首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The agronomic performance of broad leaved crop plants such as cotton would be greatly improved if genetically-engineered resistance to broadleaf herbicides could both protect the plants from accidental spray drift damage and allow the suppression of problem broadleaf weeds by chemical means. Followingin vitro modification and the addition of plant expression signals, the gene for 2,4-D monooxygenase, a bacterial enzyme that degrades the broadleaf herbicide 2,4-dichlorophenoxyacetic acid (2,4-D), was introduced into cotton plants byAgrobacterium-mediated transformation. First generation homozygous progeny of regenerated transgenic cotton plants carrying this gene exhibited up to a 50–100 fold increase in tolerance to 2,4-D compared with untransformed controls, and glasshouse trials suggest that the genetically-engineered plants would be completely protected from spray drift of 2,4-D, at least up to the normal field application rates commonly used on neighbouring cereal crops.  相似文献   

2.
Summary A survey of selected crop species and weeds was conducted to evaluate the inhibition of the enzyme acetohydroxyacid synthase (AHAS) and seedling growth in vitro by the sulfonylurea herbicides chlorsulfuron, DPX A7881, DPX L5300, DPX M6316 and the imidazolinone herbicides AC243,997, AC263,499, AC252,214. Particular attention was given to the Brassica species including canola cultivars and cruciferous weeds such as B. kaber (wild mustard) and Thlaspi arvense (stinkweed). Transgenic lines of B. napus cultivars Westar and Profit, which express the Arabidopsis thaliana wild-type AHAS gene or the mutant gene csr1-1 at levels similar to the resident AHAS genes, were generated and compared. The mutant gene was essential for resistance to the sulfonylurea chlorsulfuron but not to DPX A7881, which appeared to be tolerated by certain Brassica species. Cross-resistance to the imidazolinones did not occur. The level of resistance to chlorsulfuron in transgenic canola greatly exceeded the levels that were toxic to the Brassica species or cruciferous weeds. Direct selection of transgenic lines with chlorsulfuron sprayed at field levels under greenhouse conditions was achieved.  相似文献   

3.
High amylose content (AC) in rice endosperm is correlated with poor grain quality, particularly in indica hybrid rice. We have generated several homozygous transgenic parent lines of indica hybrid rice carrying an antisense Waxy (Wx) gene and demonstrated that the AC in seeds of these lines decreased dramatically. Two transgenic maintainer lines (L25B and L18B), derived from one of the key maintainer parents of an indica hybrid rice in China, Long-te-fu B (LTF-B), were selected and the antisense Wx gene was subsequently introgressed into the male-sterile counterpart, LTF-A, with the aim to generate improved indica hybrids. The indica hybrids derived from the selected transgenic male-sterile lines and restorer lines were tested for quality and agronomic performance under normal field conditions. Our results demonstrated that the reduction of AC in the homozygous transgenic maintainer lines stably passed down in five successive generations and the improved quality was also found in their relevant transgenic hybrids produced. The other two key characters of rice cooking and eating quality, the gel consistence (GC) and gelatinization temperature (GT), were also improved in the grains of both the transgenic maintainer lines and their relevant hybrids. In addition, no change was observed for most of the agronomic characters of the transgenic maintainer lines and the relevant transgenic hybrids. Although the grain weight of the transgenic line was reduced, the grain yield of the homozygous transgenic parent lines and the transgenic hybrids was similar when compared with that of the wild-type controls. These results suggest that transgenic approaches are an effective way to obtain rice lines with both improved qualities and high yield, especially for indica hybrid rice.  相似文献   

