination between endogenous retroviral sequences present in the cat genome and the gene encoding the FeLV-A envelope (Env) protein (32, 40, 42) that is responsible for host cell surface receptor recognition. FeLV-C and FeLV-T are formed by mutations in the FeLV-A Env gene (10, 27, 38). Env recombination and mutations are a major determinant of the host receptors used by the different FeLV subgroups (3, 23, 34, 46, 47).The emergence of pathogenic FeLV-C in cats infected with FeLV-A provides a classic example of Env mutations that switch the host receptor used for infection, leading to a fatal pathogenic disease in the host. The emergence of FeLV-C is tightly associated with red blood cell aplasia, a fatal feline anemia characterized by a specific disruption in erythroid progenitor cell development (2, 12, 19, 28). Moreover, FeLV-C emergence coincides with a switch in the host receptor used for infection from the thiamine transporter THTR1 (FeLV-A receptor) (23) to the heme exporter FLVCR1 (FeLV-C receptor) (34, 35, 46). Previous studies have suggested that the feline anemia is caused by the FeLV-C Env protein binding to, and disrupting, the cellular function of FLVCR1 (1, 34, 46). Indeed, expression of FeLV-C Env in hematopoietic stem cells (36) or disruption of FLVCR1 (21, 35) specifically disrupts early erythropoiesis, which mimics the anemia observed in cats with FeLV-C. Interestingly, the emergence of FeLV-C from FeLV-A is analogous to the emergence of cytopathic X4 strains of human immunodeficiency virus type 1 (HIV-1) in individuals infected with the R5 strain of HIV-1. Analogous to the emergence of FeLV-C, X4 HIV-1 arises by Env mutations in the R5 HIV-1 strain, which leads to a switch in the coreceptor used for infection allowing an expansion in HIV-1 cell tropism and subsequently to accelerated AIDS (4, 8). However, whereas HIV-1 pathogenesis also involves emergence of variants or X4/R5 intermediates that can use multiple related coreceptors for infection (5, 8, 11), the mechanism of how FeLV-C emerges, in terms of the presence of FeLV-A/FeLV-C intermediates, has yet to be elucidated.To better understand the emergence of pathogenic FeLV-C in infected cats and potential FeLV variants/intermediates that may arise, we isolated and characterized FeLV Env sequences from a primary FeLV isolate derived from a cat with pure red cell aplasia. In this study, we report the isolation and characterization of the novel FY981 Env, a hybrid FeLV-A/FeLV-C Env that, when pseudotyped, can use FLVCR1, THTR1, and the FLVCR1-related FLVCR2 for infection. Our findings suggest that the FY981 Env could represent a potential FeLV intermediate that arises during the emergence of pathogenic FeLV-C.  相似文献   

12.
Human immunodeficiency virus type 1 (HIV-1) envelope protein (Env) is subject to both neutralizing antibody (NAb) and CD8 T-cell (cytotoxic T-lymphocyte [CTL]) immune pressure. We studied the reversion of the Env CTL escape mutant virus to the wild type and the relationship between the reversion of CTL mutations with N-linked glycosylation site (NLGS)-driven NAb escape in pigtailed macaques. Env CTL mutations either did not revert to the wild type or only transiently reverted 5 to 7 weeks after infection. The CTL escape mutant reversion was coincident, for the same viral clones, with the loss of NLGS mutations. At one site studied, both CTL and NLGS mutations were needed to confer NAb escape. We conclude that CTL and NAb escape within Env can be tightly linked, suggesting opportunities to induce effective multicomponent anti-Env immunity.CD8 T-cell responses against human immunodeficiency virus (HIV) have long been observed to select for viral variants that avoid cytotoxic T-lymphocyte (CTL) recognition (2, 5, 15, 18, 27). These immune escape mutations may, however, result in reduced replication competence (“fitness cost”) (11, 20, 26). CTL escape variants have been shown to revert to the wild type (WT) upon passage to major histocompatibility complex-mismatched hosts, both in macaques with simian immunodeficiency virus (SIV) or chimeric SIV/HIV (SHIV) infection (11, 12) and in humans with HIV type 1 (HIV-1) infection (1, 19).Most analyses of CTL escape and reversion have studied Gag CTL epitopes known to facilitate control of viremia (7, 14, 21, 30). Fewer analyses have studied Env-specific CTL epitopes. Recent sequencing studies suggest the potential for mutations within predicted HIV-1 Env-specific CTL epitopes to undergo reversion to the WT (16, 23). Env-specific CTL responses may, however, have less impact on viral control of both HIV-1 and SIV/SHIV than do Gag CTL responses (17, 24, 25), presumably reflecting either less-potent inhibition of viral replication or minimal fitness cost of escape (9).Serial viral escape from antibody pressure also occurs in both macaques and humans (3, 13, 28). Env is extensively glycosylated, and this “evolving glycan shield” can sterically block antibody binding without mutation at the antibody-binding site (8, 16, 31). Mutations at glycosylation sites, as well as other mutations, are associated with escape from neutralizing antibody (NAb) responses (4, 13, 29). Mutations in the amino acid sequences of N-linked glycosylation sites (NLGS) can alter the packing of the glycan cloud that surrounds the virion, by a loss, gain, or shift of an NLGS (32), thus facilitating NAb escape.Env is the only viral protein targeted by both CTL and NAb responses. The serial viral escape from both Env-specific CTL and NAb responses could have implications for viral fitness and the reversion of multiple mutations upon transmission to naïve hosts.We previously identified three common HIV-1 Env-specific CD8 T cell epitopes, RY8788-795, SP9110-118, and NL9671-679, and their immune escape patterns in pigtail macaques (Macaca nemestrina) infected with SHIVmn229 (25). SHIVmn229 is a chimeric virus constructed from an SIVmac239 backbone and an HIV-1HXB2 env fragment that was passaged through macaques to become pathogenic (11). This earlier work provided an opportunity for detailed studies of how viruses with Env-specific CTL escape mutations, as well as mutations in adjacent NLGS, evolve when transmitted to naïve pigtail macaques.  相似文献   

13.