4.
5.
Light GG  Mahan JR  Roxas VP  Allen RD 《Planta》2005,222(2):346-354
Transgenic cotton (Gossypium hirsutum L.) lines expressing the tobacco glutathione S-transferase (GST) Nt107 were evaluated for tolerance to chilling, salinity, and herbicides, antioxidant enzyme activity, antioxidant compound levels, and lipid peroxidation. Although transgenic seedlings exhibited ten-fold and five-fold higher GST activity under normal and salt-stress conditions, respectively, germinating seedlings did not show improved tolerance to salinity, chilling conditions, or herbicides. Glutathione peroxidase (GPX) activity in transgenic seedlings was 30% to 60% higher under normal conditions, but was not different than GPX activity in wild-type seedlings under salt-stress conditions. Glutathione reductase, superoxide dismutase, ascorbate peroxidase, and monodehydroascorbate reductase activities were not increased in transgenic seedlings under salt-stress conditions, while dehydroascorbate reductase activity was decreased in transgenic seedlings under salt-stress conditions. Transgenic seedlings had 50% more oxidized glutathione when exposed to salt stress. Ascorbate levels were not increased in transgenic seedlings under salt-stress conditions. Malondialdehyde content in transgenic seedlings was nearly double that of wild-type seedlings under normal conditions and did not increase under salt-stress conditions. These results show that expression of Nt107 in cotton does not provide adequate protection against oxidative stress and suggests that the endogenous antioxidant system in cotton may be disrupted by the expression of the tobacco GST.  相似文献   

6.
拟南芥基因密码子偏爱性分析   总被引:22,自引:0,他引:22  
密码子偏爱性对外源基因的表达强度有一定影响,特别是编码蛋白质N端7~8个氨基酸残基的密码子.通过对拟南芥染色体中26 827个蛋白质对应的基因密码子进行分析,得到了编码氨基酸的61种密码子在拟南芥中的使用频率,并与大肠杆菌和哺乳动物进行了比较,结果表明三者间的密码子偏爱性有较大差异.这一分析结果对于动物基因在植物中的表达,及植物基因在微生物中的表达具有一定指导意义.同时提供了一种直接以XML文档为数据源解析巨型XML格式染色体数据的方法.  相似文献   

7.
Protoporphyrinogen oxidase (Protox) in the porphyrin pathway is the target site of the peroxidizing herbicides such as carfentrazone-ethyl and oxyfluorfen. In an attempt to develop herbicide-resistant plants, transgenic rice plants were generated via expression of herbicide-insensitive Bacillus subtilis Protox gene fused to the transit sequence for targeting to the plastid using Agrobacterium-mediated gene transformation. Homozygous transgenic rice lines of T3 generation selected by hygromycin resistance test were examined if they are resistant to the herbicides carfentrazone-ethyl and oxyfluorfen. The homozygous transgenic lines had single copy insertion of B. subtilis Protox gene into their genomes and express its mRNA. Compared to wild-type rice, the transgenic lines were less susceptible to the herbicides when examined with respect to growth, electrolyte leakage, chlorophyll loss and lipid peroxidation. The in vitro Protox activities in transgenic lines were about 56 % higher than those in wild-type rice. With 10 µM concentration of the herbicides in the enzyme assays, Protox activities in transgenic lines were similar to those in non-inhibited wild-type rice. Less amount of protoporphyrin IX was accumulated in transgenic lines than in wild-type rice upon the treatment of the herbicides at 10 µM concentration. Our results indicated that expression of B. subtilis Protox gene was stably transmitted into T3 rice plants and reduced their sensitivity to carfentrazone-ethyl and oxyfluorfen.This work was supported by Ministry of Agriculture and Forestry of Korea and Agricultural Plant Stress Research Center (grant No. R11-2001-09203000-0) funded by Korea Science and Engineering Foundation.  相似文献   