Immunization of rhesus macaques with strains of simian immunodeficiency virus (SIV) that are limited to a single cycle of infection elicits T-cell responses to multiple viral gene products and antibodies capable of neutralizing lab-adapted SIV, but not neutralization-resistant primary isolates of SIV. In an effort to improve upon the antibody responses, we immunized rhesus macaques with three strains of single-cycle SIV (scSIV) that express envelope glycoproteins modified to lack structural features thought to interfere with the development of neutralizing antibodies. These envelope-modified strains of scSIV lacked either five potential N-linked glycosylation sites in gp120, three potential N-linked glycosylation sites in gp41, or 100 amino acids in the V1V2 region of gp120. Three doses consisting of a mixture of the three envelope-modified strains of scSIV were administered on weeks 0, 6, and 12, followed by two booster inoculations with vesicular stomatitis virus (VSV) G trans-complemented scSIV on weeks 18 and 24. Although this immunization regimen did not elicit antibodies capable of detectably neutralizing SIVmac239 or SIVmac251UCD, neutralizing antibody titers to the envelope-modified strains were selectively enhanced. Virus-specific antibodies and T cells were observed in the vaginal mucosa. After 20 weeks of repeated, low-dose vaginal challenge with SIVmac251UCD, six of eight immunized animals versus six of six naïve controls became infected. Although immunization did not significantly reduce the likelihood of acquiring immunodeficiency virus infection, statistically significant reductions in peak and set point viral loads were observed in the immunized animals relative to the naïve control animals.Development of a safe and effective vaccine for human immunodeficiency virus type 1 (HIV-1) is an urgent public health priority, but remains a formidable scientific challenge. Passive transfer experiments in macaques demonstrate neutralizing antibodies can prevent infection by laboratory-engineered simian-human immunodeficiency virus (SHIV) strains (6, 33, 34, 53, 59). However, no current vaccine approach is capable of eliciting antibodies that neutralize primary isolates with neutralization-resistant envelope glycoproteins. Virus-specific T-cell responses can be elicited by prime-boost strategies utilizing recombinant DNA and/or viral vectors (3, 10, 11, 16, 36, 73, 77, 78), which confer containment of viral loads following challenge with SHIV89.6P (3, 13, 66, 68). Unfortunately, similar vaccine regimens are much less effective against SIVmac239 and SIVmac251 (12, 16, 31, 36, 73), which bear closer resemblance to most transmitted HIV-1 isolates in their inability to utilize CXCR4 as a coreceptor (18, 23, 24, 88) and inherent high degree of resistance to neutralization by antibodies or soluble CD4 (43, 55, 56). Live, attenuated SIV can provide apparent sterile protection against challenge with SIVmac239 and SIVmac251 or at least contain viral replication below the limit of detection (20, 22, 80). Due to the potential of the attenuated viruses themselves to cause disease in neonatal rhesus macaques (5, 7, 81) and to revert to a pathogenic phenotype through the accumulation of mutations over prolonged periods of replication in adult animals (2, 35, 76), attenuated HIV-1 is not under consideration for use in humans.As an experimental vaccine approach designed to retain many of the features of live, attenuated SIV, without the risk of reversion to a pathogenic phenotype, we and others devised genetic approaches for producing strains of SIV that are limited to a single cycle of infection (27, 28, 30, 38, 39, 45). In a previous study, immunization of rhesus macaques with single-cycle SIV (scSIV) trans-complemented with vesicular stomatitis virus (VSV) G elicited potent virus-specific T-cell responses (39), which were comparable in magnitude to T-cell responses elicited by optimized prime-boost regimens based on recombinant DNA and viral vectors (3, 16, 36, 68, 73, 78). Antibodies were elicited that neutralized lab-adapted SIVmac251LA (39). However, despite the presentation of the native, trimeric SIV envelope glycoprotein (Env) on the surface of infected cells and virions, none of the scSIV-immunized macaques developed antibody responses that neutralized SIVmac239 (39). Therefore, we have now introduced Env modifications into scSIV that facilitate the development of neutralizing antibodies.Most primate lentiviral envelope glycoproteins are inherently resistant to neutralizing antibodies due to structural and thermodynamic properties that have evolved to enable persistent replication in the face of vigorous antibody responses (17, 46, 47, 64, 71, 75, 79, 83, 85). Among these, extensive N-linked glycosylation renders much of the Env surface inaccessible to antibodies (17, 48, 60, 63, 75). Removal of N-linked glycans from gp120 or gp41 by mutagenesis facilitates the induction of antibodies to epitopes that are occluded by these carbohydrates in the wild-type virus (64, 85). Consequently, antibodies from animals infected with glycan-deficient strains neutralize these strains better than antibodies from animals infected with the fully glycosylated SIVmac239 parental strain (64, 85). Most importantly with regard to immunogen design, animals infected with the glycan-deficient strains developed higher neutralizing antibody titers against wild-type SIVmac239 (64, 85). Additionally, the removal of a single N-linked glycan in gp120 enhanced the induction of neutralizing antibodies against SHIV89.6P and SHIVSF162 in a prime-boost strategy by 20-fold (50). These observations suggest that potential neutralization determinants accessible in the wild-type Env are poorly immunogenic unless specific N-linked glycans in gp120 and gp41 are eliminated by mutagenesis.The variable loop regions 1 and 2 (V1V2) of HIV-1 and SIV gp120 may also interfere with the development of neutralizing antibodies. Deletion of V1V2 from HIV-1 gp120 permitted neutralizing monoclonal antibodies to CD4-inducible epitopes to bind to gp120 in the absence of CD4, suggesting that V1V2 occludes potential neutralization determinants prior to the engagement of CD4 (82). A deletion in V2 of HIV-1 Env-exposed epitopes was conserved between clades (69), improved the ability of a secreted Env trimer to elicit neutralizing antibodies (9), and was present in a vaccine that conferred complete protection against SHIVSF162P4 (8). A deletion of 100 amino acids in V1V2 of SIVmac239 rendered the virus sensitive to monoclonal antibodies with various specificities (41). Furthermore, three of five macaques experimentally infected with SIVmac239 with V1V2 deleted resisted superinfection with wild-type SIVmac239 (51). Thus, occlusion of potential neutralization determinants by the V1V2 loop structure may contribute to the poor immunogenicity of the wild-type envelope glycoprotein.Here we tested the hypothesis that antibody responses to scSIV could be improved by immunizing macaques with strains of scSIV engineered to eliminate structural features that interfere with the development of neutralizing antibodies. Antibodies to Env-modified strains were selectively enhanced, but these did not neutralize the wild-type SIV strains. We then tested the hypothesis that immunization might prevent infection in a repeated, low-dose vaginal challenge model of heterosexual HIV-1 transmission. Indeed, while all six naïve control animals became infected, two of eight immunized animals remained uninfected after 20 weeks of repeated vaginal challenge. Relative to the naïve control group, reductions in peak and set point viral loads were statistically significant in the immunized animals that became infected.  相似文献   

14.
BST-2/tetherin is an interferon-inducible protein that restricts the release of enveloped viruses from the surface of infected cells by physically linking viral and cellular membranes. It is present at both the cell surface and in a perinuclear region, and viral anti-tetherin factors including HIV-1 Vpu and HIV-2 Env have been shown to decrease the cell surface population. To map the domains of human tetherin necessary for both virus restriction and sensitivity to viral anti-tetherin factors, we constructed a series of tetherin derivatives and assayed their activity. We found that the cytoplasmic tail (CT) and transmembrane (TM) domains of tetherin alone produced its characteristic cellular distribution, while the ectodomain of the protein, which includes a glycosylphosphatidylinositol (GPI) anchor, was sufficient to restrict virus release when presented by the CT/TM regions of a different type II membrane protein. To counteract tetherin restriction and remove it from the cell surface, HIV-1 Vpu required the specific sequence present in the TM domain of human tetherin. In contrast, the HIV-2 Env required only the ectodomain of the protein and was sensitive to a point mutation in this region. Strikingly, the anti-tetherin factor, Ebola virus GP, was able to overcome restriction conferred by both tetherin and a series of functional tetherin derivatives, including a wholly artificial tetherin molecule. Moreover, GP overcame restriction without significantly removing tetherin from the cell surface. These findings suggest that Ebola virus GP uses a novel mechanism to circumvent tetherin restriction.Pathogenic viruses often have evolved mechanisms to neutralize host defenses that act at the cellular level to interfere with the virus life cycle. Such cellular restriction factors have been most extensively characterized for HIV-1 (38) and include the interferon-inducible membrane protein BST-2/HM1.24/CD317/tetherin (28, 40). If unchecked, tetherin blocks the release of newly formed HIV-1 particles from cells by physically tethering them at the cell surface (7, 28, 32, 40). In addition, tetherin has been shown to act against a broad range of enveloped viral particles, including retroviruses, filoviruses, arenaviruses, and herpesviruses (17, 18, 23, 35). In turn, certain viruses that are targeted by tetherin appear to have evolved counteracting activities, and anti-tetherin factors so far identified include HIV-1 Vpu; HIV-2 Env; simian immunodeficiency virus (SIV) Nef, Vpu, and Env proteins; Ebola virus GP; and Kaposi''s sarcoma-associated herpesvirus (KSHV) K5 (11, 16, 18, 20, 23, 28, 36, 40, 44, 45).Tetherin is a homodimeric type II integral membrane protein containing an N-terminal cytoplasmic tail (CT), a single-pass transmembrane domain (TM), an ectodomain-containing predicted coiled-coil regions, two glycoslyation sites, three conserved cysteines, and a C-terminal glycosylphosphatidylinositol (GPI) anchor (2, 19, 31). This unusual topology, with two independent membrane anchors, has led to the suggestion that the retention of virions at the cell surface arises from tetherin''s ability to be inserted simultaneously in both host and viral membranes (28, 32, 41) or, alternatively, that dimers or higher-order complexes of tetherin conferred by the ectodomain mediate this effect (39). Interestingly, an artificial tetherin containing the same structural features as the native protein but constructed from unrelated sequences was able to restrict both HIV-1 and Ebola virus particles (32). This suggests that the viral lipid envelope is the target of tetherin and provides an explanation for tetherin''s broad activity against diverse enveloped viruses.A fraction of tetherin is present at the plasma membrane of cells (9, 14), and it has been proposed that viral anti-tetherin factors function by removing this cell surface fraction (40). This now has been shown to occur in the presence of HIV-1 Vpu (5, 7, 15, 26, 34, 40, 44), HIV-2 Env (5, 20), SIV Env (11), SIV Nef (15), and KSHV K5 (3, 23). In addition, certain anti-tetherin factors also may promote the degradation of tetherin, as has been observed for both HIV-1 Vpu (3, 5, 7, 10, 22, 26, 27) and KSHV K5 (3, 23), although Vpu also appears able to block tetherin restriction in the absence of degradation (8), and no effects on tetherin steady-state levels have been observed in the presence of either the HIV-2 or SIVtan Env (11, 20). Simply keeping tetherin away from the cell surface, or targeting it for degradation, may not be the only mechanism used by anti-tetherin factors, since it also has been reported that Vpu does not affect the levels of surface tetherin or its total cellular levels in certain T-cell lines (27).The interactions between tetherin and viral anti-tetherin factors show evidence of species specificity, suggesting ongoing evolution between viruses and their hosts. HIV-1 Vpu is active against human and chimpanzee tetherin but not other primate tetherins (10, 25, 34, 36, 44, 45), while SIV Nef proteins are active against primate but not human tetherins (16, 36, 44, 45). This suggests that, unlike tetherin restriction, the action of the anti-tetherin factors may involve specific sequence interactions. Indeed, the TM domain has been recognized as a target for HIV-1 Vpu (10, 15, 16, 25, 34), while a single point mutation introduced into the extracellular domain of human tetherin can block its antagonism by the SIVtan Env (11).In the present study, we investigated the roles of the different domains of tetherin in both promoting virus restriction and conferring susceptibility to the anti-tetherin factors encoded by HIV-1, HIV-2, and Ebola virus. We confirmed that tetherin restriction can be conferred by proteins that retain the two distinct membrane anchors, while signals for the cellular localization of the protein reside in the CT/TM domains of the protein. We found that the Vpu protein targets the TM domain of tetherin, while the HIV-2 Env targets the ectodomain of the protein. In contrast, the Ebola virus GP appears to use a non-sequence-specific mechanism to counteract tetherin restriction, since even an artificial tetherin could be successfully overcome by GP expression. Interestingly, Ebola virus GP counteracted tetherin restriction without removing the protein from the cell surface, suggesting that it is possible to overcome this restriction by mechanisms other than blocking tetherin''s cell surface expression.  相似文献   

15.