8.
心血管系统形成于胚胎发育极早期并为其他器官的发育、维持、修复所必需,血管生长异常可造成多种疾病.然而,由于研究对象所限,胚胎血管的发育机制尚未完全阐明,调控血管发育的基因也所知有限.通过Tol2转座子介导的大规模增强子诱捕筛选到26个血管特异表达绿色荧光蛋白(EGFP)报告基因的转基因斑马鱼系,其中有一些品系在胚胎的某些特异血管结构中表达绿色荧光.通过linker-mediated PCR克隆到22个鱼系中Tol2插入位点附近的斑马鱼基因组序列,其中有17个鱼系的Tol2插入可定位到现有的斑马鱼基因组中的单一位点.通过整体胚胎原位杂交对插入位点附近的基因进行表达谱分析,得到8个表达谱与转基因鱼系一致的基因,涵盖了9个鱼系,其中dusp5基因对应于2个不同的鱼系.这8个基因中包括hhex、ets1a和dusp5等3个功能已知的基因,但是大部分(5个)基因在斑马鱼中尚无功能研究,分别为zvsg1、micall2a、arl8b(1of2)、zgc:73355以及hecw2(1of2).hhex和ets1a基因对血管与血细胞前体的发育具有重要作用,所获得的EGFP报告基因受hhex或ets1a基因增强子控制的转基因斑马鱼(mp378b和mp430c-2)为国际首例,为深入研究这两个基因在血管与血液发育中的作用机制提供了新的机遇.筛选到的功能未知基因可以用来进一步研究其在血管发育中的功能;同时,利用所获得的转基因鱼系,可以实现实时、动态观察成血管细胞的起源、分化与基因表达调控,并可用于高通量小分子药物筛选等重要研究.  相似文献   

9.
10.
The cloned bacterial blight (BB) resistance gene Xa21 was transferred into Minghui63, a widely used restorer line of indica hybrid rice in China, through an Agrobacterium-mediated system. Molecular and resistance analyses revealed that the Xa21 gene was integrated in the genomes of transgenic plants and their progeny inherited resistance stably. For the purpose of hybrid breeding, Xa21 transgenic homozygous restorer lines were selected through `within-lane' dosage comparison of hybridization signal in combination with PCR and resistance analyses. The selected transgenic restorer lines were then crossed with a commonly used sterile line, Zhenshan97A, to produce Xa21 transgenic hybrid rice, Shanyou63-Xa21. The hybrid rice plants with Xa21 displayed high broad-spectrum resistance to Xanthomonas oryzae pv. oryzae (Xoo) races and maintained elite agronomic characters of Shanyou63. The propagation of this BB-resistant hybrid variety with Xa21 will benefit rice production.  相似文献   

11.
该研究从生防菌枯草芽胞杆菌Bs-916中克隆了鞭毛蛋白基因,利用转基因载体pCAMBIA1300转入水稻,筛选得到98株阳性转基因植株。分子检测结果表明,有12个转基因株系可检测到目的基因的表达。随后抗病性鉴定表明,有3个转基因株系对水稻细菌性条斑病具有较高的抗性。该研究为目前水稻抗细菌性条斑病转基因研究拓宽了可应用基因资源的范围。  相似文献   

12.
Effective transgenic resistance to Globodera pallida in potato field trials   总被引:1,自引:0,他引:1  
A cysteine proteinase inhibitor expressed in potato plants provides the first demonstration that transgenic resistance to nematodes such as the potato cyst nematode Globodera pallida can be effective under field conditions. The highest level of resistance obtained in the field for one of the four transformed lines of the normally fully susceptible Solanum tuberosum tuberosum cv. Désirée was 70±9%. The partially resistant cv. Sante that is currently of commercial use in the UK showed a resistance of 85±3%. In containment experiments a change in G. pallida population to one known to be virulent against cv. Sante caused a significant loss of its resistance from 80±4% to only 51±6%. In contrast, the resistance of transgenic Désirée was similar for challenge by the avirulent and virulent populations with values of 68±6% and 71±4%, respectively. Constitutive expression of the cystatin had no detrimental effect on either number or weight of tubers and the weight of the haulm for 3 of the 4 lines in the field. The results establish that transgenic field resistance against G. pallida can be achieved. Clearly food and environmental safety must be assured before commercialisation can be contemplated. However, a prima facie case can be made that the technology is benign and can reduce the use of environmentally hazardous nematicides.  相似文献   