In this study we examined whether human immunodeficiency virus type 1 (HIV-1) is equally susceptible to neutralization by a given antibody when the epitope of this antibody is introduced at different positions within the viral envelope glycoprotein (Env). To this end, we introduced two exogenous “epitope tags” at different locations within three major Env regions in two distinct HIV-1 isolates. We examined how the introduction of the exogenous epitopes affects Env expression, Env incorporation into virions, Env fusogenic potential, and viral susceptibility to neutralization. Our data indicate that even within the same Env region, the exact positioning of the epitope impacts the susceptibility of the virus to neutralization by the antibody that binds to that epitope. Our data also indicate that even if the same epitope is introduced in the exact same position on two different Envs, its exposure and, as a result, the neutralization susceptibility of the virus, can be very different. In contrast to the findings of previous studies conducted with HIV-1 isolates other than those used here, but in agreement with results obtained with simian immunodeficiency virus, we observed that tagging of the fourth variable region of Env (V4) did not result in neutralization by the anti-tag antibodies. Our data indicate that epitopes in V4 are not properly exposed within the functional HIV-1 trimeric Env spike, suggesting that V4 may not be a good target for vaccine-elicited neutralizing antibodies.The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) is expressed as a heavily glycosylated peptide of approximately 160 kDa (gp160), which is cleaved intracellularly into two noncovalently associated subunits: an extracellular subunit (gp120), responsible for CD4 and coreceptor (primarily CCR5 and/or CXCR4) binding, and a transmembrane subunit (gp41) that mediates fusion between viral and host cell membranes. Based on amino acid sequence homology analysis of gp120s derived from diverse HIV-1 isolates, gp120 is divided into five “constant” regions (C1 to C5) and five “variable” regions (also called “loops,” because most of them have cysteines in the N and C termini that form disulfide bonds). Despite their extensive amino acid variability, the variable loops of gp120 play central roles during the entry of the virus into the cell, for instance, by directly or indirectly modulating the interaction of Env with coreceptor molecules on the target surfaces during virus-cell fusion. They also offer protection from neutralizing antibodies (NAbs) by various mechanisms. The variable loops themselves are targets of NAbs, and during infection, the replicating virus accumulates mutations in the variable regions that allow it to escape the action of anti-variable loop-directed NAbs, while at the same time the variable loops are positioned within the Env trimer so that they prevent, or minimize, the binding of NAbs to more-conserved epitopes, such as the receptor and coreceptor binding sites (4, 5, 12, 15, 20, 23, 25, 27, 31).HIV-1 strains display distinct neutralization phenotypes. Some isolates, such as SF162, are generally susceptible to NAbs that bind to many distinct regions of Env, including the variable regions, while other isolates, such as YU2 or JRFL, are generally resistant to neutralization by the same NAbs (1). It has been proposed that irrespective of the overall neutralizing phenotype of HIV-1 isolates, the binding of only a single antibody per Env trimer on the virion surface can lead to neutralization, when all Env trimers present on the virion surface are bound by at least one antibody (32). This important observation also implies that the epitope specificity of an antibody may not be as important for neutralization as its ability to bind to its target within the trimeric Env structure. In fact, antibodies to diverse regions of Env, such as V1, V2, V3, and the receptor and coreceptor binding sites, can all neutralize HIV-1 (1, 3, 6, 8, 10, 18, 20, 23, 25, 27, 29, 30).In many cases, a given isolate will not be equally susceptible to neutralization by NAbs that bind to different Env regions, for example, the V3 loop and the CD4-binding site (CD4-BS). Whether differences in the neutralizing potentials of two antibodies that bind to distinct epitopes on HIV-1 Env are due to differences in the binding affinities of the two antibodies or whether they occur because the viruses are intrinsically more susceptible to NAbs that bind certain epitopes and not others (i.e., the relative importance of the various regions of Env in Env function and virus neutralization sensitivity differs) is not yet fully understood. One way to address these issues is to introduce small non-HIV Env amino acid sequences (tags) that are targets of known monoclonal antibodies (MAbs) at various positions within the viral Env and to examine how the placement of the same epitope at different positions within Env affects the neutralization phenotype of the virus.Foreign epitopes have been introduced into the variable regions of HIV and simian immunodeficiency virus (SIV) Envs, and their effects on viral neutralization potential have been examined (14, 19, 22, 33). Yang and colleagues (33) introduced the FLAG epitope into the V4 regions of three HIV-1 isolates (YU2, JRFL, and HxB2) displaying distinct neutralization phenotypes in response to anti-HIV NAbs; they found that all three pseudotyped viruses were equivalently neutralized by an anti-FLAG MAb. One important implication of that study is that neutralization-resistant isolates, such as YU2 or JRFL, are not intrinsically more resistant to neutralization than more-susceptible isolates, such as HxB2, so long as the antibody binds to its epitope on the functional virion-associated Env spike. A second implication is that since the FLAG epitope was exposed in the V4 loops of all three isolates, the V4 loop could theoretically be a good target for vaccine-elicited antibodies. In contrast, Pantophlet et al. (19) introduced the HA tag into various regions of the JRCSF (neutralization-resistant) and HxB2 (neutralization-sensitive) isolates and reported that JRCSF was intrinsically more resistant than HxB2 to anti-HA antibodies. This observation implies, therefore, that some HIV-1 strains (primary, neutralization-resistant strains) have developed mechanisms that limit the accessibility of multiple Env regions, including variable regions, to antibodies developed during infection. Laird and Desrosiers (14) introduced the FLAG epitope into two positions within each of the V1, V2, and V4 loops of SIV239 and SIV316. They reported that the functionality of Env was differentially affected by the precise location of the exogenous tag sequence within the variable loops examined. Importantly, and in contrast to what was reported for the HIV-1 isolates mentioned above, the SIV239 variants containing a V4 FLAG epitope were not neutralized by an anti-FLAG MAb. It appeared, however, that the FLAG epitope was not well exposed on the trimeric Env when introduced into the V4 loop of SIV but was exposed when introduced into the V1 loop of the same virus. Potentially, this means that the V4 loop is differentially exposed in the context of the HIV-1 and SIV Envs.The FLAG epitope (DYKDDDDK) is highly charged. Therefore, it is possible that the effect on Env function and epitope exposure could differ if a different exogenous epitope were inserted instead of FLAG. Here we examined the effect of variable loop tagging on the Env functions and viral neutralization phenotypes of two primary HIV-1 clade B isolates, SF162 (CCR5 tropic) and SF33 (CXCR4 tropic), using two exogenous epitopes (FLAG and hemagglutinin [HA] tags) positioned at multiple locations within the V1, V2, and V4 loops. By placing the same tag in several regions within each loop, we investigated the accessibilities of various parts of the same loop to a given NAb. By using two tags that differ significantly in amino acid composition (FLAG tag, DYKDDDDK; HA tag, YPYDVPDYA), we aimed at distinguishing between the effects of amino acid composition and the positioning of the tag on Env function and overall epitope exposure. Finally, identical evaluations of R5 and X4 Envs may provide information about the relative roles played in neutralization by variable loops in Envs displaying distinct coreceptor usage. We report that both the amino acid sequence and the position of the tag within and among the variable loops greatly affected the functionality of Env. In contrast to previous observations made with other HIV-1 Envs (33) but in agreement with what was reported for the SIV239 Env (14), we observed that tagging of the V4 loops of SF162 and SF33 did not render these isolates susceptible to neutralization by the corresponding anti-tag MAbs.  相似文献   

16.
The virus-encoded envelope proteins of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) typically contain 26 to 30 sites for N-linked carbohydrate attachment. N-linked carbohydrate can be of three major types: high mannose, complex, or hybrid. The lectin proteins from Galanthus nivalis (GNA) and Hippeastrum hybrid (HHA), which specifically bind high-mannose carbohydrate, were found to potently inhibit the replication of a pathogenic cloned SIV from rhesus macaques, SIVmac239. Passage of SIVmac239 in the presence of escalating concentrations of GNA and HHA yielded a lectin-resistant virus population that uniformly eliminated three sites (of 26 total) for N-linked carbohydrate attachment (Asn-X-Ser or Asn-X-Thr) in the envelope protein. Two of these sites were in the gp120 surface subunit of the envelope protein (Asn244 and Asn460), and one site was in the envelope gp41 transmembrane protein (Asn625). Maximal resistance to GNA and HHA in a spreading infection was conferred to cloned variants that lacked all three sites in combination. Variant SIV gp120s exhibited dramatically decreased capacity for binding GNA compared to SIVmac239 gp120 in an enzyme-linked immunosorbent assay (ELISA). Purified gp120s from six independent HIV type 1 (HIV-1) isolates and two SIV isolates from chimpanzees (SIVcpz) consistently bound GNA in ELISA at 3- to 10-fold-higher levels than gp120s from five SIV isolates from rhesus macaques or sooty mangabeys (SIVmac/sm) and four HIV-2 isolates. Thus, our data indicate that characteristic high-mannose carbohydrate contents have been retained in the cross-species transmission lineages for SIVcpz-HIV-1 (high), SIVsm-SIVmac (low), and SIVsm-HIV-2 (low).The envelope proteins of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) are heavily glycosylated. N-linked carbohydrate is attached to the nascent protein at the asparagine of the consensus sequence N-X-S or N-X-T, where X is any amino acid except a proline (31, 52, 53). The number of potential N-linked carbohydrate attachment sites in the surface subunit of Env (gp120) ranges from 18 to 33, with a median of 25 (34, 65). There are typically 3 or 4 potential N-linked sites in the ectodomain of the Env transmembrane protein (gp41) (34).N-linked glycosylation of a protein consists of the en bloc transfer of the carbohydrate core oligosaccharide (two N-acetylglucosamines, nine mannoses, and three glucoses) from dolichol to the asparagine of the N-linked attachment site (8, 60). Initially the attached carbohydrate is processed into the high-mannose type (8). In the Golgi complex, high-mannose carbohydrate may be further processed into complex or hybrid oligosaccharides (58). Incomplete processing of N-linked carbohydrate results in the production of high-mannose carbohydrate chains, which terminate in mannose (58). Fully processed complex carbohydrate chains terminate in galactose, N-acetylglucosamine, sialic acid, or glucose (33, 57). Hybrid carbohydrate chains have two branches from the core, one that terminates in mannose and one that terminates in a sugar of the complex type (63).Glycoproteins exist as a heterogeneous population, exhibiting heterogeneity with respect to the proportion of potential glycosylation sites that are occupied and to the oligosaccharide structure observed at each site. Factors that influence the type of carbohydrate chain that is attached at any one N-linked site are the accessibility of the carbohydrate chain to processing enzymes (49), protein sequences surrounding the site (5, 40), and the type of cell from which the protein is produced (19).The N-linked carbohydrate chains of HIV and SIV Env are critical for the proper folding and cleavage of the fusion-competent envelope spike (20, 59, 61). After Env is assembled, enzymatic removal of N-linked carbohydrate does not dramatically affect the functional conformation (2, 6, 7, 13, 24, 38). It is generally accepted that the carbohydrate attached to Env limits the ability of the underlying protein to be recognized by B cells (11, 48, 62). This carbohydrate also shields protein epitopes that would otherwise be the direct targets of antibodies that neutralize viral infection (41, 48, 62, 64). Furthermore, the high-mannose carbohydrates of HIV and SIV Env bind dynamically to an array of lectin proteins that are part of the host lymphoreticular system. The interaction of viral high-mannose carbohydrate with host lectin proteins has been associated with the enhancement (9, 16, 17, 43-45) or suppression (42, 56) of viral infection of CD4-positive T cells. The high-mannose carbohydrate of Env is also known to activate the release of immune-modulatory proteins from a subset of host antigen-presenting cells (12, 54).The plant lectin proteins from Galanthus nivalis (GNA) and Hippeastrum hybrid (HHA) specifically bind terminal α-1,3- and/or α-1,6-mannose of high-mannose oligosaccharides but not hybrid oligosaccharides (28, 55). GNA and HHA inhibit the replication of HIV-1 and SIVmac251, and uncloned, resistant populations of virus have been selected (3, 14). In this report, we define two N-linked sites in the external surface glycoprotein gp120 and one in the transmembrane glycoprotein gp41 whose mutation imparts high-level resistance to the inhibitory effects of GNA and HHA to cloned SIVmac239. Furthermore, using a GNA-binding enzyme-linked immunosorbent assay (ELISA), we show that assorted HIV-1 and SIVcpz gp120s consistently are considerably higher in mannose content than assorted gp120s from SIVmac, SIVsm, and HIV-2. These results shed new light on the impact of virus-host evolutionary dynamics on viral carbohydrate composition, and they may have important implications for the mechanisms by which long-standing natural hosts such as sooty mangabeys can resist generalized lymphoid activation and disease despite high levels of SIV replication.  相似文献   

17.