13.
We generated transgenic tall fescue (Festuca arundinacea Schreb. cv. Kentucky-31) plants harboring a synthetic Myxococcus xanthus protoporphyrinogen oxidase (MxPPO) gene through Agrobacterium-mediated gene transfer. Successful integration of the transgene into the genome of transgenic plants confirmed by polymerase chain reaction (PCR) and Southern blot analysis, and the functional expression of the MxPPO gene at the mRNA level in transgenic lines was validated by Northern blot analysis. Responses of transgenic and non-transgenic tall fescue plants to diphenyl-ether herbicides such as oxyfluorfen and acifluorfen have been evaluated in respect of various physiological and biochemical parameters. Differential responses were observed in chlorophyll content, in vivo H2O2 deposition and lipid peroxidation in both transgenic and non-transgenic plants exposed to oxyfluorfen or acifluorfen. Isozyme profiles of four antioxidant-enzymes, including peroxidase (POD), catalase (CAT), superoxide dismutase (SOD) and ascorbate peroxidase (APX), were also investigated in transgenic and non-transgenic plants using native PAGE analysis. Compared to the transgenic lines, higher staining activities of the examined antioxidant-enzymes observed in non-transgenic plants subjected to 100 μM of oxyfluorfen or acifluorfen suggests that non-transgenic plants are unable to prevent the photodynamic induced oxidative stress caused by herbicides. In addition, both transgenic and non-transgenic plants exposed to oxyfluorfen exhibited proportionally increased band-staining patterns in contrast to acifluorfen, which suggests that oxyfluorfen has relatively greater or more rapid effects on leaves than acifluorfen. Both Ki-Won Lee and Nagib Ahsan have contributed equally to this work.  相似文献   

14.
In order to improve the efficiency of cassava (Manihot esculenta Crantz) transformation, two different selection systems were assessed, a positive one based on the use of mannose as the selective agent, and a negative one based on hygromycin resistance encoded by an intron-containing hph gene. Transgenic plants selected on mannose or hygromycin were regenerated for the first time from embryogenic suspensions cocultivated with Agrobacterium. After the initial selection using mannose and hygromycin, 82.6% and 100% of the respective developing embryogenic callus lines were transgenic. A system allowing plant regeneration from only transgenic lines was designed by combining chemical selection with histochemical GUS assays. In total, 12 morphologically normal transgenic plant lines were produced, five using mannose and seven using hygromycin. The stable integration of the transgenes into the nuclear genome was verified using PCR and Southern analysis. RT-PCR and northern analyses confirmed the transgene expression in the regenerated plants. A rooting test on mannose containing medium was developed as an alternative to GUS assays in order to eliminate escapes from the positive selection system. Our results show that transgenic cassava plants can be obtained by using either antibiotic resistance genes that are not expressed in the micro-organisms or an antibiotic-free positive selection system.  相似文献   

15.
The competitiveness of two transgenic oilseed rape (Brassica napus ssp.napus) lines and their fertile transgenic hybrid was tested in field trials in Belgium and Denmark. The lines contained genes for male sterility, restoration of fertility and herbicide resistance. The competitiveness of the three transgenic lines was related to three non-transformed commercially-grown oilseed rape varieties: Drakkar, Topas and Line. As a reference of a more aggressive crucifer, white mustard (Sinapis alba) was also included in the experiment. The experimental design was a complete block design with two locations, monocultures and mixtures with barley (Hordeum vulgare), three plant densities, four harvest times and four blocks. The yield density relationship of the transgenic oilseed rape lines was not different from that of the non-transgenic varieties in either location. The first harvest times showed a vigorous biomass production of white mustard, which in turn produced a significant difference in the competitive ability between oilseed rape and white mustard. Later, this difference decreased, and in Belgium there was no difference at the last harvest time. Variations within populations may blur actual differences between lines and varieties, and it is argued that unless the experimental design covers a range of competitiveness for which it is possible to detect significant differences, test results reporting a lack of difference between transgenic and non-transgenic plants are of little value.  相似文献   

16.
17.
The phenoxy herbicides 2,4-D and dicamba are released daily into the environment in large amount. The mechanisms of genotoxicity and mutagenicity of these herbicides are poorly understood, and the available genotoxicity data is controversial. There is a cogent need for a novel genotoxicity monitoring system that could provide both reliable information at the molecular level, and complement existing systems.We employed the transgenic Arabidopsis thaliana ‘point mutation’ and ‘recombination’ plants to monitor the genetic effects of the herbicides 2,4-D and dicamba. We found that both herbicides had a significant effect on the frequency of homologous recombination A→G mutation. Neither herbicides affected the T→G mutation frequency. Interestingly, these transgenic biomonitoring plants were able to detect the presence of phenoxy herbicides at concentrations that were lower than the guideline levels for Drinking Water Quality. The results of our studies suggest that our transgenic system may be ideal for the evaluation of the genotoxicity of herbicide-contaminated water. Moreover, the unique ability of the plants to detect both double-strand breaks (homologous recombination) and point mutations provides tremendous potential in the study of molecular mechanisms of genotoxicity and mutagenicity of phenoxy herbicides.  相似文献   

18.
A reproducible and efficient transformation system utilizing the nodal regions of embryonal axis of blackgram (Vigna mungo L. Hepper) has been established via Agrobacterium tumefaciens. This is a report of genetic transformation of Vigna mungo for value addition of an agronomic trait, wherein the gene of interest, the glyoxalase I driven by a novel constitutive Cestrum yellow leaf curling viral promoter has been transferred for alleviating salt stress. The overexpression of this gene under the constitutive CaMV 35S promoter had earlier been shown to impart salt, heavy metal and drought stress tolerance in the model plant, tobacco. Molecular analyses of four independent transgenic lines performed by PCR, Southern and western blot revealed the stable integration of the transgene in the progeny. The transformation frequency was ca. 2.25% and the time required for the generation of transgenic plants was 10–11 weeks. Exposure of T1 transgenic plants as well as untransformed control plants to salt stress (100 mM NaCl) revealed that the transgenic plants survived under salt stress and set seed whereas the untransformed control plants failed to survive. The higher level of Glyoxalase I activity in transgenic lines was directly correlated with their ability to withstand salt stress. To the best of our knowledge this is the only report of engineering abiotic stress tolerance in blackgram. Prasanna Bhomkar, Chandrama P. Upadhyay are contributed equally. An erratum to this article can be found at  相似文献   

19.
A new method for the selection of transgenic rice plants without the use of antibiotics or herbicides has been developed. The phosphomannose isomerase (PMI) gene from Escherichia coli has been cloned and consitutively expressed in japonica rice variety TP 309. The PMI gene was transferred to immature rice embryos by Agrobacterium-mediated transformation, which allowed the selection of transgenic plants with mannose as selective agent. The integration and expression of the transgene was confirmed by Southern and northern blot analysis and the activity of PMI indirectly proved with the chlorophenol red assay. The results of genetic analysis showed that the transgenes were segregated in a Mendelian fashion in the T1 generation. The establishment of this selection system in rice provides an efficient way for producing transgenic plants without using antibiotics or herbicides with a transformation frequency of up to 41%.  相似文献   

20.
Xia H  Lu BR  Xu K  Wang W  Yang X  Yang C  Luo J  Lai F  Ye W  Fu Q 《Transgenic research》2011,20(3):655-664
The rapid development of transgenic biotechnology has greatly promoted the breeding of genetically engineered (GE) rice in China, and many GE rice lines are in the pipeline for commercialization. To understand field performances of GE rice, key agronomic traits of two insect-resistant Bt rice lines that have been granted biosafety certificates for commercial production in China were evaluated together with their nontransgenic counterparts under environmental conditions with significant differences in insect pressure. Results from the experiments showed enhanced field performances of the Bt GE rice lines compared with the non-GE counterparts for yield-related traits such as number of panicles and filled seeds per plant, under environmental conditions with no insecticide application. No detectable underlying cost of the Bt transgene was observed in the two insect-resistant GE rice lines, particularly in the GE hybrid rice line. Results further indicated significantly greater yield performances of the two insect-resistant GE rice lines under environmental conditions with non-target insect control compared with no insect control. It is concluded from this study that insect-resistant Bt GE rice, particularly the hybrid line, has great potential to maintain its high yield when ambient insect pressure is high. In addition, proper application of insecticides to control non-target insects will guarantee optimal performance of insect-resistant Bt GE rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号