Fusion of enveloped viruses with host cells is triggered by either receptor binding or low pH but rarely requires both except for avian sarcoma leukosis virus (ASLV). We recently reported that membrane fusion mediated by an oncogenic Jaagsiekte sheep retrovirus (JSRV) envelope (Env) requires an acidic pH, yet receptor overexpression is required for this process to occur. Here we show that a soluble form of the JSRV receptor, sHyal2, promoted JSRV Env-mediated fusion at a low pH in normally fusion-negative cells and that this effect was blocked by a synthetic peptide analogous to the C-terminal heptad repeat of JSRV Env. In contrast to the receptor of ASLV, sHyal2 induced pronounced shedding of the JSRV surface subunit, as well as unstable conformational rearrangement of its transmembrane (TM) subunit, yet full activation of JSRV Env fusogenicity, associated with strong TM oligomerization, required both sHyal2 and low pH. Consistently, sHyal2 enabled transduction of nonpermissive cells by JSRV Env pseudovirions, with low efficiency, but substantially blocked viral entry into permissive cells at both binding and postbinding steps, indicating that sHyal2 prematurely activates JSRV Env-mediated fusion. Altogether, our study supports a model that receptor priming promotes fusion activation of JSRV Env at a low pH, and that the underlying mechanism is likely to be different from that of ASLV. Thus, JSRV may provide a useful alternate model for the better understanding of virus fusion and cell entry.Fusion is a fundamental event in the life cycle of enveloped viruses and is essential for viral replication. While viral fusion proteins are highly divergent in primary sequence, their structures and modes of activation share striking similarities, permitting their classification into two major groups (41). Class I fusion proteins, as exemplified by the retrovirus envelope (Env) and influenza virus hemagglutinin (HA), are composed mainly of alpha-helices, and they are present as metastable trimers on the viral surface (11). Class II fusion proteins, represented by alphavirus E1 and flavivirus E, contain predominantly beta-sheets and exist as dimers in the prefusion state (16). Of note, the vesicular stomatitis virus G (VSV-G) and herpesvirus gB proteins were recently assigned to a newly established class III, for fusion proteins combining properties of both class I and class II (13, 30). Despite these differences, one common and intriguing characteristic of all viral fusion proteins is their ability to undergo dramatic conformational rearrangements upon activation, i.e., the formation of trimers of hairpins, which drive fusion between viral and cellular membranes (11, 17).Retrovirus Env is a typical type I transmembrane protein composed of surface (SU) and transmembrane (TM) subunits and belongs to the class I fusion proteins. SU is responsible for binding to cognate cellular receptors or cofactors, while TM directly mediates membrane fusion (6). Most retroviruses use a pH-independent pathway for entry, during which receptor binding relieves the ability of SU to restrain TM, resulting in conformational changes in TM and subsequent fusion with the cell membrane (11). Interestingly, increasing numbers of retroviruses have recently been shown to require a low pH (3, 15, 24, 28, 31) or pH-dependent protease activities to trigger fusion (18); the latter property has also been demonstrated for some other enveloped viruses (2, 14, 18, 26, 27, 33, 34). Among these, avian sarcoma leukosis virus (ASLV) is unique in that it uses a two-step mechanism for fusion, in which receptor binding primes the second trigger of low pH (24).Jaagsiekte sheep retrovirus (JSRV) is a simple betaretrovirus etiologically responsible for contagious lung tumors in sheep (12). The native Env protein of JSRV functions as a potent oncogene that induces cell transformation in vitro and in animals (4, 9, 21, 29, 42). The cell entry receptor for JSRV has been identified as hyaluronidase 2 (Hyal2), a glycosylphosphatidylinositol (GPI)-anchored protein belonging to the hyaluronidase family (29); Hyal2 itself has low hyaluronidase activity, and this activity is not associated with JSRV entry and infection (38). Intrigued by the oncogenic nature of JSRV Env, we recently examined the mechanism of JSRV entry and found that JSRV Env-mediated fusion and cell entry require a low pH (1, 8). These observations led us to hypothesize that the pH-dependent fusion activation of JSRV Env may be advantageous for its oncogenesis, given that extreme cell-cell fusion of the plasma membrane at a neutral pH would result in syncytium formation and often cell death. Curiously, we noticed that overexpression of Hyal2 is necessary for JSRV Env to induce membrane fusion at a low pH in vitro, suggesting that Hyal2 may play an active role in the pH-dependent fusion process. Here we provide direct evidence that Hyal2 functions in cooperation with a low pH to trigger the JSRV Env-mediated fusion activation yet exhibits some striking differences from the mechanism of ASLV fusion. The multistep pathway for JSRV Env-mediated fusion activation might be important for its replication fitness and oncogenesis.  相似文献   

18.
19.
The quest to create a human immunodeficiency virus type 1 (HIV-1) vaccine capable of eliciting broadly neutralizing antibodies against Env has been challenging. Among other problems, one difficulty in creating a potent immunogen resides in the substantial overall sequence variability of the HIV envelope protein. The membrane-proximal region (MPER) of gp41 is a particularly conserved tryptophan-rich region spanning residues 659 to 683, which is recognized by three broadly neutralizing monoclonal antibodies (bnMAbs), 2F5, Z13, and 4E10. In this study, we first describe the variability of residues in the gp41 MPER and report on the invariant nature of 15 out of 25 amino acids comprising this region. Subsequently, we evaluate the ability of the bnMAb 2F5 to recognize 31 varying sequences of the gp41 MPER at a molecular level. In 19 cases, resulting crystal structures show the various MPER peptides bound to the 2F5 Fab′. A variety of amino acid substitutions outside the 664DKW666 core epitope are tolerated. However, changes at the 664DKW666 motif itself are restricted to those residues that preserve the aspartate''s negative charge, the hydrophobic alkyl-π stacking arrangement between the β-turn lysine and tryptophan, and the positive charge of the former. We also characterize a possible molecular mechanism of 2F5 escape by sequence variability at position 667, which is often observed in HIV-1 clade C isolates. Based on our results, we propose a somewhat more flexible molecular model of epitope recognition by bnMAb 2F5, which could guide future attempts at designing small-molecule MPER-like vaccines capable of eliciting 2F5-like antibodies.Eliciting broadly neutralizing antibodies (bnAbs) against primary isolates of human immunodeficiency virus type I (HIV-1) has been identified as a major milestone to attain in the quest for a vaccine in the fight against AIDS (12, 28). These antibodies would need to interact with HIV-1 envelope glycoproteins gp41 and/or gp120 (Env), target conserved regions and functional conformations of gp41/gp120 trimeric complexes, and prevent new HIV-1 fusion events with target cells (21, 57, 70, 71). Although a humoral response generating neutralizing antibodies against HIV-1 can be detected in HIV-1-positive individuals, the titers are often very low, and virus control is seldom achieved by these neutralizing antibodies (22, 51, 52, 66, 67). The difficulty in eliciting a broad and potent neutralizing antibody response against HIV-1 is thought to reside in the high degree of genetic diversity of the virus, in the heterogeneity of Env on the surface of HIV-1, and in the masking of functional regions by conformational covering, by an extensive glycan shield, or by the ability of some conserved domains to partition to the viral membrane (24, 25, 29, 30, 38, 39, 56, 68, 69). So far, vaccine trials using as immunogens mimics of Env in different conformations have primarily elicited antibodies with only limited neutralization potency across different HIV-1 clades although recent work has demonstrated more encouraging results (4, 12, 61).The use of conserved regions on gp41 and gp120 Env as targets for vaccine design has been mostly characterized by the very few anti-HIV-1 broadly neutralizing monoclonal antibodies (bnMAbs) that recognize them: the CD4 binding-site on gp120 (bnMAb b12), a CD4-induced gp120 coreceptor binding site (bnMAbs 17b and X5), a mannose cluster on the outer face of gp120 (bnMAb 2G12), and the membrane proximal external region (MPER) of gp41 (bnMAbs 2F5, Z13 and 4E10) (13, 29, 44, 58, 73). The gp41 MPER region is a particularly conserved part of Env that spans residues 659 to 683 (HXB2 numbering) (37, 75). Substitution and deletion studies have linked this unusually tryptophan-rich region to the fusion process of HIV-1, possibly involving a series of conformational changes (5, 37, 41, 49, 54, 74). Additionally, the gp41 MPER has been implicated in gp41 oligomerization, membrane leakage ability facilitating pore formation, and binding to the galactosyl ceramide receptor on epithelial cells for initial mucosal infection mediated by transcytosis (2, 3, 40, 53, 63, 64, 72). This wide array of roles for the gp41 MPER will put considerable pressure on sequence conservation, and any change will certainly lead to a high cost in viral fitness.Monoclonal antibody 2F5 is a broadly neutralizing monoclonal anti-HIV-1 antibody isolated from a panel of sera from naturally infected asymptomatic individuals. It reacts with a core gp41 MPER epitope spanning residues 662 to 668 with the linear sequence ELDKWAS (6, 11, 42, 62, 75). 2F5 immunoglobulin G binding studies and screening of phage display libraries demonstrated that the DKW core is essential for 2F5 recognition and binding (15, 36, 50). Crystal structures of 2F5 with peptides representing its core gp41 epitope reveal a β-turn conformation involving the central DKW residues, flanked by an extended conformation and a canonical α-helical turn for residues located at the N terminus and C terminus of the core, respectively (9, 27, 45, 47). In addition to binding to its primary epitope, evidence is accumulating that 2F5 also undergoes secondary interactions: multiple reports have demonstrated affinity of 2F5 for membrane components, possibly through its partly hydrophobic flexible elongated complementarity-determining region (CDR) H3 loop, and it has also been suggested that 2F5 might interact in a secondary manner with other regions of gp41 (1, 10, 23, 32, 33, 55). Altogether, even though the characteristics of 2F5 interaction with its linear MPER consensus epitope have been described extensively, a number of questions persist about the exact mechanism of 2F5 neutralization at a molecular level.One such ambiguous area of the neutralization mechanism of 2F5 is investigated in this study. Indeed, compared to bnMAb 4E10, 2F5 is the more potent neutralizing antibody although its breadth across different HIV-1 isolates is more limited (6, 35). In an attempt to shed light on the exact molecular requirements for 2F5 recognition of its primary gp41 MPER epitope, we performed structural studies of 2F5 Fab′ with a variety of peptides. The remarkable breadth of possible 2F5 interactions reveals a somewhat surprising promiscuity of the 2F5 binding site. Furthermore, we link our structural observations with the natural variation observed within the gp41 MPER and discuss possible routes of 2F5 escape from a molecular standpoint. Finally, our discovery of 2F5''s ability to tolerate a rather broad spectrum of amino acids in its binding, a spectrum that even includes nonnatural amino acids, opens the door to new ways to design small-molecule immunogens potentially capable of eliciting 2F5-like neutralizing antibodies.  相似文献   

20.
CCR5 antagonists inhibit HIV entry by binding to a coreceptor and inducing changes in the extracellular loops (ECLs) of CCR5. In this study, we analyzed viruses from 11 treatment-experienced patients who experienced virologic failure on treatment regimens containing the CCR5 antagonist maraviroc (MVC). Viruses from one patient developed high-level resistance to MVC during the course of treatment. Although resistance to one CCR5 antagonist is often associated with broad cross-resistance to other agents, these viruses remained sensitive to most other CCR5 antagonists, including vicriviroc and aplaviroc. MVC resistance was dependent upon mutations within the V3 loop of the viral envelope (Env) protein and was modulated by additional mutations in the V4 loop. Deep sequencing of pretreatment plasma viral RNA indicated that resistance appears to have occurred by evolution of drug-bound CCR5 use, despite the presence of viral sequences predictive of CXCR4 use. Envs obtained from this patient before and during MVC treatment were able to infect cells expressing very low CCR5 levels, indicating highly efficient use of a coreceptor. In contrast to previous reports in which CCR5 antagonist-resistant viruses interact predominantly with the N terminus of CCR5, these MVC-resistant Envs were also dependent upon the drug-modified ECLs of CCR5 for entry. Our results suggest a model of CCR5 cross-resistance whereby viruses that predominantly utilize the N terminus are broadly cross-resistant to multiple CCR5 antagonists, whereas viruses that require both the N terminus and antagonist-specific ECL changes demonstrate a narrow cross-resistance profile.Small-molecule CCR5 antagonists are a relatively new class of drugs that block HIV entry into target cells, with the first member of this class, maraviroc (MVC), having been approved for the treatment of HIV-infected patients. These drugs bind to a hydrophobic pocket formed by the transmembrane helices of CCR5, inducing conformational changes in the extracellular loops (ECLs) of the receptor (18, 31, 39, 40, 58, 62, 64). These conformational changes can vary with different drugs, as evidenced by differential chemokine binding and HIV resistance profiles, and block the ability of HIV to use drug-bound CCR5 as a coreceptor for entry (59, 64).As with other antiretroviral agents, HIV can develop resistance to CCR5 antagonists. One pathway by which HIV can become resistant to CCR5 antagonists is via mutations in the viral envelope (Env) protein that enable it to recognize the drug-bound conformation of the coreceptor. Most of our information on this pathway has come from in vitro passaging of HIV-1 in the presence of increasing concentrations of inhibitor (2, 4, 5, 33, 41, 44, 61, 66). In most instances, the viral determinants of resistance are localized to the V3 loop of gp120 (5, 33, 41, 44, 46, 63, 66). This is as expected: the base of the V3 loop interacts with O-sulfated tyrosines in the N terminus of CCR5, while the tip of the V3 loop is thought to contact the ECLs of the receptor (14, 15, 17, 19, 26, 29, 37). Viral resistance to one CCR5 antagonist commonly results in cross-resistance to other drugs in this class, although this is not universally the case (33, 41, 60, 63, 66). Mechanistically, a number of CCR5 antagonist-resistant viruses have been shown to have increased dependence on the N-terminal domain of CCR5 (5, 34, 44, 45, 48), which is largely unaffected by drug binding and may allow viruses to tolerate drug-induced changes in ECL conformation.In contrast to several well-characterized viruses that have evolved resistance to CCR5 antagonists in vitro, few examples of patient-derived CCR5 antagonist-resistant viruses have been reported. One mechanism of resistance that has been described in patients is the outgrowth of CXCR4-tropic HIV isolates that were present at low frequencies prior to the initiation of therapy (22, 23, 35, 36, 42, 65). Due to this finding, patients undergo tropism testing prior to treatment with CCR5 antagonists, with only those harboring exclusively R5-tropic viruses considered candidates for therapy. Patient-derived viruses capable of using drug-bound CCR5 have been reported in studies using vicriviroc and aplaviroc (45, 60, 63). The aplaviroc-resistant viruses were determined to utilize the drug-bound form of the receptor by interacting primarily with the N terminus of CCR5, similar to the viruses derived by serial in vitro passaging (48).In the present study, we report the isolation of MVC-resistant Envs from a treatment-experienced patient who had a viral load rebound while on a regimen containing MVC. Viral Envs isolated from this patient at the time MVC therapy was initiated were fully sensitive to drug. However, resistance evolved over the course of 224 days, culminating in Envs that were completely resistant to inhibition but continued to use CCR5 for entry. The emergence of resistance was dependent upon changes within the V3 loop of the virus, while changes in the V4 loop modulated the magnitude of resistance. The MVC-resistant Envs studied here exhibited several unusual properties. First, while they were cross-resistant to TAK779, they remained sensitive to all other CCR5 antagonists tested, including vicriviroc and aplaviroc. Second, the Envs were particularly adept at utilizing low levels of CCR5 to mediate infection of cells. Third, and in contrast to several recent reports of CCR5 antagonist-resistant viruses, these Envs were dependent upon residues within both the N terminus and ECLs of CCR5 for efficient entry in the presence of drug. When considered in the context of other reports, our data suggest a model in which resistance to multiple CCR5 antagonists can arise if an Env protein becomes highly dependent upon the N-terminal domain of CCR5, the conformation of which appears to be unaffected by drug binding. A more narrow resistance profile results from changes in Env that enable it to use both the N-terminal domain of CCR5 as well as the drug-induced conformation of the CCR5 ECLs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号